imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

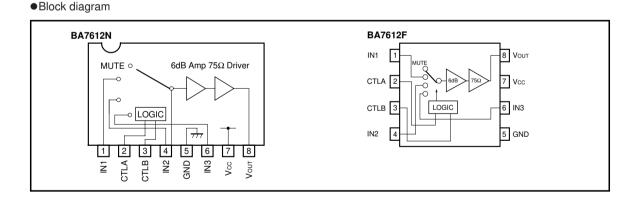
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Multimedia ICs

Video signal switcher BA7612N / BA7612F


The BA7612N and BA7613F are three-channel analog multiplexers with built-in mute, 6dB amplifier and 75 Ω driver. The ICs designed for use in video cassette recorders, and feature a large dynamic range and wide operating frequency range. All inputs are terminated with 20k Ω (Typ.) input impedance.

Applications

Video cassette recorders and televisions

- Features
- 1) 3-input / 1-output switches.
- 2) Built-in 6dB amplifier and 75 Ω driver.
- 3) Built-in mute.
- 4) Large input impedance ($20k\Omega$ Typ.).
- 5) Wide operating supply voltage range (4.5V ~ 13.0V BA7612N) (4.5V ~ 9.5V BA7613F).

- 6) Low power dissipation (103mW Typ.).
- Excellent frequency characteristics (10MHz, 0dB Typ.).
- 8) Wide dynamic range (3.5V_{P-P} Typ.).
- 9) Low interchannel crosstalk
 - (-65 dB Typ., f = 4.43 MHz).

Truth table

CTL A	CTL B	OUT		
L (OPEN)	L (OPEN)	IN1		
L (OPEN)	Н	IN2		
н	L (OPEN)	IN3		
Н	Н	MUTE		

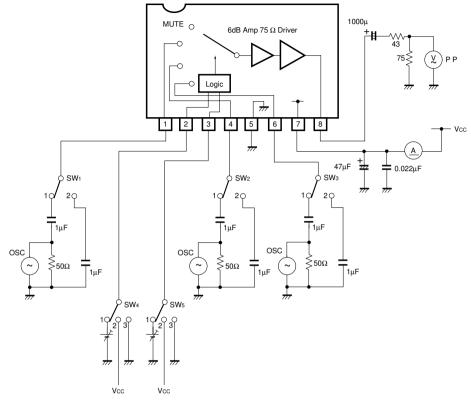
• Absolute maximum ratings (Ta = 25°C)

Parameter	Symbol	Limits	Unit
Power supply voltage	Vcc	*113.5 / *210.0	V
Power dissipation	Pd	*1900*3 / *2550*4	mW
Operating temperature	Topr	– 25 ~ + 75	°C
Storage temperature	Tstg	– 55 ~ + 125	°C

*1 BA7612N

*2 BA7612F

*3 Reduced by 9mW for each increase in Ta of 1°C over 25°C.


*4 Reduced by 5.5mW for each increase in Ta of 1°C over 25°C.

• Electrical characteristics (unless otherwise noted, Ta = 25°C and Vcc = 5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Operating voltage range	Vcc	4.5	—	13.0	V	BA7612F is Max.9.5V
Supply current	lcc	—	20.5	29.0	mA	
Maximum output level	Vom	3.0	3.5	_	V _{P-P}	f = 1kHz, THD = 0.5%
Voltage gain	Gv	5.5	6.0	6.5	dB	f = 1MHz, VIN = 1.0VP-P
Interchannel crosstalk	Ст		- 65	_	dB	f = 4.43MHz, V _{IN} = 1.0V _{P-P}
Frequency characteristic	Cf	- 3.0	0	1.0	dB	f = 10MHz / 1MHz, VIN = 1.0VP-P
Input impedance	Zin	14	20	26	kΩ	
CTL pin switching level A	VTH-A	1.0	2.0	3.0	V	
CTL pin switching level B	Vтн-в	1.0	2.0	3.0	V	

ONot designed for radiation resistance.

Measurement circuit

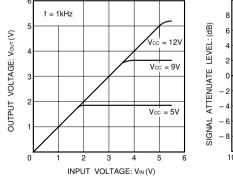
Measurement conditions

Parameter		Symbol	Switch settings					Measurement
		Symbol	SW1	SW ₂	SW₃	SW4	SW5	method
Current dissipat	ion	lcc	2	2	2	2	2	Ammeter
Maximum output level	In1 In2 In3	Vom Vom Vom	1 2 2	2 1 2	2 2 1	3 3 2	3 2 3	f = 1kHz THD = 0.5% *1
Voltage gain	In1 In2 In3	Gv Gv Gv	1 2 2	2 1 2	2 2 1	3 3 2	3 2 3	f = 1MHz, V = 1V _{P-P} *2
Interchannel crosstalk	$ \begin{array}{l} In1 \rightarrow In2 \\ In1 \rightarrow In3 \\ In1 \rightarrow MUTE \\ In2 \rightarrow In3 \\ In2 \rightarrow MUTE \\ In3 \rightarrow MUTE \end{array} $	Ст Ст Ст Ст Ст Ст	1 1 2 2 2	2 2 1 1 2	2 2 2 2 2 1	3 2 2 2 2 2 2	2 3 2 3 2 2	f = 4.43MHz, V = 1V _{P-P} *3
Frequency characteristic	In1 In2 In3	Gf Gf Gf	1 2 2	2 1 2	2 2 1	3 3 2	3 2 3	
CTL pin switching level	CTLa CTLb	Vтн Vтн	2 2	2 1	1 2	1 3	3 1	*5

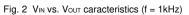
*1: Connect a distortion meter to the output, and input a f = 1 kHz sine wave. Adjust the input level until the output distortion is 0.5%.

This output voltage at this time multiplied by 2 is the maximum output level Vom (VP-P).

*2: Input a 1VP-P, 1MHz sine wave. The voltage gain is given by Gv = 20 log (Vout / VIN) + 6.


*3: Input a 1VP-P, 4.43MHz sine wave. The interchannel crosstalk is given by $CT = 20 \log (VOUT / VIN)$.

*4: Input 1VP-P, 1MHz and 10MHz sine waves.


The frequency characteristic is given by Gf = 20 log (VOUT (f = 10MHz) / VOUT (f = 1MHz)).

*5: Input a 1VP-P, 1MHz sine wave. Reduce the CTL pin voltage from Vcc.

The CTL pin switching level (VTH) is the CTL pin voltage at which the Vout level drops below 20mVP-P.

• Electrical characteristic curves

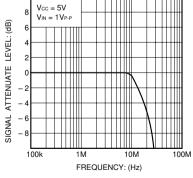
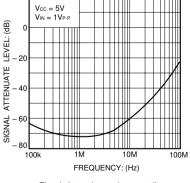
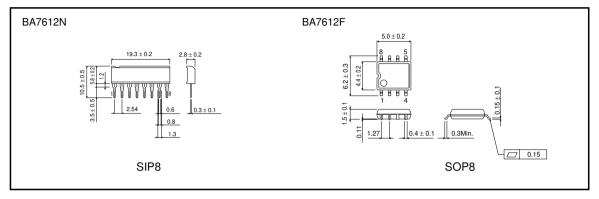


Fig. 3 Frequency characteristics




Fig. 4 Interchannel crosstalk

Operation notes

The output impedance is approximately 32Ω . Therefore, to ensure output matching, connect an external resistor of 43Ω .

•External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein
 are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
 CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
 third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
 whatsoever nature in the event of any such infringement, or arising from or connected with or related
 to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.