imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

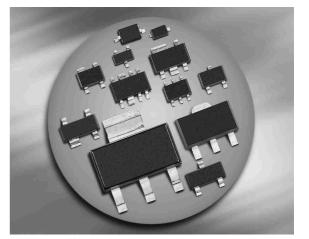
Low VF Schottky Diode

- Reverse voltage: 40 V
- Forward current: 0.2 A
- Low forward voltage and smallest package form factor (1.0 x 0.6 x < 0.4 mm) for mobile phone battery charger application
- Pb-free (RoHS compliant) package

BAS4002S-02LRH

Туре	Package	Configuration	Marking
BAS4002S-02LRH	TSLP-2-17	single	2A

Maximum Ratings at T_A = 25 °C, unless otherwise specified


Parameter	Symbol	Value	Unit
Diode reverse voltage ¹⁾	V _R	40	V
Forward current ¹⁾ , $T_{S} \le 138 \text{ °C}$	I _F	0.2	A
Non-repetitive peak surge forward current	/ _{FSM}	2	
(<i>t</i> ≤ 10 ms)			
Junction temperature	Ti	150	°C
Operating temperature range	T _{op}	-55150	
Storage temperature	T _{stg}	-65150	

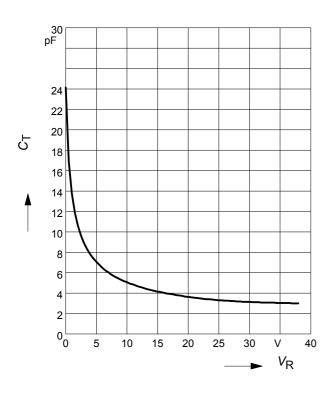
Thermal Resistance

Junction - soldering point ²⁾	R _{thJS}	≤ 60	K/W

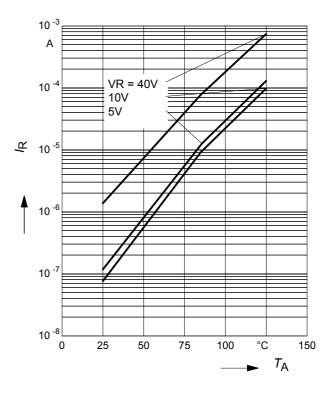
¹For $T_A > 25$ °C the derating of V_R and I_F has to be considered.

 $^2 \rm For}$ calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance

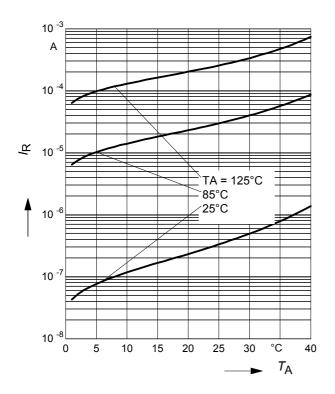
Parameter	Symbol	Values			Unit
		min.	typ.	max.]
DC Characteristics					
Reverse current ¹⁾	I _R				μA
V _R = 5 V		-	-	0.5	
<i>V</i> _R = 10 V		-	-	1	
V _R = 40 V		-	-	10	
Forward voltage ¹⁾	V _F				mV
<i>I</i> _F = 0.1 mA		-	210	250	
/ _F = 1 mA		-	270	310	
/ _F = 10 mA		-	330	370	
/ _F = 100 mA		-	420	470	
<i>I</i> _F = 200 mA		-	470	550	
AC Characteristics		, <u> </u>	,		
Diode capacitance	CT	-	7	12	pF
<i>V</i> _R = 5 V, <i>f</i> = 1 MHz					
1 Pulsed test: $t = 300 \text{ us}$ $D = 0.01$					


Electrical Characteristics at $T_A = 25^{\circ}$ C, unless otherwise specified

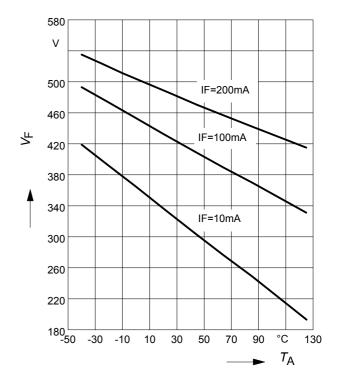
¹Pulsed test: t_p = 300 µs, *D* = 0.01


Diode capacitance $C_{T} = f(V_{R})$

f = 1 MHz


Reverse current $I_{R} = f(T_{A})$

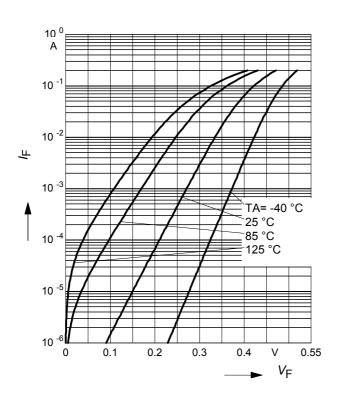
 $V_{\rm R}$ = Parameter


Reverse current $I_{R} = f(V_{R})$

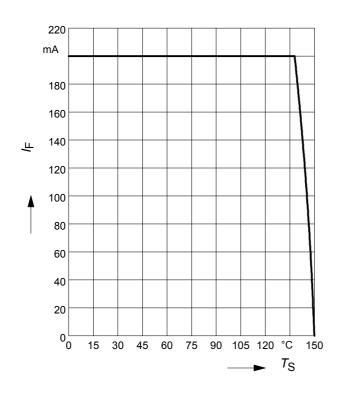
 T_A = Parameter

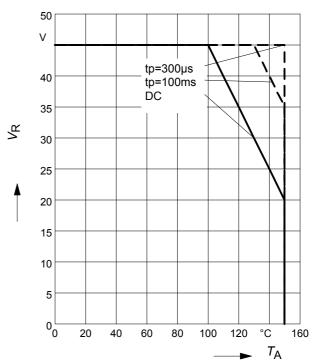
Forward Voltage $V_{\rm F}$ = $f(T_{\rm A})$

 $I_{\rm F}$ = Parameter

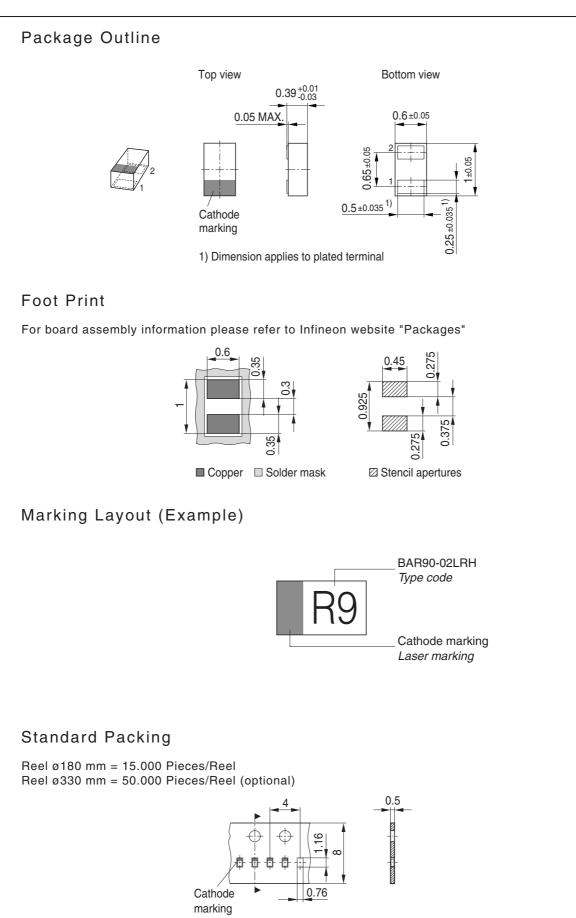


Forward current $I_F = f(V_F)$


Permissible Reverse voltage $V_R = f(T_A)$


 t_p = Paramter, Duty cycle < 0.01

Device mounted on PCB with $R_{\rm th}$ = 160 K/W



Forward current $I_{F} = f(T_{S})$ BAS4002S-02LRH

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<<u>www.infineon.com</u>>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.