imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

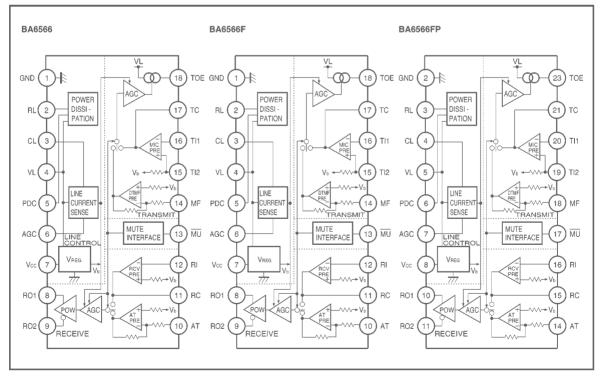
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Communication ICs

Speech network BA6566 / BA6566F / BA6566FP


The BA6566, BA6566F, and BA6566FP are speech network ICs which possess the basic functions required for handset communications. In addition to amplifying signals from a transmitter and sending them to a telephone line, they amplify only reception signals from a telephone line and drive the receiver. They also compensate for fluctuation in the volume at which signals are transmitted and received, caused by the length of the telephone line (AGC).

Applications

Telephones and telephone equipment

Features

- 1) Can accommodate both dynamic and piezoelectric receivers, simply by changing the circuit constant for a wide dynamic reception range.
- Automatic gain control (AGC) is used, based on the transmission and reception telephone line current, for easier compliance with communications standards.
- Erroneous operation caused by high-frequency electrical wave interference is minimized.
- An HSOP package is used, eliminating the need for an attached transistor to dissipate heat. This means that a common circuit can be shared when a DIP package is used (BA6566FP).

Block diagram

Absolute maximum ratings (Ta=25°C)

Paramete	r	Symbol	Limits	Unit					
Applied voltage	Applied voltage		16.5	V					
Power dissipation	BA6566		1100 *1						
	BA6566F	Pd	600* ²	mW					
	BA6566FP		1350 * ³						
Operating tempera	Operating temperature		-35~+60	Ĵ					
Storage temperatu	Storage temperature		-55~+125	Ĵ					
Current dissipation		l.	125 <i>*</i> 4	mA					

*1 Reduced by 11 mW for each increase in Ta of 1°C over 25°C.

*2 Reduced by 6 mW for each increase in Ta of 1°C over 25°C.

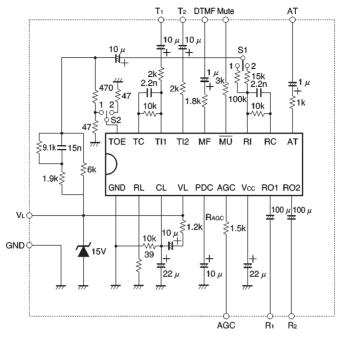
*3 Reduced by 13.5 mW for each increase in Ta of 1°C over 25°C. When mounted on 90 mm × 50 mm × 1.6 mm glass epoxy board, fins should be soldered to foil pattern.

*4 With the BA6566, Reduced by 1 mA for each increase in Ta of 1°C over 50°C. With the BA6566F, Reduced by 1.4 mA for each increase in Ta of 1°C over 50°C. With the BA6566FP, Reduced by 1 mA for each increase in Ta of 1°C over 50°C.

ROHM

●Electrical characteristics (Ta=25°C)

Parameter	Symbol	Min.	Тур.	Max.	Unit		C	onditic	ns	Measurement circuit
	Symbol		iyp.	wax.	Unit	I∟ (mA)	AGC	Mute	f=1kHz	
Line voltage (5)	$V_L(5)$	-	2.0	-	V	5	-	-	-	Fig.2
Line voltage (20)	VL (20)	2.5	3.5	5.0	V	20	-	-	-	Fig.2
Line voltage (30)	VL (30)	3.0	4.0	5.4	V	30	-	-	—	Fig.2
Line voltage (90)	VL (90)	5.2	7.0	9.5	V	90	-	-	-	Fig.2
Mute input low level voltage	VIL	0.1	0.18	0.25	V	20~90	-	_	-	Fig.2
Mute input low level current	lı∟	25	35	45	μA	20~90	-	_	_	Fig.2
Transmit gain 1 (20 - 90)	Gт1 (20 - 90)	37	41	44	dB	20~90	OFF	OFF	VIN=-50dBV	Fig.3
Transmit gain 1 (30 - 90)	Gt1 (30 - 90)	38	41	44	dB	30~90	OFF	OFF	V_{IN} =-50dBV	Fig.3
Transmit gain 2 (20)	GT2 (20)	38	41	45	dB	20	ON	OFF	VIN=-50dBV	Fig.3
Transmit gain 2 (30)	GT2 (30)	38	41	44	dB	30	ON	OFF	V _{IN} =−50dBV	Fig.3
Transmit gain 2 (90)	GT2 (90)	34.5	37.5	40.5	dB	90	ON	OFF	V _{IN} =−50dBV	Fig.3
Transmit distortion attenuation	DT	_	-46	-20	dB	20~90	-	OFF	V _{IN} =-50dBV	Fig.3
Transmit noise level	Ντ	-	-68	-55	dBV	20~90	-	OFF	BPF=400Hz ~30kHz	Fig.3
Maximum transmit output level (20 - 90)	O _T (20 - 90)	-2	3	_	dBV	20~90	_	OFF	Dist=-20dB	Fig.3
Maximum transmit output level (30 - 90)	От (30 - 90)	0	3	-	dBV	30~90	_	OFF	Dist=-20dB	Fig.3
Receive gain 1 (20 - 90)	Gri (20 - 90)	-13	-10	-7	dB	20~90	OFF	OFF	$S_1=1$ VIN=-20dBV	Fig.4
Receive gain 1 (20)	G _{R1} (20)	-13	-10	-7	dB	20	ON	OFF	$S_1=1$ V _{IN} =-20dBV	Fig.4
Receive gain 1 (30)	Gr1 (30)	-13	-10	-7	dB	30	ON	OFF	$S_1=1$ V _{IN} =-20dBV	Fig.4
Receive gain 1 (90)	Gr1 (90)	-16.5	-13.5	-10.5	dB	90	ON	OFF	$S_1=1$ $V_{IN}=-20$ dBV	Fig.4
Receive distortion attenuation 1	DR1	_	-46	-20	dB	20~90	-	OFF	S1=1 VIN=-20dBV	Fig.4
Receive noise level 1	N _{R1}	_	-70	-60	dBV	20~90	-	OFF	BPF=400Hz ~30kHz	Fig.4
Maximum receive output evel 1 (20 - 90)	Ori (20 - 90)	-15	-7	-	dBV	20~90	-	OFF	Dist=-20dB	Fig.4
Maximum receive output level 1 (30 - 90)	Ori (30 - 90)	-11	-7	-	dBV	30~90	-	OFF	Dist=-20dB	Fig.4
Receive gain 2 (20 - 90)	Gr2 (20 - 90)	5	8	11	dB	20~90	OFF	OFF	S1=2 VIN=-20dBV	Fig.4
Receive gain 2 (20)	G _{R2} (20)	5	8	11	dB	20	ON	OFF	S1=2 VIN=-20dBV	Fig.4



Communication ICs

BA6566 / BA6566F / BA6566FP

Parameter	Symbol	Min.	Тур.	Max.	Unit		С	Measurement		
						l∟ (mA)	AGC	Mute	f=1kHz	circuit
Receive gain 2 (30)	GR2 (30)	5	8	11	dB	30	ON	OFF	$S_1=2$ VIN=-20dBV	Fig.4
Receive gain 2 (90)	Gr2 (90)	1.5	4.5	7.5	dB	90	ON	OFF	S1=2 VIN=−20dBV	Fig.4
Receive distortion attenuation 2	Dr2	-	-46	-20	dB	20~90	_	OFF	$S_1=2$ VIN=-20dBV	Fig.4
Receive noise level (20 - 90)	N _{R2} (20 - 90)	_	-66	-50	dBV	20~90	_	OFF	BPF=400Hz ~30kHz	Fig.4
Receive noise level 2 (30 - 90)	N _{R2} (30 - 90)	_	-66	-55	dBV	30~90	_	OFF	BPF=400Hz ~30kHz	Fig.4
Maximum receive output level 2 (20 - 90)	O _{R2} (20 - 90)	1	7	_	dBV	20~90	_	OFF	Dist=-20dB	Fig.4
Maximum receive output level 2 (30 - 90)	O _{R2} (30 - 90)	3	7	_	dBV	30~90	_	OFF	Dist=-20dB	Fig.4
DTMF gain 1 (20 - 90)	G _{D1} (20 - 90)	30.5	33.5	36.5	dB	20~90	OFF	ON	V _{IN} =-40dBV	Fig.5
DTMF gain 2 (20)	GD1 (20)	30	33	36	dB	20	ON	ON	VIN=-40dBV	Fig.5
DTMF gain 2 (30)	GD2 (30)	30	33	36	dB	30	ON	ON	VIN=-40dBV	Fig.5
DTMF gain 2 (90)	GD2 (90)	27	30	33	dB	90	ON	ON	$V_{IN} = -40 dBV$	Fig.5
DTMF distortion attenuation	DD	_	-41	-28	dB	20~90	_	ON	V_{IN} =-40dBV	Fig.5
DTMF noise level (20 - 90)	No	_	-64	-55	dBV	20~90	_	ON	BPF=400Hz ~30kHz	Fig.5
Maximum DTMF output level (20 - 90)	0₀ (20 - 90)	-4.5	-0.5	_	dBV	20~90	_	ON	Dist=-28dB	Fig.5
Maximum DTMF output level (30 - 90)	O⊳ (30 - 90)	-3.5	-0.5	_	dBV	30~90	_	ON	Dist=-28dB	Fig.5
AT gain 1	Ga1	23.5	26.5	29.5	dB	20~90	_	ON	$S_1=1$ VIN=-40dBV	Fig.6
AT gain 2	Ga2	26.5	29.5	32.5	dB	20~90	_	ON	$S_1=2$ VIN=-40dBV	Fig.6
AC impedance	Ztel	450	565	750	Ω	20~90	_	_	$V_{IN} = -20 dBV$	Fig.7
Vcc pin voltage	VCCR	1.15	1.27	-	V	20	_	-	S₃=ON	Fig.2

Measurement circuits

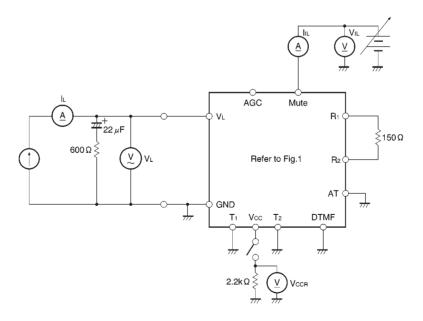


Fig. 2

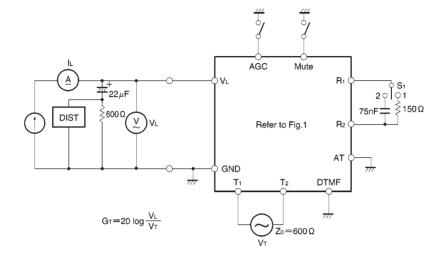


Fig. 3

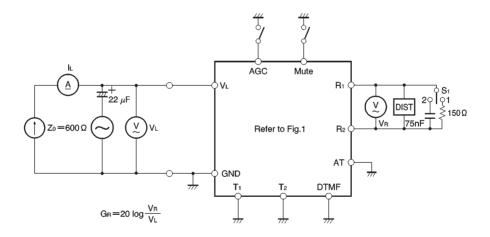


Fig. 4

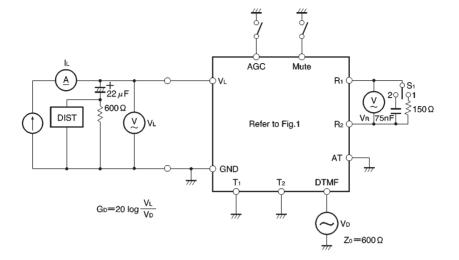


Fig. 5

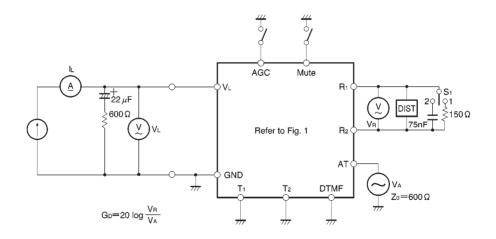


Fig. 6

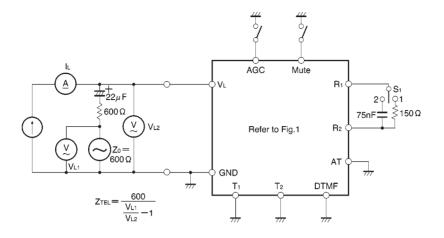
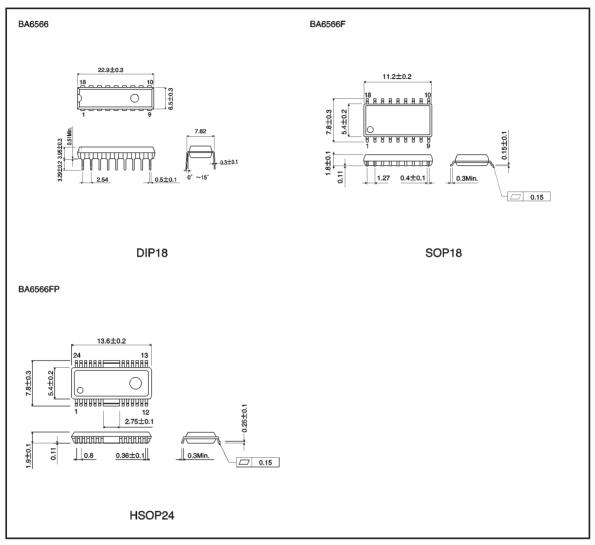



Fig. 7

External dimensions (Units: mm)

