mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Optical disc ICs

4-channel BTL driver for CD players and CD-ROMs BA5970FP

The BA5970FP is a 4-channel BTL driver developed to drive CD player motors and actuators. The driver input stage contains an operational amplifier, supports a variety of input formats, and allows simple configuration of a filter.

ApplicationsCD players, CD-ROM

Features

- 1) 4-channel BTL driver.
- 2) Wide dynamic range (4V when PREVcc = 8V, POWVcc = 5V, and RL = 8Ω).
- 3) Internal thermal shutdown circuit.
- 4) Driver gain is adjustable with externally connected resistor.
- Independent power supplies PREVcc, POWVcc (for channels 1 and 2), and POWVcc (for channels 3 and 4), and low voltage operation for a highly efficient drive.
- 6) Independent mute pins for channels 1 and 2 and channels 3 and 4.
- Perfect for compact applications with the use of the HSOP28-pin power package.

Parameter	Symbol	Limits	Unit
Power supply voltage	PREVcc, POWVcc	13.5	V
Power dissipation	Pd	1.7* ¹	W
Operating temperature	Topr	-35~+85	°C
Storage temperature	Tstg	-55~+150	Ĵ

•Absolute maximum ratings (Ta = 25° C)

*1 When mounted on a 70mm × 70mm × 1.6mm glass epoxy board with copper foil coverage of less than 3%. Reduced by 13.6mW for each increase in Ta of 1°C over 25°C.

Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Limits	Unit
Power supply voltage	PREVcc	4.5~13.2	V
	POWVcc	4.5~PREVcc	V

Block diagram

Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	BIAS IN	Bias amplifier input	15	VO4 (+)	Driver channel 4 positive output
2	OPIN1 (+)	Channel 1 pre-amplifier non-inverse input	16	VO4 (—)	Driver channel 4 negative output
3	OPIN1 ()	Channel 1 pre-amplifier inverse input	17	VO3 (+)	Driver channel 3 positive output
4	OPOUT1	Channel 1 pre-amplifier output	18	VO3 (—)	Driver channel 3 negative output
5	OPIN2 (+)	Channel 2 pre-amplifier non-inverse input	19	POWVcc	POWVcc (channels 3 and 4)
6	OPIN2 ()	Channel 2 pre-amplifier inverse input	20	MUTE2	Mute control for channels 3 and 4
7	OPOUT2	Channel 2 pre-amplifier output pin	21	GND	GND
8	GND	GND	22	OPOUT3	Channel 3 pre-amplifier output
9	MUTE1	Mute control for channels 1 and 2	23	OPIN3 (—)	Channel 3 pre-amplifier inverse input
10	POWVcc	POWVcc (channels 1 and 2)	24	OPIN3 (+)	Channel 3 pre-amplifier non-inverse input
11	VO2 (—)	Driver channel 2 negative output	25	OPOUT4	Channel 4 pre-amplifier output
12	VO2 (+)	Driver channel 2 positive output	26	OPIN4 ()	Channel 4 pre-amplifier inverse input
13	VO1 ()	Driver channel 1 negative output	27	OPIN4 (+)	Channel 4 pre-amplifier non-inverse input
14	VO1 (+)	Driver channel 1 positive output	28	PREVcc	PREVcc

Note : Positive output and negative output are the polarities with respect to the input.

Optical disc ICs

BA5970FP

Input / output circuits

Pre-amplifier input

Driver output Positive output 12,14,15,17pin 10k 10k 10k Negative output 11,13,16,18pin

Mute

Bias

•Electrical characteristics (unless otherwise noted, Ta = 25° C, PREV_{CC} = 8V, POWV_{CC}1 = 5V, POWV_{CC}2 = 8V, BIAS = 2.5V, R_L = 8Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current	lo1	—	20	30	mA	Input open
〈Driver〉						
Output offset voltage 1	V001	-70	0	70	mV	channel 1, 2
Output offset voltage 2	V002	-90	0	90	mV	channel 3, 4
Maximum output amplitude 1	Vом1	3.6	4.0	—	V	channel 1, 2, Vıℕ=±2.0V
Maximum output amplitude 2	Vом2	5.4	6.0	-	V	channel 3, 4, Vıℕ=±2.0V
Voltage gain 1	GVc1	10	12	14	dB	V _{IN} =±0.5V
Voltage gain 2	GVc2	16	18	20	dB	VIN=±0.5V
Mute on voltage	VMON	2.0	_	—	V	
Mute off voltage	VMOFF	-	-	0.5	V	
$\langle Pre-stage operational amplifier \rangle$						
Common-mode input voltage	Vicм	-0.3	-	6.8	mV	
Offset voltage	VOFOP	-6	0	6	mV	
Input bias current	VBOP	-	—	300	nA	
Output high level voltage	Vонор	6.9	7.35	—	V	
Output low level voltage	Volop	-	0.75	1.1	V	
Output drive current sink	lsı	1	-	-	mA	50Ω at Vcc
Output drive current source	Iso	1	—	_	mA	50Ω at GND
Slew rate	SROP	_	1	_	V/µs	100kHz rectangular wave, 2VP-P output

ONot designed for radiation resistance.

Measurement circuit

Fig.1

Measurement circuit switch table

(1) Driver block (OPB \rightarrow 1, NF \rightarrow 1, OPRL \rightarrow 1)

Symbol	Switch	Inj	put	Domorika	Measurement
	RL	VIN	VM1, 2	Hemarks	point
IQ	OFF	2.5V	0V	_	IQ
VOO1	ON	2.5V	0.5V	_	VO (channel 1, 2)
V002	ON	2.5V	0.5V	_	VO (channel 3, 4)
VOOM1	ON	±2.0V	0.5V	V _{IN} =0.5V and 4.5V	VO (channel 1, 2)
VOOM2	ON	±2.0V	0.5V	V _{IN} =0.5V and 4.5V	VO (channel 3, 4)
GVC1	ON	±0.5V	0.5V	V _{IN} =2.0V and 3.0V	VO (channel 1, 2)
GVC2	ON	±0.5V	0.5V	V _{IN} =2.0V and 3.0V	VO (channel 3, 4)
VMTON	ON	3.0V	2.0V	Verify output voltage is muted	VO
VMTOFF	ON	3.0V	0.5V	Verify output voltage is muted	VO

(2) Pre-stage operational amplifier block (VN1 = VM2 = 0V, $RL \rightarrow OFF$)

Cymbol	Switch			Input	Demertie	Measurement
Symbol	OPB NF OPRL VIN		Remarks	point		
VOFOP	1	1	1	2.5V	_	VIOF
VBOP	3	2	1	2.5V	_	VBOP/1MΩ
VOHOP	1	1	1	5V	_	VOOP
VOLOP	1	1	1	0V	_	VOOP
ISI	1	1	3	2.5V	_	VDROP/50Ω
ISO	1	1	2	2.5V	_	VDROP/50Ω
SROP	2	1	1	±1V	100kHz rectangular wave, 2.5±1V input	VOOP

•Application example

Optical disc ICs

Operation notes

(1) The BA5970FP contains a thermal shutdown circuit. When the chip temperature reaches 175°C (Typ.), the output current is muted. If the chip temperature then drops below 150°C (Typ.), then the mute is released.

(2) By having the mute pin voltage pulled up to 2.0V or greater, you can mute the output current. For normal conditions, have mute pin open or at 0.5V or below. (Pin 9 mutes channels 1 and 2, and pin 20 mutes channels 3 and 4.)

(3) If the voltage of the bias pin (pin 1) drops below 1.4V (Typ.), outputs are muted. For normal conditions, have the voltage above 1.7V.

(4) If the power supply voltage drops below 3.8V (Typ.),

internal circuits turns off. If the power supply voltage then rises to 4.0V (Typ.), the circuits turn on.

(5) If the voltage of the thermal shutdown, mute ON, or bias pin drops, or if the power supply voltage drops, the mute is activated; however, in these situations, only the drivers are muted. Also, the output pin voltage becomes the internal bias voltage (approx. $V_{\rm Cc}/2$ for channels 1 and 2, and $(V_{\rm Cc}-VF)/2$ for channels 3 and 4).

(6) Connect a bypass capacitor (approx. $0.1\mu F$) between the bases of the power supply pins of this IC.

(7) Even though the radiation fins are connected to ground within the package, be sure to also connect them to a ground externally as well.

Electrical characteristic curves

rohm

•External dimensions (Units: mm)

