

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FM IF detector for cordless phones **BA4116FV**

The BA4116FV is an IC with mixing circuit, IF circuit, FM detector circuit, RSSI circuit, and noise detector circuit. As it can operate at low voltages, it is ideal for use in cordless phones.

Applications

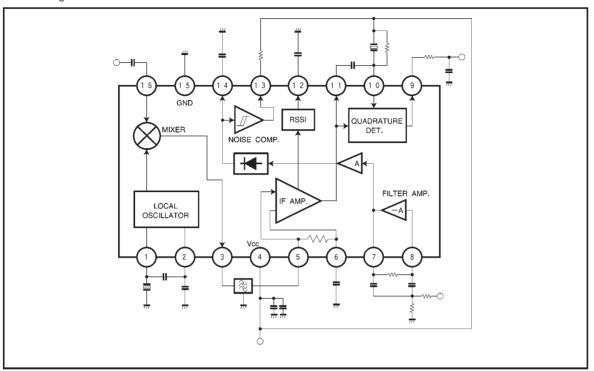
Cordless phones, amateur short wave radios, and other portable wireless equipment

Features

- Input frequencies of 10MHz to 150MHz can be accommodated.
- 2) Low-voltage operation. (1.8 to 5.5V)
- 3) Excellent temperature characteristic.

- 4) High sensitivity; 12dB SINAD sensitivity = $8dB\mu VEMF$ (50 Ω)
- 5) High intercept point. (-11dBm)
- 6) Small package used. (0.65mm pitch)

● Absolute maximum ratings (Ta = 25°C)


Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	7.0	V
Power dissipation	Pd	350*	mW
Operating temperature	Topr	−30~+85	°C
Storage temperature	Tstg	−55~ +125	°

^{*} Reduced by 3.5mW for each increase in Ta of 1℃ over 25℃.

• Recommended operating conditions (Ta = 25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vcc	1.8	2.0	5.5	٧

●Block diagram

Pin descriptions

Pin No.	Function	Internal peripheral circuit	Pin voltage with no signal (V)
1	Local oscillator pin (base) Connect crystal resonator and capacitor	1 Vcc	Vcc
2	Local oscillator pin (emitter) Connect capacitor or input local signal from external oscillator	2 to MIXER	Vcc-0.75
3	Mixer output pin Connect ceramic filter; output impedance is 1.8 $k\Omega$	1.6k	Vcc-1.33
4	Vcc pin		Vcc
5	IF amplifier input pin Connect ceramic filter; input impedance is 1.8 kΩ	1.8k	Vcc-0.33
6	IF amplifier bypass pin Connect capacitor	6 8 8	Vcc-0.33

Pin No.	Function	Internal peripheral circuit	Pin voltage with no signal (V)
7	Filter amplifier output pin Connect CR network	7 100 Vcc	0.70
8	Filter amplifier input pin Connect CR network	8 500 to Rectification circuit	0.70
9	Demodulated signal Connect to noise amplifier or similar device; output impedance is 360 Ω	9 330 9 77	0.86
10	Discriminator pin Connect phase-shifting coil or ceramic discriminator	10 Voc	Vcc
11	IF amplifier output pin Connect to phase-shifting capacitor	100 110 777	Vcc-0.95

Pin No.	Function	Internal peripheral circuit	Pin voltage with no signal (V)
12	RSSI output pin Connect to capacitor	12 ************************************	0.4
13	Noise comparator output pin Connect to load resister	13	0
14	Noise detector output pin Connect to capacitor	T4	0
15	GND pin		0
16	Mixer input pin $ \begin{array}{c} \text{Connect 1st IF signal from DC cut;} \\ \text{input impedance is 5 k} \Omega \end{array} $	16 Voc	0.95

ullet Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 2.0V, fin (Mix) = 21.7MHz, fin (IF) = 450kHz, $\Delta f = \pm 1.5$ kHzdev, fm = 1kHz, all AC levels open (EMF) display)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Quiescent current	lα	2.1	3.0	4.2	mA	No input	Fig.1
(Mixer section)							
Conversion gain	Gvc	15	18	21	dB	Tested after ceramic filter(-3 dB loss)	Fig.1
Intercept point	lР	_	-11	_	dBm		_
land have a deman	Rin	_	5.5	_	kΩ		_
Input impedance	Cin	_	4.6	_	pF		_
Output impedance	Ro	1.2	1.8	2.4	kΩ		_
12 dB SINAD sensitivity	S	_	8	_	dB μV		_
⟨IF,FM detector section⟩							
FM detector output	Vo	79	100	126	mVrms	V _{IN} (IF) =80dB μ V	Fig.1
Signal-to-noise ratio	S/N	43	63	_	dB	V _{IN} (IF) =80dB μ V	Fig.1
AM rejection ratio	AMR	_	40	_	dB	V _{IN} (IF) =80dB μV, AM=30%	Fig.1
Input resistance	Rin	1.2	1.8	2.4	kΩ		_
DCCI output voltage	VRSSI1	0.7	1.0	1.45	٧	V _{CC} =3V VIN (IF) =50dB μV	Fig.1
RSSI output voltage	V _{RSSI2}	1.6	2.3	2.9	V	V_{IN} (IF) =100dB μ V	Fig.1
⟨Noise detector section⟩							
Output voltage	VNDET	_	0.1	0.5	٧	VNREC=0.2V, ISINK=0.2mA	Fig.1
Output leakage current	ILEAK	_	0	5	μА	VNREC=0.7V, VNDET=2V	
Noise detection high level	V тн-н	0.5	0.6	0.7	٧	Pin 14 voltage so that V _{NDET} ≤ 0.5 V Fig.1	
Noise detection low level	V _{TH} -L	0.3	0.4	0.5	٧	Pin 14 voltage so that Isınκ ≤ 5 μA Fig.1	
Noise detection hysteresis width	Hys	2.0	3.5	5.0	dB	Hysteresis width between Vтн-н and Vтн-L above Fig.1	

Measurement circuit

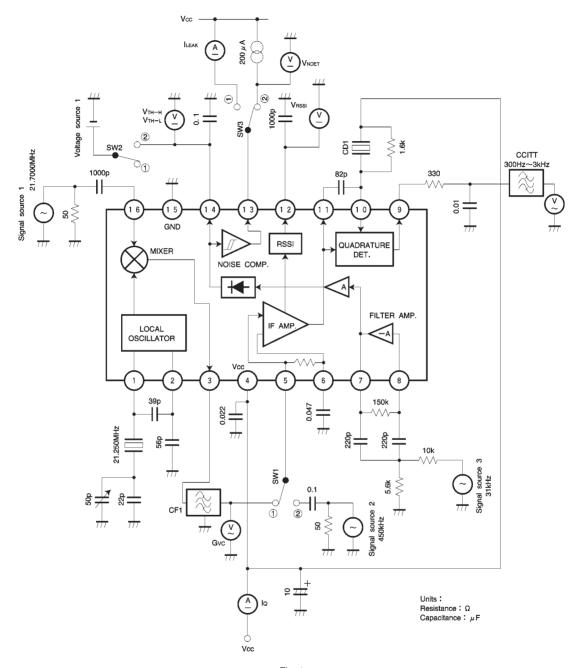


Fig. 1

Communication ICs BA4116FV

Application example

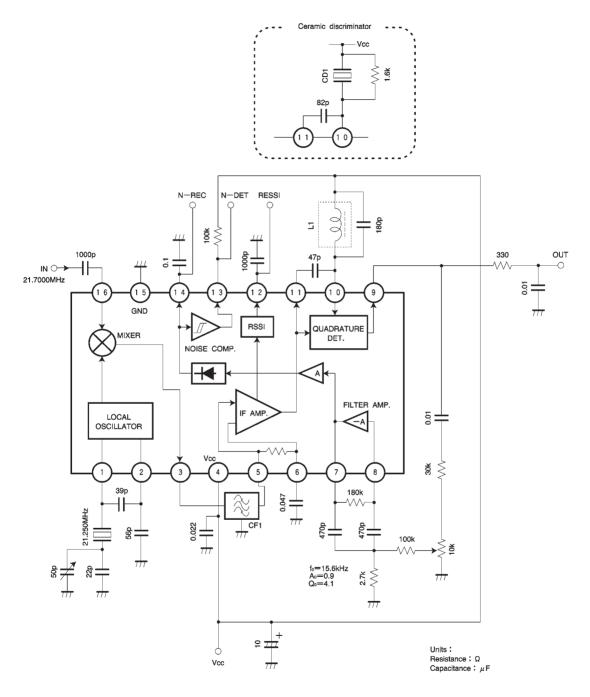


Fig. 2

Attached components

Part No.	Part name	Prod. No./Mfg.	Notes		
CF1	Ceramic filter	Murata: CFWM450G	6 dB band width $=\pm4.5$ kHz min. Attenuation band width $=\pm10$ kHz max. Guaranteed attenuation $=35$ dB min. Input loss $=6$ dB max.		
CD1	Ceramic discriminator	Murata: CDB450C24			
L1	Wave detection coil	Toko: 5PNR-2876Z	3 4 2 1–3 190T Wire type: 0.045ø, 3UEW L variable range= ±4 % Q at no load = 20 min.		

Determining the filter amplifier constant (multi-layer recovery band pass filter)

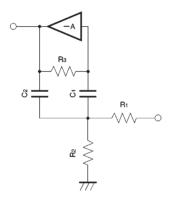


Fig. 3

fo: Center frequency

Q: Center frequency fo/band width BW

A₀: I/O gain

The reference resistance R_0 is determined as $C_1 = C_2 = C_0$.

 $R_0 = 1/2\pi f_0 \cdot C_0$

 $R_1 = R_0 \cdot Q/A_0$

 $R_2 = R_0/[2Q - (A_0/Q)]$

 $R_3 = 2R_0 \cdot Q$

The Filter gain can be adjusted by varying R_1 , but with the $A_0 > 1$ design, please be aware that influence from the open loop characteristic of the amplifier causes offset in the center frequency f_0 .

Electrical characteristic curves



Fig. 4 Quiescent current vs. power supply voltage

60

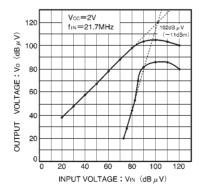


Fig. 5 Mixer output voltage vs. input voltage

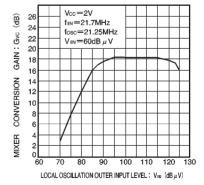


Fig. 6 Mixer conversion gain vs. Pin 2 OSC injection level

Communication ICs BA4116FV

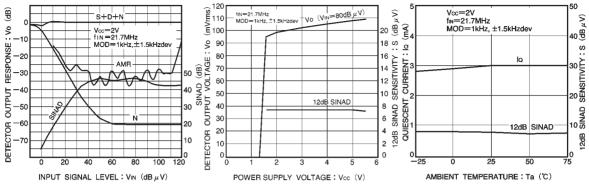


Fig. 7 Detector output response, AMR, SINAD vs. input signal leve

Fig. 8 Detector output voltage, 12 dB SINAD sensitivity vs. power supply voltage

Fig. 9 Quiescent current, 12 dB SINAD sensitivity vs. ambient temperature

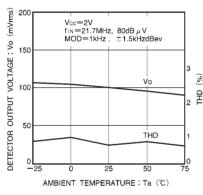


Fig. 10 Detector output level, THD vs. ambient temperature

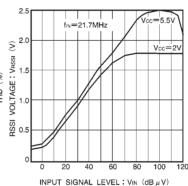


Fig. 11 RSSI voltage vs. input signal level

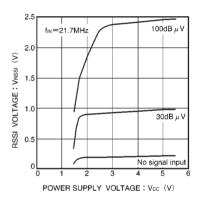


Fig. 12 RSSI voltage vs. power supply voltage

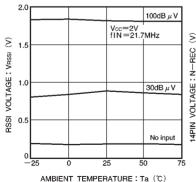


Fig. 13 RSSI voltage vs. ambient temperature

Fig. 14 Pin 13 voltage,
Pin 14 voltage vs.
noise amplifier input voltage

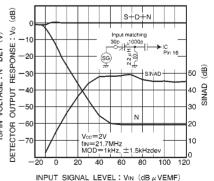
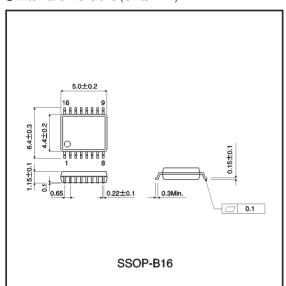



Fig. 15 Detector output recogne

Fig. 15 Detector output response, SINAD vs. input signal level

●External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

