imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

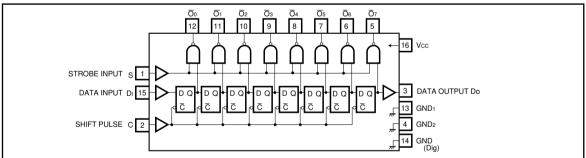
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Standard ICs

8-bit, serial IN, parallel OUT driver BA823 / BA823F

The BA823 and BA823F are 8-bit serial input, parallel output drivers. These monolithic ICs were developed as drivers for thermal printing heads, LED character displays, and other similar applications.


• Applications Thermal printing head drivers

LED character display drivers

Features

- 1) Can drive up to 200 mA.
- Controlling the strobe terminal with the drive timing pulse enables current to be reduced when drive is not being carried out.
- 3) Using the data output terminal for the next data input enables cascade connections.
- 4) The digital ground and power ground are separated.
- 5) TTL and CMOS drive possible.

Block diagram

Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit	
Power supply voltage		Vcc	7.0*1	V	
Power dissipation	BA823	Dd	550* ²	mW	
	BA823F	Pd	500* ³		
Input voltage		VIN Max.	+ 0.3 ~ + 6.0	V	
Operating temperature		Topr	- 20 ~ + 75	°C	
Storage temperature		Tstg	- 55 ~ + 125	°C	

 $*1\ \overline{Oo}$ to $\overline{O7}$ output pins are 34V (max.).

*2 Reduced by 5.5mW for each increase in Ta of 1°C over 25°C.

*3 Reduced by 5mW for each increase in Ta of 1°C over 25°C.

•Usage conditions range

Fig. 1 Power supply voltage and output current usage conditions (Per Circuit)

The maximum usage conditions, shown on the left, indicate the absolute maximums for power supply voltage and IC output current. Never exceed these usage conditions, under any circumstances.

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions	Measurement circuit
Power supply voltage	Vcc	4.5	5.0	5.5	V	Vcc pin	Fig.2
Quiescent current 1	IQ1	-	4	6	mA	When all data values are "0"	Fig.2
Quiescent current 2	lq2	_	8	11	mA	When all data values are "0"	Fig.2
Input low level voltage	VIL	_	_	0.8	V	— Fig.2	
Input high level voltage	VIH	2	_	_	V	— Fig.2	
Input high level current	Ін	_	_	0.4	mA	VIN = 4.5 V	Fig.2
Input high level current	Ін	_	_	100	μΑ	VIN = 2.0 V	Fig.2
Maximum output voltage	Vo off	_	_	21.8	V	$\overline{O_0}$ to $\overline{O_7}$ pins, Io = 10µA	Fig.3
Output saturation voltage	VOON	_	0.8	1.3	V	When Io = 100mA sink	Fig.3
Output current	lol	_	_	207	mA	Applied voltage V = 11.8V	Fig.3
"H" level data output voltage	Vdoh	2.4	_	_	V	$R_L = 10k\Omega$	Fig.3
"L" level data output voltage	VDOL	-	—	0.8	V	_	Fig.3
Minimum setup time	t1	_	_	300	ns	$V_{IH}=2.0V,V_{IL}=0.8V$	—
Minimum shift pulse width	t2	-	—	1	μs	$V_{IH} = 2.0V, V_{IL} = 0.8V$	_
Minimum timing time	tз	_	_	1	μs	$V_{IH} = 2.0V, V_{IL} = 0.8V$	_
Maximum data transfer speed	fма×.	500	_	_	kHz	$V_{IH}=2.0V,V_{IL}=0.8V$	_

• Electrical characteristics (unless otherwise noted, Ta = 25°C, Vcc = + 5.0V)

Measurement circuits

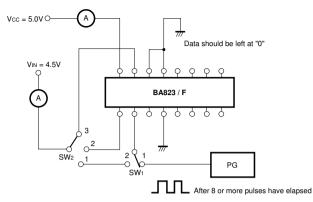


Fig. 2 Icc and IIH measurement circuit

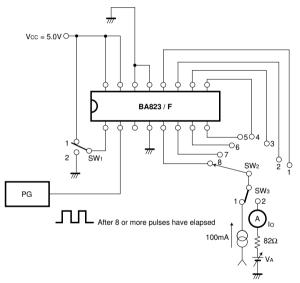


Fig. 3 VO ON, VO OFF and IOL measurement circuit

Input conditions

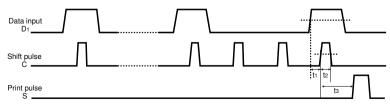
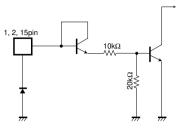
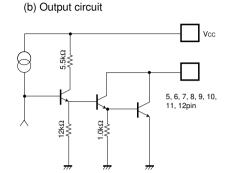
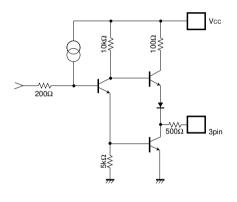


Fig. 4


Item	SW1	SW2		
lcc	1	1		
Ін	2	1 ~ 3		


Item	SW1	SW ₂	SW₃	
Vo on	1	1 ~ 8	1	
lol	1	1~8	2	
Vo off	2	1~8	2	

When tested at Vo off : Io = $10 \mu A$ When tested at Io on : VA = 30V


Input / output circuits

(a) Input circuit

(c) Data output circuit

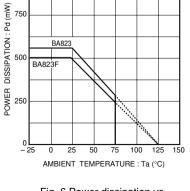


Fig. 6 Power dissipation vs. ambient temperature

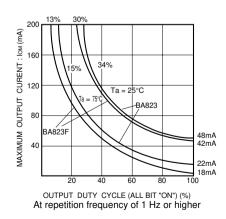


Fig. 7 Output conditions

Pin descriptions

Pin No.	Pin name	Code	Function
2	SHIFT PULSE	С	Shift pulse of shift register
15	DATA INPUT	D١	Data input of shift pulse registered using shift pulse rise
1	STROBE	S	When "1", the content of the shift register is output
12	OUTPUT	\overline{O}_0	"0" when the content of the register is "1" on the 1st bit
11	OUTPUT	0 ₁	"0" when the content of the register is "1" on the 2nd bit
10	OUTPUT	\overline{O}_2	"0" when the content of the register is "1" on the 3rd bit
9	OUTPUT	O 3	"0" when the content of the register is "1" on the 4th bit
8	OUTPUT	\overline{O}_4	"0" when the content of the register is "1" on the 5th bit
7	OUTPUT	\overline{O}_5	"0" when the content of the register is "1" on the 6th bit
6	OUTPUT	\overline{O}_6	"0" when the content of the register is "1" on the 7th bit
5	OUTPUT	0 ₇	"0" when the content of the register is "1" on the 8th bit
3	DATA OUTPUT	Do	Has passed the \overline{O}_7 output circuit and becomes the input for the next step
16	Vcc	Vcc	Normally 5.0V used (±10%)
13	GND	GND1	\overline{O}_0 to \overline{O}_3 output circuit GND
4	GND	GND2	\overline{O}_4 to \overline{O}_7 output circuit GND
14	GND	GND (Dig)	Logic circuit GND

Standard ICs

•Timing chart

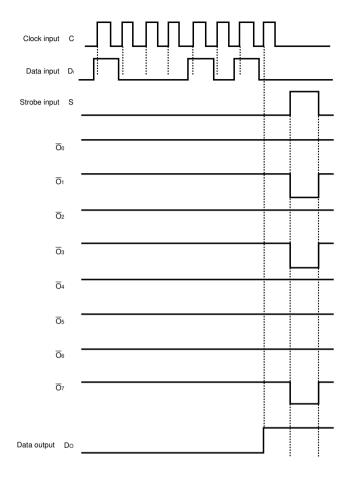
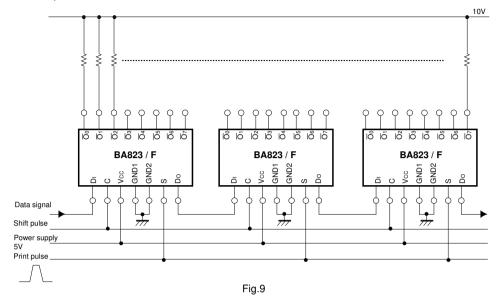
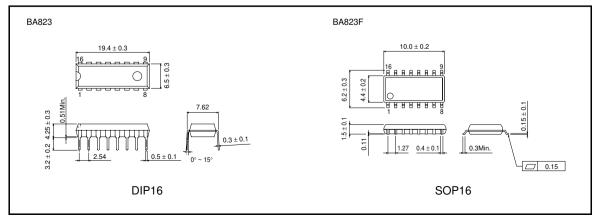



Fig.8

Application example

Example of printing using a strobe pulse This offers the advantage that the common line (large


current) of the heat element does not need to be switched.

Circuit operation

The BA823 has the internal configuration shown in the logic diagram, with the following three input pins: clock C, data DI, and strobe S. Data input is synchronized to the clock, with data being read serially at the rising edge. The content of the set shift register appears at output terminals $\overline{O_0}$ to $\overline{O_7}$, as shown in the timing chart in Figure 8, depending on the strobe input, with that

pulse width being the same as that of the strobe input. The data output pin D_0 is used when ICs are connected in cascade format, and when the output for the last stage of the shift register appears, is connected to the next data input pin D_1 . When these clock and strobe latches and power switch are used in common, the output pins can be increased by eight bits each.

• External dimensions (Units: mm)

