mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Optical disc ICs

4-channel BTL driver for CD players **BA6896FP**

The BA6896FP is a 4-channel BTL driver designed for CD player motor and actuator drives. The internal 5V regulator and standard operational amplifier make this IC suitable for a wide spectrum of applications.

Applications

CD players, CD-ROM drives

Features

- 1) HSOP 28-pin package, for application miniaturization.
- 2) A minimum of attached components.
- Driver gain is adjustable with a single attached resistor.
- Internal 5V regulator. (requires attached PNP transistor)
- 5) Internal standard operational amplifier.
- 6) Internal thermal shutdown function.
- 7) The output current between pins 1 and 2 is mutable with the external mute pin.

Absolute	maximum	ratings	(Ta =	25°C	2)
----------	---------	---------	-------	------	----

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	18	v
Power dissipation	Pd	1.7*	W
Operating temperature	Topr	-35~+85	C
Storage temperature	Tstg	-55~+150	C

* Reduced by 13.6 mW for each increase in Ta of 1°C over 25°C. When mounted on a 50 \times 50 \times 1 mm paper phenol board.

Operating supply voltage range: 6-14 V (5.5-14V when not using the regulator)

 $\ensuremath{\ast}$ Pins 5 and 6 may be left open when the regulator is not used.

Block diagram

Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function	
1	VO1 (-)	Driver channel 1 negative output	15	OP IN (-)	Operational amplifier negative input	
2	VO1 (+)	Driver channel 1 positive output	16	OP IN (+)	Operational amplifier positive input	
3	VIN1	Driver channel 1 input	17	VO3 (-)	Driver channel 3 negative output	
4 VIN1'		Input for adjusting driver		VO3 (+)	Driver channel 3 positive output	
		channel 1 gain 1	19	VIN3	Driver channel 3 input	
5	REG-B	Connect to base of attached transistor			han a fan a diuation datum	
6		Constant voltage output (connect	20	VIN3'	channel 3 gain	
	1120 001	to collector of attached transistor)	21	Vcc	Vcc	
7	MUTE	Mute control	22	Vcc	Vec	
8	GND	Ground		••••		
		Innut for a direction driver	23	BIAS IN	Bias amplifier input	
9	VIN2'	channel 2 gain	24	VIN4'	Input for adjusting driver	
10	VIN2	Driver channel 2 input			Giamor 4 gam	
	$VO2(\pm)$	Driver channel 2 positive output	25	VIN4	Driver channel 4 input	
	VO2 (17		26	VO4 (+)	Driver channel 4 positive output	
12	VO2 (—)	Driver channel 2 negative output	07		Driver channel 4 percetive output	
13	GND	Substrate ground	27	VU4 (-)	Driver channel 4 negative output	
14	OP OUT	Operational amplifier output	28	GND	Substrate ground	

Note: Positive and negative output of the driver is relative to the polarity of the input pins.

For example, when an input pin goes to the high level, the negative output pin goes to the low level and the positive output pin to the high level.

BA6896FP

Pin equivalent circuit diagrams

Bias

Regulator (Base connection)

7pin

Operational amplifier input

Optical disc ICs

•Electrical characteristics (unless otherwise noted, Ta = 25° C, Vcc = 8V, f = 1kHz, RL = 8 Ω)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Quiescent current dissipation	lcc	6.0	10.0	14.0	mA	No load
Output voltage, offset	Voo	-40	-	40	mV	
Maximum output amplitude	Vом	3.8	4.3	-	V	
Closed loop voltage gain	Gvc	7.0	8.0	9.0	dB	VIN=0.1Vms,1kHz
Ripple rejection	RR	_	60	—	dB	V _{IN} =0.1V _{ms} ,100Hz
Slew rate	SR	-	2.0	-	V/µs	100 kHz square wave, 3 VP-P output
MUTE ON voltage	VMON	2.2	-	-	V	
MUTE OFF voltage	VMOFF	_		0.4	V	
<5 V regulator>						
Output voltage	Vreg	4.75	5.00	5.25	V	IL=100mA
Output load differential	$\triangle V_{RL}$	-50	0	10	mV	I∟=0~200mA
Power supply volt. differential	∆Vvcc	-30	0	75	mV	(Vcc=6~14V) IL=100mA
(Opeational amplifier)						
Offset voltage	Vofop	-5	0	5	mV	
Input bias current	VBOP	_		300	nA	
Output high level voltage	VOHOP	6.0	_	_	V	
Output low level voltage	VOLOP	_	0.7	1.1	V	
Output drive current (sink)	Isink	10	50	-	mA	50Ωat Vcc
Output drive current (source)	ISOURCE	10	40	_	mA	50Ωat GND
Open loop voltage gain	Gvo	_	78	—	dB	VIN=-75dBV,1kHz
Slew rate	SRop	_	1	_	V/µs	100 kHz square wave, 4 VP-P output
Ripple rejection ratio	RRop	-	65	-	dB	V _{IN} =-20dBV,100Hz
Common mode rejection ratio	CMRR	_	84	_	dB	VIN=-20dBV,1kHz

O Not designed for radiation resistance.

Measurement circuit

Fig.1

Circuit operation

(1) Driver

Inputs to the IC are the focus tracking error signal from the servo preamplifier and the control signal from the motor. The input signals, which normally center on 2.5V, are V / I converted by the preamplifier, generating a current corresponding to the input voltage. This current is

passed through a resistor and into the internal reference voltage component, the preamplifier output being a signal centering on the internal reference voltage. Two systems (positive phase and negative phase) are created during V / I conversion, generating BTL output via the driver buffer.

(2) Regulator

This is a typical series regulator that generates a reference voltage internally. A PNP low saturation transistor must be connected.

(3) Operational amplifier A standard 4558 type.

Application example

Thermal derating curve

Operation notes

(1) The BA6896FP has an internal thermal shutdown circuit. Output current is muted when the chip temperature exceeds 175°C (typically).

(2) The output current can be muted be raising the mute pin (pin 7) voltage above 2.2V. Pin 7 should be open or pulled up above 0.4V during normal operation.

(3) Muting also occurs when the bias pin (23 pin) drops below 1.4V (typically). Pin 23 should stay above 1.6V during normal operation.

(4) The internal circuits turn off when the supply voltage drops below 4.5V (typically) and start up again when the supply voltage rises above 4.7V (typically).

Muting occurs during thermal shutdown, mute-on (5) operations or a drop in the bias pin voltage or supply voltage. In each case, only the drivers are muted. During muting, the output pins remain at the internal bias voltage, roughly $(V_{CC} - V_F) / 2$.

(6) Attach a bypass capacitor (roughly 0.1μ F) to the power supply, at the base of the IC.

(7) The radiating fin is connected to the package's internal GND, but should also be connected to an external around.

(8) The capacitor between regulator output (pin 6) and GND also serves to prevent oscillation of the IC, so select one with good temperature characteristics.

(variable Vcc)

Electrical characteristic curves

INPUT VOLTAGE : VIN (V)

Fig. 6 Driver I / O characteristics (variable load)

Fig. 8 Power supply voltage vs. output voltage (offset)

8 9 10

Fig. 9 Driver gain vs. temperature (RIN connected via gain adjustment pin)

External dimensions (Units: mm)

