imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

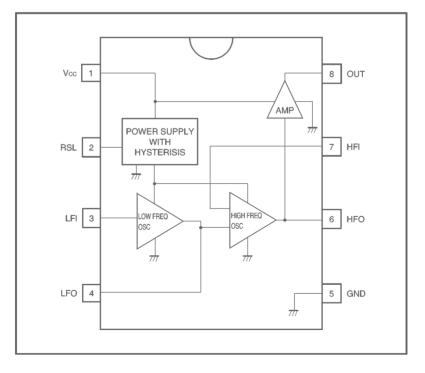
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Tone ringer IC for telephone set BA8206 / BA8206F

The BA8206 and BA8206F are tone ringer ICs which produce a bell sound from a ringing signal. The frequency of the bell sound can be varied by changing the constants of the external resistance and capacitors. The operation initiation current dissipation can be changed at the RSL pin.

Also, the output load can be selected, as a piezoelectric buzzer, a transformer coupled speaker, or other similar devices.


Applications

Telephones, multi-function telephones, telephone answering machines, facsimiles, equipment involving telephones

Features

- 1) Low current dissipation.
- 2) Withstands up to 40V.
- Operation initiation current dissipation can be changed using RSL pin.
- Pin layout is compatible with the BA8205, BA6565A, and ML8205.

Block diagram

Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	
Power supply voltage		Vcc	40	V	
Power dissipation	BA8206		500 *1	mW	
	BA8206F	Pd	450 * ²		
Operating temperature		Topr	-25~+75	C	
Storage temperature		Tstg	-55~+125	C	

*1 Reduced by 5mW for each increase in Ta of 1 $^\circ C$ over 25 $^\circ C.$

*2 Reduced by 4.5mW for each increase in Ta of 1 $^\circ\!\!C$ over 25 $^\circ\!\!C.$

• Recommended operating conditions (Ta = 25° C)

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply voltage	Vopr	_	_	38	V

Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = 24V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Initial supply voltage	Vsi	14	16	18	V	*1	Fig.1
Sustained operation supply voltage	Vsus	8.2	9.8	11.2	V	*2	Fig.1
Initial current dissipation	lsi	0.9	1.3	1.7	mA	No load, Vcc = Vsi	Fig.1
Sustained operation current dissipation	Isus	0.22	0.4	0.7	mA	No load, Vcc = Vsus	Fig.1
Oscillation frequency *3	fL	9	10	11	Hz	R1=773kΩ, C1=0.1 μF	Fig.2
Oscillation frequency *3	fH1	461	512	563	Hz	$R_2 = 595 k \Omega$, $C_2 = 0.0022 \mu F$	Fig.2
Oscillation frequency *3	fH2	576	640	703	Hz	$R_2 = 595 k \Omega, C_2 = 0.0022 \mu F$	Fig.2
Output high level voltage	Vон	19.7	22.0	23.5	v	Іон=10mA, pin7=GND	Fig.1
Output low level voltage	Vol	0.5	0.9	1.4	v	lo∟=10mA, pin7=6V	Fig.1
Ringer threshold voltage	VTR	-	-	36.0	Vrms	RsL=9.1kΩ	Fig.3
Output leakage current	ILE	_	-	1.0	μA		Fig.3

*1 The initial supply voltage is the power supply voltage required for the tone ringer to begin oscillating.

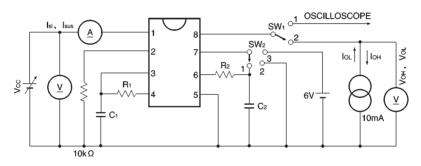
*2 The sustained operation voltage is the power supply voltage required for the tone ringer to continue oscillating.

*3 The oscillation frequency is determined using the following equation.

$$f_{L} = \frac{1}{1.234 \times R_{1} \times C_{1}} (H_{2})$$

$$f_{H1} = \frac{1}{1.515 \times R_{2} \times C_{2}} (H_{2})$$

$$f_{H2} = 1.24 \times f_{H1} (H_{7})$$


The recommended values for R1 and R2 are 300 $k\Omega$ or higher.

The ringer threshold voltage is the AC voltage required for the tone ringer to start ringing through the circuit shown in Fig. 6

Pin descriptions

Pin No.	Pin name	Name	Function		
1	Vcc	Power supply pin	This is the power supply pin for the IC. It is connected to the (\oplus) pin of the diode bridge.		
2	RSL	RSL pin	This is used to change the operation initiation current when connected to the GND pin.		
3	LFI	Low-frequency time	his is connected to the time constant that determines the oscillation frequency		
4	LFO	constant connector pin	on the warble.		
5	GND	GND pin	This pin has the lowest potential on the IC. It is connected to the (\bigcirc) pin of the diode bridge.		
6	HFO	High-frequency time	This is connected to the time constant that determines the oscillation frequency		
7	HFI	constant connector pin	on the tone side (the audible frequency side).		
8	OUT	Output pin	This is used to connect a piezoelectric buzzer, or to connect a dynamic speaker through a transformer.		

Measurement circuit

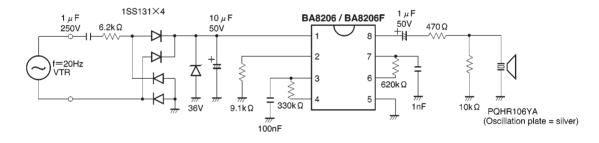
$R_1 = 773 k\Omega$, $C_1 = 0.1 \, \mu F$

 $R_2 = 595 k \Omega$, $C_2 = 0.0022 \mu F$

(Note) The table below shows the statuses for SW1 and SW2.

ltem	SW1	SW2
Vsi, Vsus	1	1
lsi, Isus	1	1
Vон	2	2
Vol	2	3

Fig. 1


 $R_1 = 773 k \Omega$, $C_1 = 0.1 \mu F$

 $R_2 = 595 k \Omega$, $C_2 = 0.0022 \mu F$

(Note) The table below shows the statuses for SW1 and SW2.

Item	SW1	SW2
fL	1	1
fнı	3	2
fн2	2	2

Fig. 2

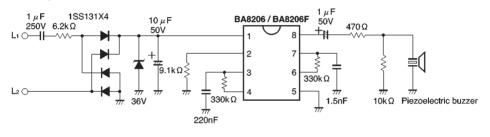
Circuit operation

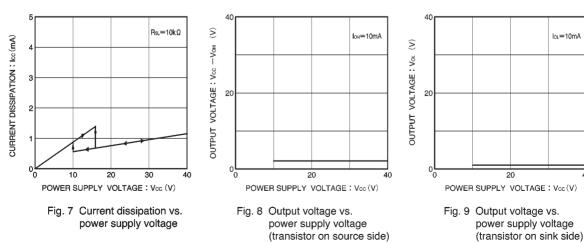
Using the RSL pin

With the BA8206 and BA8206F, the RSL pin can be used to change the initial supply current (I_{si}) .

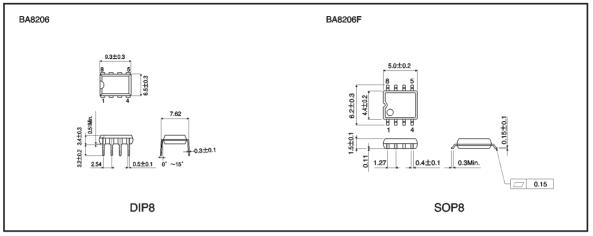
As shown in Figure 4, resistor RSL is connected from the R_{SL} pin (Pin 2) to the GND. The operation initiation current consumption can be changed by changing the value of the resistor R_{SL} .

Figure 5 shows the supply voltage (V_cc) - supply current (I_cc) characteristics when the value of the resistor R_{SL} is changed.


Fig. 4


40

Application example



Electrical characteristic curves

ROHM

External dimensions (Units: mm)

