
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution

of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business

relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components

to meet their specific needs.

With the principle of “Quality Parts,Customers Priority,Honest Operation,and Considerate Service”,our business

mainly focus on the distribution of electronic components. Line cards we deal with include

Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise

IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial,

and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service

and solution. Let us make a better world for our industry!

Contact us
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

March 2015 DocID026137 Rev 3 1/89

1

UM1741
User manual

STM32F0 series safety manual

Introduction

This document describes how to use the microcontrollers of STM32F0 series in the context

of a safety-related system, specifying the user's responsibilities for installation and operation

in order to reach the targeted safety integrity level.

This manual applies to the microcontrollers of the STM32F0 series and to STM32-SafeSIL

part number.

If the STM32F0 series microcontrollers are used in adherence to this manual, system

designers can avoid going into the details of the functional safety design and validation to

give an estimation about the impact to the overall safety function.

This manual is written in compliance with IEC 61508. It indicates how to use the STM32F0

series microcontrollers in the context of other functional safety standards such as safety

machine directives ISO 13849. This manual and FMEDA data were developed in

cooperation with the safety expertise company YOGITECH using their faultRobust

Methodology (fRMethodology).

The safety analysis summarized in this manual takes into account the variation in terms of

memory size, internal peripheral number and presence and package between the different

part numbers of the ARM® Cortex®-M0 based STM32F0 series microcontrollers.

This manual has to be read along with the technical documentation on related part numbers

(such as Reference Manuals and Datasheets) available on www.st.com.

www.st.com

Contents UM1741

2/89 DocID026137 Rev 3

Contents

1 About this document . 7

1.1 Purpose and scope . 7

1.2 Terms and abbreviations . 7

1.3 Reference normative . 8

2 STM32F0 series microcontroller development process 10

2.1 STMicroelectronics standard development process 10

2.2 Yogitech fRMethodology process . 12

3 Reference safety architecture . 13

3.1 Introduction . 13

3.2 Compliant item . 13

3.2.1 Definition of the compliant item . 13

3.2.2 Safety functions performed by the compliant item 14

3.3 Assumed requirements . 15

3.3.1 Assumed safety requirements . 15

3.4 Electrical specifications and environment limits . 16

3.5 Systematic safety integrity . 17

3.6 Description of hardware and software diagnostics 17

3.6.1 Cortex®-M0 CPU . 17

3.6.2 System FLASH memory . 20

3.6.3 System SRAM memory . 21

3.6.4 System bus interconnect . 22

3.6.5 NVIC and EXTI controller . 22

3.6.6 DMA . 23

3.6.7 CAN . 24

3.6.8 USART 1/2/3/4 . 25

3.6.9 I2C 1/2 . 26

3.6.10 SPI 1/2 . 27

3.6.11 USB - 2.0 Universal Serial Bus interface FS module 27

3.6.12 HDMI CEC module . 28

3.6.13 Touch Sensing Controller (TSC) . 29

3.6.14 Analog to Digital Converters (ADC) . 29

DocID026137 Rev 3 3/89

UM1741 Contents

4

3.6.15 DAC . 30

3.6.16 Comparator . 31

3.6.17 TIM 6/7 . 31

3.6.18 TIM1/2/3/14/15/16/17 . 32

3.6.19 GPIO – PORT A/B/C/D/E/F . 33

3.6.20 Real Time Clock module (RTC) . 34

3.6.21 Supply voltage system . 34

3.6.22 Reset and clock control subsystem . 35

3.6.23 Watchdogs (IWDG, WWDG) . 36

3.6.24 Debug . 36

3.6.25 Cyclic Redundancy Check module (CRC) . 36

3.6.26 Dual MCU architecture . 37

3.6.27 Latent fault detection . 37

3.6.28 Disable and periodic cross-check of unintentional activation of
unused peripherals . 38

3.7 Conditions of use . 39

4 Safety results . 44

4.1 Hardware random failure safety results . 44

4.1.1 Safety analysis result customization . 45

4.1.2 General requirements for Freedom From Interferences (FFI) 45

4.2 Dependent failures analysis . 46

4.2.1 Power supply . 46

4.2.2 Clock . 47

4.2.3 DMA . 47

4.2.4 Internal temperature . 47

5 List of evidences . 48

Appendix A Overview of fRMethodology . 49

A.1 The essence of fRMethodology. 49

A.2 fRMethodology and its flow . 49

A.3 fRTools . 51

Appendix B Examples of safety architectures – Informative 53

B.1 Conceptual block diagrams of the target safety architectures. 53

B.2 Considerations about voter implementation . 55

Contents UM1741

4/89 DocID026137 Rev 3

Appendix C Change impact analysis for other safety standards. 57

C.1 ISO 13849-1 / ISO 13849-2. 57

C.1.1 Architectural categories . 58

C.1.2 Safety metrics recomputation . 60

C.1.3 Work products. 61

C.2 IEC 62061:2012-11 . 64

C.2.1 Architectural categories . 65

C.2.2 Safety metrics recomputation . 69

C.2.3 Work products. 70

C.3 IEC 61800-5-2:2007 . 71

C.3.1 Architectural categories . 71

C.3.2 Safety metrics recomputation . 72

C.3.3 Work products. 72

C.4 IEC 60730-1:2010 . 73

C.4.1 Architectural categories . 74

C.4.2 Safety metrics recomputation . 75

C.4.3 Work products. 80

C.5 ISO 26262:2010 . 82

C.5.1 Architectural categories . 83

C.5.2 Safety metrics recomputation . 83

C.5.3 Work products. 84

Appendix D fRSTL_STM32F0_SIL2(3) product and its
use in the framework of this manual . 85

Revision history . 88

DocID026137 Rev 3 5/89

UM1741 List of tables

5

List of tables

Table 1. Terms and abbreviations . 7

Table 2. Mapping between this document content and IEC 61508-2 Annex D
 requirements . 9

Table 3. List of safety mechanisms . 39

Table 4. Overall achievable safety integrity levels . 44

Table 5. List of general requirements for FFI . 45

Table 6. Level of detail in fRMethodology. 51

Table 7. IEC 13849 architectural categories. 58

Table 8. IEC 13849 work product grid . 62

Table 9. SIL classification versus HFT . 64

Table 10. IEC 62061 architectural categories. 65

Table 11. IEC 62061 work product grid . 70

Table 12. IEC 61800 work product grid . 72

Table 13. IEC 60730 required safety mechanism for Class B/C compliance 75

Table 14. IEC 60730 work product grid . 80

Table 15. IEC 26262 work product grid . 84

Table 16. fRSTLs differentiation factors . 85

Table 17. List of STM32F0 series safety mechanism overlapped by
 fRSTL_STM32F0_SIL2(3) . 86

Table 18. Document revision history . 88

List of figures UM1741

6/89 DocID026137 Rev 3

List of figures

Figure 1. STMicroelectronics product development process . 11

Figure 2. Definition of the compliant item. 13

Figure 3. Abstract view of compliant item functions. 14

Figure 4. Allocation and target for STM32 PST . 15

Figure 5. Block diagram of safety characteristics for STM32F0 modules . 43

Figure 6. The fRMethodology flow for IEC 61508 . 50

Figure 7. Overview of the fRTools . 52

Figure 8. The HFT=0 1oo1 and 1oo1d architectures . 53

Figure 9. The HFT=1 1oo2 and 1oo2d architectures . 54

Figure 10. The HFT=1 2oo2 architecture. 54

Figure 11. A possible voter structure combining PEvi and PEve. 55

Figure 12. Block diagram for IEC 13849 Cat. B and Cat. 1 . 59

Figure 13. Block diagram for IEC 13849 Cat. 2 . 60

Figure 14. Block diagram for IEC 13849 Cat. 3 and Cat. 4 . 60

Figure 15. Block diagram for IEC 62061 Cat. A . 66

Figure 16. Block diagram for IEC 62061 Cat. B . 67

Figure 17. Block diagram for IEC 62061 Cat. C. 67

Figure 18. Block diagram for IEC 62061 Cat. D. 68

Figure 19. SRECS high-level diagram . 69

Figure 20. IEC 61800 architectural view . 71

Figure 21. Correlation matrix between SIL and ASIL. 82

DocID026137 Rev 3 7/89

UM1741 About this document

88

1 About this document

1.1 Purpose and scope

This document describes how to use the STM32F0 series microcontrollers in the context of

a safety-related system, specifying the user's responsibilities for installation and operation,

in order to reach the desired safety integrity level.

This document is useful to system designers willing evaluate the safety of their solution.

1.2 Terms and abbreviations

Table 1. Terms and abbreviations

Acronym Definition

ADAS Advanced Driver Assistance System

CCF Common Cause Failure

CM Continuous Mode

COTS Commercial Off-the-Shelf

CoU Conditions of Use

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DC Diagnostic Coverage

DMA Direct Memory Access

DTI Diagnostic Test Interval

ECM Engine Control Module

ECU Electronic Control Unit

EHSR Essential Health and Safety Requirement

EUC Equipment Under Control

FE Final Element (that is generalized actuator)

FIT Failure In Time

FMEA Failure Mode Effect Analysis

FMEDA Failure Mode Effect Diagnostic Analysis

FPU Floating Processing Unit

HD High Demand

HFT Hardware Fault Tolerance

HW Hardware

INTC Interrupt Controller

ITRS International Technology Roadmap for Semiconductors

LD Low Demand

About this document UM1741

8/89 DocID026137 Rev 3

1.3 Reference normative

This document is written in compliance with the IEC 61508 international norm for functional

safety of electrical/electronic/programmable electronic safety-related systems.

The version used as reference is IEC 61508:1-7 © IEC:2010.

The other functional safety standards considered in this manual are the following:

 ISO 26262-1, 2, 3, 4, 5, 6, 7, 8, 9: 2011(E) / ISO 26262-10: 2012(E),

 ISO 13849-1:2006 / ISO 13849-2:2010,

 IEC 62061:2012-11, ed. 1.1,

 IEC 61800-5-2:2007, ed.1.0,

 IEC 60730-1:2010, ed. 4.0.

Table 2 reports the mapping of this document content with respect to the requirements listed

in the IEC 61508-2 Annex D.

MCU Microcontroller Unit

MTBF Mean Time Between Failure

MTTFd Mean Time to Failure

OC Output Circuit

PDS(SR) Power Drive System (Safety Related)

PEc Programmable Electronics - core

PEd Programmable Electronics - diagnostic

PFH Probability of Failure per Hour

PL Performance Level

PST Process Safety Time

SE Sensor Element

SFF Safe Failure Fraction

SIL Safety Integrity level

SRCF Safety-Related Control Function

SRECS Safety-Related Electrical Control Systems

SRP/CS Safety-Related Parts of Control Systems

SW Software

Table 1. Terms and abbreviations (continued)

Acronym Definition

DocID026137 Rev 3 9/89

UM1741 About this document

88

The safe failure fraction reported in this manual has been computed under the assumptions

described in this document and especially according to the conditions of use described in

Section 3.7: Conditions of use.

Table 2. Mapping between this document content and IEC 61508-2 Annex D

 requirements

IEC 61508 requirement (part 2 annex D) Reference

D2.1 a) a functional specification of the functions capable of being performed Section 3

D2.1 b) identification of the hardware and/or software configuration of the

compliant item
Section 3.2

D2.1 c) constraints on the use of the compliant item and/or assumptions on

which analysis of the behavior or failure rates of the item are based
Section 3.2

D2.2 a) the failure modes of the compliant item due to random hardware failures,

that result in a failure of the function and that are not detected by diagnostics

internal to the compliant item;

Section 3.7

D2.2 b) for every failure mode in a), an estimated failure rate;

D2.2 c) the failure modes of the compliant item due to random hardware failures,

that result in a failure of the function and that are detected by diagnostics internal

to the compliant item;

D2.2 d) the failure modes of the diagnostics, internal to the compliant item due to

random hardware failures, that result in a failure of the diagnostics to detect

failures of the function;

D2.2 e) for every failure mode in c) and d), the estimated failure rate;

D2.2 f) for every failure mode in c) that is detected by diagnostics internal to the

compliant item, the diagnostic test interval;
Section 3.2.2

D2.2 g) for every failure mode in c) the outputs of the compliant item initiated by

the internal diagnostics;
Appendix B

D2.2 h) any periodic proof test and/or maintenance requirements;

Section 3.7D2.2 i) for those failure modes, in respect of a specified function, that are capable

of being detected by external diagnostics, sufficient information shall be provided

to facilitate the development of an external diagnostics capability.

D2.2 j) the hardware fault tolerance;

Section 3D2.2 k) the classification as type A or type B of that part of the compliant item that

provides the function (see 7.4.4.1.2 and 7.4.4.1.3);

STM32F0 series microcontroller development process UM1741

10/89 DocID026137 Rev 3

2 STM32F0 series microcontroller development
process

The development process of a microelectronic device that is used in safety critical

application takes into account the adequate management to reduce the probability of

systematic faults introduced during the design phase.

IEC 61508:2 in Annex F (Techniques and measures for ASICs - avoidance of systematic

failures) act as a guidance in tailoring the microcontroller standard design and manufacturer

process to the compliance of the IEC 61508 requirements. The checklist reported in the

named Annex F helps to collect all related evidences of a given real process.

2.1 STMicroelectronics standard development process

STMicroelectronics (ST) serves four industry domains:

1. Standard products,

2. Automotive products: ST automotive products are AEC-Q100 compliant. They are

subject to specific stress testing and processing instructions in order to achieve the

required quality levels and product stability.

3. Automotive safety: a subset of the automotive domain. ST uses as a reference the ISO

26262 Road vehicles Functional safety standard. ST supports customer inquiries

regarding product failure rates and FMEDA to support hardware system compliance to

established safety goals. ST provides products that are safe in their intended use,

working in cooperation with customers to understand the mission profile, adopt

common methods and define countermeasures for residual risks.

4. Medical products: ST complies with applicable regulations for medical products and

applies due diligence in the development and validation of these products.

DocID026137 Rev 3 11/89

UM1741 STM32F0 series microcontroller development process

88

STMicroelectronics product development process, compliant with the ISO/TS 16949

standard, is a set of interrelated activities dedicated to transform customer specification and

market or industry domain requirements into a semiconductor device and all its associated

elements (package, module, sub-system, application, hardware, software and

documentation), qualified respecting ST internal procedures and able to be manufactured

using ST internal or subcontracted technologies.

Figure 1. STMicroelectronics product development process

STM32F0 series microcontroller development process UM1741

12/89 DocID026137 Rev 3

2.2 Yogitech fRMethodology process

Yogitech fRMethodology is the “white-box” approach for safety design exploration

proprietary of Yogitech, including tools and methodology to FMEA/FTA analysis and fault

injection of integrated circuits. Appendix A: Overview of fRMethodology reports additional

informations.

Yogitech contribution to IEC 61508 compliance of STMicroelectronics development process

can be summarized in these key elements:

 Failure rate estimation based on multiple industry standards as well as

STMicroelectronics manufacturing data,

 Application of Yogitech fault injection techniques/tools to validate the safety metrics

claimed for STMicroelectronics devices belonging to STM32 program.

DocID026137 Rev 3 13/89

UM1741 Reference safety architecture

88

3 Reference safety architecture

3.1 Introduction

The STM32F0 series microcontrollers described in this document is a Safety Element out of

Context (SEooC), that is, the intent is to describe a compliant item that can be used within

different safety applications.

The aim of this section is to identify such compliant item and therefore to define the context

of the analysis in terms of assumptions with respect to a reference concept definition, that is

with respect to reference safety requirements as also assumptions with respect to the

design external to that compliant item.

As a consequence of the SEooC approach, the goal is not to provide an exhaustive hazard

and risk analysis of the system around the microcontroller, but rather to list the system-

related information - such as the application-related assumptions for dangerousness

factors, frequency of failures and diagnostic coverage already guaranteed by the application

- that have been considered during the following steps of the analysis.

Additional details on the reference safety architecture are given in Appendix B: Examples of

safety architectures – Informative.

3.2 Compliant item

3.2.1 Definition of the compliant item

According to IEC 61508:1 clause 8.2.12, a compliant item is any item (for example an

element) on which a claim is being made with respect to the clauses of IEC 61508 series.

With respect to its user, at the end of its development the compliant item shall be described

by a safety manual.

In this document, the compliant item is defined as a system including one or two STM32

microcontrollers (MCU) (see Figure 2). The communication bus is directly or indirectly

connected to sensors and actuators.

Figure 2. Definition of the compliant item

Other components might be related to the compliant item, like the external HW components

needed to guarantee either the functionality of the STM32F0 (external memory, clock quartz

etc) or its safety (for example the external watchdog, voltage supervisors).

Reference safety architecture UM1741

14/89 DocID026137 Rev 3

3.2.2 Safety functions performed by the compliant item

In essence, the compliant item architecture can be represented as composed by the

following processes performing the safety function or part of it:

 Input processing elements (PEi) reading safety related data from the remote controller

connected to the sensor(s) and transferring them to the following computation

elements;

 Computation processing elements (PEc) performing the algorithm required by the

safety function and transferring the results to the following output elements;

 Output processing elements (PEo) transferring safety related data to the remote

controller connected to the actuator;

 in the case of the 1oo2, 1oo2d or 2oo2 architecture (see Appendix B: Examples of

safety architectures – Informative), a further voting processing element (PEv) can be

present;

 in the 1oo2d case (see again Appendix B: Examples of safety architectures –

Informative), the abstract view is the same as 1oo2 but with the addition of diagnostic

processing elements (PEd), having the role of performing cross-diagnostic functions

and contributing to the decision of the voter PEv;

 processes external to the compliant item are considered to guarantee functional safety,

such as a watchdog (WDTe) and voltage monitors (VMONe).

Figure 3. Abstract view of compliant item functions

The role of the PEv and of the external processes WDTe and VMONe is clarified in the

sections where the CoU (definition of safety mechanism) are detailed:

 WDTe: refer to Independent watchdog – VSUP_SM_2, Control flow monitoring in

application software – CPU_SM_1,

 VMONe: refer to Supply Voltage Monitoring – VSUP_SM_1.

DocID026137 Rev 3 15/89

UM1741 Reference safety architecture

88

3.3 Assumed requirements

3.3.1 Assumed safety requirements

It is assumed that the concept specification, the hazard and risk analysis, the overall safety

requirement specification and the consequent allocation has determined the following

requirements for the compliant item (assumed safety requirements):

 The compliant item can be used for four kinds of safety functions:

– A continuous mode / high-demand SIL3 safety function (CM3), or

– A low-demand SIL3 safety function (LD3), or

– A continuous mode / high-demand SIL2 safety function (CM2), or

– A low-demand SIL2 safety function (LD2).

 The compliant item is used in a safety function with a worst case budget of 10 ms for

the STM32 MCU to detect and react to a failure, which corresponds to the portion of

the Process Safety Time(a) allocated to the STM32F0 MCU (“STM32F0 duty” in

Figure 4)

Figure 4. Allocation and target for STM32 PST

 The compliant item is used in a safety function powered-on for a long time. It is

assumed to not require any proof test and the lifetime of the product is considered to be

not less than 10 years.

 The safe state of the compliant item is the one in which either:

– the operating system (OS) is informed by the presence of a fault and a reaction is

possible, or

– if the OS cannot be informed or the OS is not able to execute a reaction(b):

in case of a 1oo2 or 1oo2D architecture, the PEv shall be directly informed so that

the PEv itself is able to achieve or maintain the safe state of the system or,

in case of 1oo1 and 1oo2/1oo2D high demand or continuous mode architectures,

the safe state of the electronic system is “de-energize”.

 The compliant item is assumed to be analyzed according to routes 1H and 1S of IEC

61508:2.

a. As explained in the following section, for the HFT=1 computations the value of the process safety time is not as

stringent as it is for HFT=0 architectures (that is clarified further in the document).

b. The end user shall take into account that hardware random failures affecting the STM32 can compromise the

MCU capability of operating properly (for example failure modes affecting the program counter prevent the

correct execution of software).

Reference safety architecture UM1741

16/89 DocID026137 Rev 3

The base assumptions about the de-energize state and the repair conditions, in the

computation of the PFD/PFH, are as follows;

 In the 1oo1 mode:

– The system is de-energized as soon as a fault is identified by the HW or SW

diagnostics.

– If the fault has been identified as a transient fault, the compliant item can be reset

and the safety function can continue after reset.

– If the fault has been identified as a permanent fault or if it has not been identified,

the compliant item is assumed to be kept de-energized.

 In the 1oo2 / 1oo2D low-demand modes:

– The 1oo2 system is NOT de-energized if a fault is identified in one of the two

channels.

– The faulty compliant item can be repaired, that is the faulty STM32F0 MCU can be

replaced or one of the external components might be replaced.

 In the 1oo2 / 1oo2D high-demand or continuous modes:

– The system is de-energized as soon as a fault is identified in one of the two

channels or in the shared logic.

– If the fault has been identified as a transient fault, the compliant item can be reset

and the safety function can continue after reset.

– If the fault has been identified as a permanent fault or if it has not been identified,

the compliant item is assumed to be kept de-energized, and the compliant item

cannot be repaired, that is the faulty STM32F0 MCU cannot be replaced or one of

the external components cannot be replaced.

3.4 Electrical specifications and environment limits

The user must not exceed the electrical specification and the environmental limits defined in

the below list as reported in the STM32F0 user manual in order to guarantee the STM32F0

safety integrity:

 Absolute maximum rating,

 Capacity,

 Operating conditions.

Due to the large number of STM32F0 part numbers, the related user manuals/datasheets

are not listed in this document; users are responsible to carefully check the above reported

limits in the technical documentation on the related part number available on www.st.com.

DocID026137 Rev 3 17/89

UM1741 Reference safety architecture

88

3.5 Systematic safety integrity

According to the requirements of IEC 61508 -2, 7.4.2.2, the Route 1s has been considered

in the STM32F0 development and the techniques and measures given in IEC 61508-2

Annex F have been applied. The Safety Case Database (Section 5: List of evidences)

maintains the evidences of the compliance to the norm.

3.6 Description of hardware and software diagnostics

This section lists all the safety mechanisms (hardware, software and application level)

considered in the safety analysis of the microcontrollers of the STM32F0 series. It is

expected that users are familiar with the STM32F0 architecture, and that this document is

used in conjunction with the related device datasheet, user manual and reference

information. Therefore, to avoid the eventuality of mistakes and reduce the amount of

informations to be shown, no functional details are included in this document.

Note that the part numbers of the STM32F0 series represent different combinations of

peripherals (for instance, some of them are not equipped with USB peripheral). To reduce

the number of documents and avoid information-less repetitions, the current safety manual

(and therefore this section) addresses the overall possible peripherals available in the

targeted part numbers. Users have to select which peripherals are really available on their

devices, and discard the meaningless recommendations accordingly.

The implementation guidelines reported in the following section are for reference only. The

safety verification executed by Yogitech and related coverage figures reported in this

manual are based on such guidelines.

Please read the following definitions:

 end user: the final user of STM32F0 that is in charge of integrating the MCU in a real

application (for example an electronic control board).

 application software: the real software that runs on the STM32F0 and that is used to

implement the safety function.

3.6.1 Cortex®-M0 CPU

Periodical core self test software - CPU_SM_0

Permanent faults affecting the CPU Core ARM® Cortex®-M0 are addressed through a

dedicated software test executing a sequence of instructions and data transfers.

The software test is built around well-known techniques already addressed by IEC 61508:7,

A.3.2 (Self-test by software: walking bit one-channel). A detailed safety analysis has shown

that a self-test software based only on software testing operation is not able to reach the

required values of coverage due to the complexity of the CPU. Therefore, in order to reach

the required values of coverage, the self-test software has to be specified by means of a

detailed analysis of all the CPU failure modes and related failure modes distribution.

Moreover, it has to be verified by means of fault injection (according to ISO 26262:10,

Annex A - the state of the art in terms of safety analysis applied to integrated circuits - fault

injection is the recommended method for the verification of failure modes coverage in

modern and complex microprocessor like Cortex®-M0).

Reference safety architecture UM1741

18/89 DocID026137 Rev 3

The overall test software suite is assumed to be periodically executed with a time period

compatible with the IEC 61508 requirements for the relationship between PST and the

diagnostic test interval.

Control flow monitoring in application software – CPU_SM_1

A significant part of the failure distribution of ARM® Cortex®-M0 core for permanent faults is

related to failure modes directly related to program counter loss of control or hang-up. Due

to their intrinsic nature, such failure modes are not addressed by a standard software test

method based on the execution of sequences of instruction/data access and consequent

checks. Therefore it is necessary to implement a run-time control of the application software

flow, in order to monitor and detect deviation from the expected behavior due to such faults.

Linking this mechanism to watchdog firing assures that severe loss of control (or, in the

worst case, a program counter hang-up) will be detected within DTI.

This diagnostic measure also contributes to the transient fault detection affecting the

program counter and branch execution subpart in ARM® Cortex®-M0.

The guidelines for the implementation of the method are the following:

 The different internal states of the application software is well documented and

described (the use of a dynamic state transition graph is encouraged).

 The monitoring of the correctness of each transition between different states of the

application software is implemented.

 The transition through all expected states during the normal application software

program loop is checked.

 The function in charge of triggering the system watchdog is implemented in order to

constrain the triggering (preventing the watchdog reset) also to the correct execution of

the above-described method for program flow monitoring.

The use of the window feature of the independent watchdog (IWDG) (or an external one)

helps to implement a more robust control flow mechanism fed by a different clock source. In

any case the safety metrics do not depend on the watchdog in use (the adoption of

independent or external watchdog contributes to the mitigation of dependent failures, see

Section 4.2.2: Clock).

Double computation in application software – CPU_SM_2

A timing redundancy for safety-related computation is considered to detect transient faults

affecting the ARM® Cortex®-M0 CPU subparts devoted to mathematical computations and

data access.

The guidelines for the implementation of the method are the following:

 The requirement needs be applied only to safety-relevant computation, that is to the

computations that in case of wrong result could interfere with the system safety

DocID026137 Rev 3 19/89

UM1741 Reference safety architecture

88

functions. Such computation shall be therefore carefully identified in the original

application software source code.

 Both mathematical operation and comparison are intended as computation.

 The redundant computation for comparison could be implemented according to the

following template:

– Original code:

If (VarA > VarB) then { (execute function) }

– Modified code:

copyVarA:=VarA;

copyVarB:=VarB;

If (VarA > VarB) then {

If (copyVarA <= copyVarB) then { (signal_error); break }

(execute function)

}

 The redundant computation for mathematical computation is implemented by using

copies of the original data for second computation, and by using an equivalent formula

if possible.

 End users are responsible to carefully avoid that the intervention of optimization

features of the used compiler removes the timing redundancy introduced according to

this current condition of use.

ARM® Cortex®-M0 HardFault exceptions – CPU_SM_3

HardFault exception raise is an intrinsic safety mechanism implemented in ARM® Cortex®-

M0 core, mainly devoted to intercept systematic faults due to software limitations and/or

error in software design, leading for example to execution of undefined operations,

unaligned address access. This safety mechanism is therefore able to detect hardware

random faults inside the CPU bringing to such described abnormal operations.

Stack hardening for application software – CPU_SM_4

The stack hardening method is required to address faults affecting the CPU register bank.

This method is based on source code modification, introducing information redundancy in

register-passed information to the called functions.

The guidelines for the implementation of the method are the following:

 Pass also the redundant copy of the passed parameters values (possibly inverted) and

execute a coherence check in the function.

 Pass also the redundant copy of the passed pointers and execute a coherence check

in the function.

 For the parameters that are not protected by redundancy, implement defensive

programming techniques (plausibility check of passed values). For example

enumerated fields are to be checked for consistency.

External watchdog – CPU_SM_5

Using an external watchdog for the control flow monitoring method (CPU_SM_1)

contributes to further reduce potential common cause failures, because the external

watchdog will be clocked and supplied independently from the STM32F0.

Reference safety architecture UM1741

20/89 DocID026137 Rev 3

3.6.2 System FLASH memory

Periodical software test for Flash memory – FLASH_SM_0

Permanent faults affecting the system Flash memory (that is the memory cells and address

decoder) are addressed through a dedicated software test that checks the memory cell

contents versus the expected value, using signature-based techniques. According to IEC

61508:2 Table A.5, the effective diagnostic coverage of such techniques depends on the

width of the signature in relation to the block length of the information to be protected -

therefore the signature computation method is to be carefully selected. Note that the simple

signature method (IEC 61508:7 - A.4.2 Modified checksum) is inadequate as it only

achieves a low value of coverage.

The information block does not need to be addressed with this test as it is not used during

normal operation (no data/program fetch).

Without information over the frequency of usage of different occupied Flash sections, in

principle, all used Flash area are assumed to be tested with a time period compatible with

the IEC 61508 requirements for the relationship between PST and the diagnostic test

interval.

Control flow monitoring in application software – FLASH_SM_1

Permanent and transient faults affecting the system Flash memory (that is the memory cells

and address decoder) can interfere with the access operation by the CPU, leading to wrong

data or instruction fetches. Such wrong data and operation, if able to heavily interfere with

the expected flow of the application software, are detected by strong control flow

mechanism linked to a system watchdog. For more detailed implementation guidelines for

such technique refer to safety mechanism CPU_SM_1 in Control flow monitoring in

application software – CPU_SM_1.

ARM® Cortex®-M0 Hardfault exceptions – FLASH_SM_2

Hardfault exception raise is an intrinsic safety mechanism implemented in ARM® Cortex®-

M0 core, mainly devoted to intercept systematic faults that are due to software limitations

and/or error in software design, leading for example to the execution of undefined

operations, unaligned address access. This safety mechanism is therefore able to detect

hardware random faults (both permanent and transient) that affect the system Flash

memory (cells and address decoder) bringing to such described abnormal operations.

Option byte write protection – FLASH_SM_3

This safety mechanism prevents unintended writes on the option byte; it addresses

therefore systematic faults in software application and not hardware random faults affecting

the option byte value during running time. The use of this method is encouraged to enhance

end application robustness for systematic faults.

DocID026137 Rev 3 21/89

UM1741 Reference safety architecture

88

3.6.3 System SRAM memory

Periodical software test for SRAM memory – RAM_SM_0

To enhance the coverage on SRAM data cells and to ensure adequate coverage for

permanent faults affecting the address decoder it is required to execute a periodical

software test on the system RAM memory. The selection of the algorithm ensures the target

SFF coverage for both the RAM cells and the address decoder. The end user provides also

evidences of the effectiveness of the coverage of the selected method.

The overall test software suite is assumed to be periodically executed with a time period

compatible with the IEC 61508 requirements for the relationship between PST and the

diagnostic test interval.

Parity bit check – RAM_SM_1

The Parity check on the system SRAM provides a relevant contribution to the detection of

hardware random faults (both permanent and transient) that affect the RAM data cells (no

expected contribution is expected for address decoder faults detection). This option is

assumed to be enabled by the user after the boot.

Stack hardening for application software – RAM_SM_2

The stack hardening method is used to enhance the application software robustness to

SRAM faults that affect the address decoder. The method is based on source code

modification, introducing information redundancy in the stack-passed information to the

called functions. This method is relevant in case the combination between the final

application software structure and the compiler settings requires a significant use of the

stack for passing function parameters.

The guidelines for the implementation of the method are the following:

 Pass also the redundant copy of the passed parameters values (possibly inverted) and

execute a coherence check in the function.

 Pass also the redundant copy of the passed pointers and execute a coherence check

in the function.

 For parameters that are not protected by redundancy, implement defensive

programming techniques such as the plausibility check of the passed values for

example to check the consistency of enumerated fields.

Information redundancy for safety-related variables in application software –
RAM_SM_3

To address transient faults affecting SRAM controller, it is required to implement information

redundancy on the safety-related system variables stored in the RAM.

The guidelines for the implementation of this method are the following:

 The system variables that are safety-related (in the sense that a wrong value due to a

failure in reading on the RAM affects the safety functions) are well-identified and

documented.

 The arithmetic computation and/or decision based on such variables are/is executed

twice and the two final results are compared.

Note that the implementation of this safety method shows a partial overlap with an already

foreseen method for Cortex®-M0 (CPU_SM_1); optimizations in implementing both

Reference safety architecture UM1741

22/89 DocID026137 Rev 3

methods are therefore possible (see Control flow monitoring in application software –

CPU_SM_1).

3.6.4 System bus interconnect

Periodical software test for interconnections – BUS_SM_0

The intra-chip connection resources (Bus Matrix, AHB/APB bridges) needs to be

periodically tested for permanent faults detection. Note that STM32F0 series MCUs have no

hardware safety mechanism to protect these structures. The test executes a connectivity

test of these shared resources, including the testing of the arbitration mechanisms between

peripherals. This method which is based on the periodical execution of software-based tests

is executed at least once per DTI.

According to IEC 61508:2 Table A.8, A.7.4 the above-described method is considered able

to achieve high levels of coverage (and it has to be verified by means of fault injection).

Information redundancy in intra-chip data exchanges – BUS_SM_1

Both permanent and transient fault affecting the intra-chip connection features (Bus Matrix,

AHB/APB bridges) are addressed by information redundancy techniques implemented over

the messages exchanged inside the MCU.

Lock mechanism for configuration options – LOCK_SM_0

The STM32F0 series MCUs feature spread protection to prevent unintended configuration

changes for some peripherals and system registers (for example PVD_LOCK, timers); the

spread protection detects systematic faults in software application and transient faults such

as soft errors, that cause some bit-flip on registers during running time. The use of this

method is encouraged to enhance the end application robustness to systematic faults.

The method described in this section provides a marginal protection against permanent and

transient faults affecting system interconnect bus.

3.6.5 NVIC and EXTI controller

Periodical read-back of configuration registers – NVIC_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of

Configuration Registers” is implemented by executing a periodical check of the

configuration registers of each used system peripheral against its expected value that was

previously stored in RAM and adequately updated after each configuration change. It mainly

addresses the transient faults that affect the configuration registers, by detecting bit flips in

the registers due to these transient faults. The register test is executed at least once per DTI

in order to be able to claim the related diagnostic coverage.

Expected and unexpected interrupt check – NVIC_SM_1

According to IEC 61508:2 Table A.1 recommendations, a diagnostic measure for

continuous, absence or cross-over of interrupt must be implemented. The method of

expected and unexpected interrupt check is implemented at application software level. It

contributes to detecting both permanent and transient fault for all the above-reported failure

modes affecting interrupt handling.

DocID026137 Rev 3 23/89

UM1741 Reference safety architecture

88

The guidelines for the implementation of the method are the following:

 The list of the implemented interrupt for the MCU are well documented, reporting also

the expected frequency of each request when possible (for example the interrupts

related to ADC conversion completion, therefore coming on a deterministic way).

 Individual counters are maintained for each interrupt request served, in order to detect

in a given time frame the cases of a) no interrupt at all b) too many interrupt requests

(“babbling idiot” interrupt source). The control of the time frame duration shall be

regulated according to the individual interrupt expected frequency.

 Interrupt vectors related to unused interrupt source point to a default handler that will

report, in case of triggering, a faulty condition (unexpected interrupt).

 In case an interrupt service routine is shared between different sources, a plausibility

check on the caller identity is implemented.

 Interrupt requests related to not-safety-relevant peripherals are handled with the same

method here described, despite their originator safety classification; in order to

decrease the complexity of this method implementation, the use of polling instead of

interrupt for not-safety-relevant peripherals is suggested.

3.6.6 DMA

Periodical read-back of configuration registers – DMA_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of

Configuration Registers” is implemented by executing a periodical check of the

configuration registers of the DMA peripheral against its expected value that was previously

stored in RAM and adequately updated after each configuration change. It mainly

addresses the transient faults that affect the configuration registers, by detecting bit flips in

the registers due to these transient faults. The register test is executed at least once per DTI

in order to be able to claim the related diagnostic coverage.

Information redundancy on data packet transferred via DMA – DMA_SM_1

The information redundancy required on the DMA data transfer cannot be implemented, in

line with the DMA concept, with multiple transfers of the same data block. Therefore, this

method is implemented by constraining the use of DMA to the transfer of data packed

covered by a redundancy check (like CRC, or similar techniques). Note that other diagnostic

measures on data communication peripherals (potential DMA sources or destinations)

already foresee the implementation of information redundancy at message level – therefore

the overlap with those measures could reduce the potential complexity in the referred-

method implementation.

Information redundancy including sender/receiver identifier on data packet
transferred via DMA – DMA_SM_2

This method requires that the information redundancy introduced at message level

(therefore adding a checksum field to the message) helps to identify inside the MCU the

source and the originator of the message exchange (that is which peripherals dialogs with

the RAM or the CPU). This is implemented by adding an additional field to the protected

message, with a coding convention for message type identification fixed at MCU level. That

is, this method implements some “virtual channel” between the peripheral and the target.

Reference safety architecture UM1741

24/89 DocID026137 Rev 3

Periodical software test for DMA – DMA_SM_3

This method requires the periodical testing of the DMA basic functionality, implemented

through a deterministic transfer of a data packet from one source to another (for example

from memory to memory) and the checking of the correct transfer of the message on the

target. The data packets are composed by not-trivial patterns (avoid the use of 0x0000,

0xFFFF values) and organized in order to allow the detection during the check of the

following failures:

 Incomplete packed transfer,

 Errors in single transferred word,

 Wrong order in packed transmitted data.

The use of CRC packet protection is a way to simplify such checking operations.

3.6.7 CAN

Periodical read-back of configuration registers – CAN_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of

Configuration Registers” executes a periodical check of the configuration registers of CAN

peripheral against its expected value that is previously stored in the RAM and adequately

updated after each configuration change. It mainly addresses the transient faults affecting

the configuration registers, detecting bit flips in the registers due to transient faults. The

register test is executed at least once per DTI in order to be able to claim the related

diagnostic coverage.

Protocol error signals – CAN_SM_1

The CAN protocol error counters, which are entirely managed by the module at hardware

level despite being conceived to detect network-related abnormal conditions, are able to

contribute to the detection of the faults that lead to error messages generation.

The handling at application level of such error signals is a common technique in embedded

applications. Their use is highly recommended.

Information redundancy techniques on messages, including End to End
safing – CAN_SM_2

The CAN communications are protected by addressing both the permanent and transient

faults with the redundant information technique that includes the End to End Safing.

For the implementation of redundant information, it is possible to adopt a different approach:

 Multiple sending of the same message, with comparison of the received results.

 Addition by the sender of a checksum field to the message to be verified by the

receiver.

In case the checksum field approach is adopted, the selection of the algorithm for checksum

computation shall ensure a similar protection against message corruption as the one

ensured by a full redundancy.

DocID026137 Rev 3 25/89

UM1741 Reference safety architecture

88

For End to End Safing, additional measures are implemented:

 Additional field in payload allowing the unique identification of sender/receiver, and

coherence check by receiver side.

 Timing monitoring of the message exchange (for example check the message arrival

within the expected time window)

 Check of the message consistence using a message counter in the additional payload

field and checking the right sequence of messages on the receiver side.

The use of a safe communication protocol such as ProfiSAFE is recommended for the

correct implementation of this safety mechanism.

3.6.8 USART 1/2/3/4

Periodical read-back of configuration registers – UART_SM_0

This diagnostic measure that is typically referred to as “Read Back Periodic by Software of

Configuration Registers” executes a periodical check of the configuration registers of

USART against their expected value (previously stored in RAM and adequately updated

after each configuration change). It mainly addresses transient faults affecting the

configuration registers, detecting bit flips in the registers due to transient faults. The

registers test is executed at least once per DTI in order to be able to claim the related

diagnostic coverage.

Protocol error signals – UART_SM_1

The UART protocol errors signals (if used) despite being conceived to detect physical layer

related abnormal conditions, are able to contribute to the detection to faults leading to error

messages generation. For instance, option parity bit in data byte frame, overrun error.

The handling at application level of such error signals is a common technique in embedded

applications. Their use is highly recommended.

Information redundancy techniques on messages – UART_SM_2

The redundant information technique is used to protect the USART communications by

detecting both the permanent and transient faults. There are two different approaches to

implement this technique:

 Multiple sending of the same message, with comparison of the received results.

 Addition by the sender of a checksum field to the message to be verified by the

receiver.

In case the checksum field approach is adopted, the selection of the algorithm for checksum

computation shall ensure a similar protection against message corruption as the one

ensured by a full redundancy. Theoretic demonstrations on coverage capability are admitted

– the use of CRC coding is anyway suggested.

The above-reported approaches are equivalent; an additional criteria for the selection of the

approach is the availability of a quick hardware support on the MCU platform, and the

evaluation of the computation capability of the external device with which the STM32F0 will

exchange data.

Note that if the message is transferred by the DMA, the implementation of this safety

mechanism takes into account also the overlap of DMA-related safety mechanism related to

the message exchange inside the MCU and already declared as highly recommended.

	Contact us
	1 About this document
	1.1 Purpose and scope
	1.2 Terms and abbreviations
	Table 1. Terms and abbreviations

	1.3 Reference normative
	Table 2. Mapping between this document content and IEC 61508-2 Annex D requirements

	2 STM32F0 series microcontroller development process
	2.1 STMicroelectronics standard development process
	Figure 1. STMicroelectronics product development process

	2.2 Yogitech fRMethodology process

	3 Reference safety architecture
	3.1 Introduction
	3.2 Compliant item
	3.2.1 Definition of the compliant item
	Figure 2. Definition of the compliant item

	3.2.2 Safety functions performed by the compliant item
	Figure 3. Abstract view of compliant item functions

	3.3 Assumed requirements
	3.3.1 Assumed safety requirements
	Figure 4. Allocation and target for STM32 PST

	3.4 Electrical specifications and environment limits
	3.5 Systematic safety integrity
	3.6 Description of hardware and software diagnostics
	3.6.1 Cortex®-M0 CPU
	3.6.2 System FLASH memory
	3.6.3 System SRAM memory
	3.6.4 System bus interconnect
	3.6.5 NVIC and EXTI controller
	3.6.6 DMA
	3.6.7 CAN

