imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BAT54CXV3T1

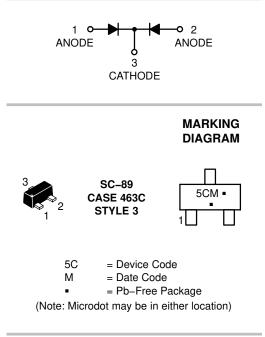
Preferred Device

Dual Series Schottky Barrier Diodes

These Schottky barrier diodes are designed for high speed switching applications, circuit protection, and voltage clamping. Extremely low forward voltage reduces conduction loss. Miniature surface mount package is excellent for hand held and portable applications where space is limited.

Features

- Extremely Fast Switching Speed
- Low Forward Voltage 0.35 V (Typ) @ $I_F = 10 \text{ mAdc}$
- Pb–Free Package is Available


Rating

ON Semiconductor®

http://onsemi.com

30 VOLT DUAL COMMON CATHODE SCHOTTKY BARRIER DIODES

MAXIMUM RATINGS ($T_J = 125^{\circ}C$ unless otherwise noted)

_	-		
Reverse Voltage	V _R	30	V
Forward Power Dissipation @ T _A = 25°C Derate above 25°C	P _F	240 1.9	mW mW/°C
Forward Current (DC)	١ _F	200 Max	mA
Junction Temperature	Τ _J	-55 to 125	°C
Storage Temperature Range	T _{stg}	-55 to +150	°C
Thermal Resistance, Junction-to-Ambient (Note 1)	$R_{\theta JA}$	525	°C/W
Maximum ratings are those values bey	ond which	device damage (can occur

Symbol

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

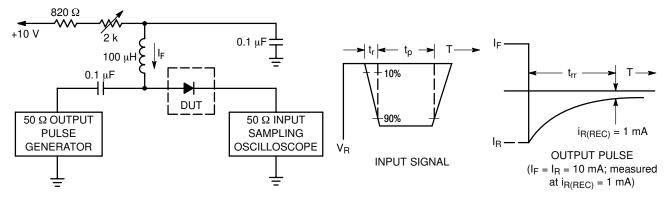
1. FR-5 board with minimum mounting pad.

ORDERING INFORMATION

Device	Package	Shipping [†]
BAT54CXV3T1	SC-89	3000 / Tape & Reel
BAT54CXV3T1G	SC-89 (Pb-Free)	3000 / Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.


Unit

Value

BAT54CXV3T1

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage $(I_R = 10 \ \mu A)$	V _{(BR)R}	30	-	-	V
Total Capacitance (V _R = 1.0 V, f = 1.0 MHz)	CT	-	7.6	10	pF
Reverse Leakage (V _R = 25 V)	I _R	-	0.5	2.0	μAdc
Forward Voltage (I _F = 0.1 mAdc)	V _F	-	0.22	0.24	Vdc
Forward Voltage (I _F = 30 mAdc)	V _F	-	0.41	0.5	Vdc
Forward Voltage (I _F = 100 mAdc)	V _F	-	0.52	0.8	Vdc
Reverse Recovery Time ($I_F = I_R = 10 \text{ mAdc}, I_{R(REC)} = 1.0 \text{ mAdc}, Figure 1$)	t _{rr}	-	-	5.0	ns
Forward Voltage (I _F = 1.0 mAdc)	V _F	-	0.29	0.32	Vdc
Forward Voltage (I _F = 10 mAdc)	V _F	-	0.35	0.40	Vdc
Forward Current (DC)	١ _F	-	-	200	mAdc
Repetitive Peak Forward Current	I _{FRM}	-	-	300	mAdc
Non-Repetitive Peak Forward Current (t < 1.0 s)	I _{FSM}	-	-	600	mAdc

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (EACH DIODE)

Notes: 1. A 2.0 k Ω variable resistor adjusted for a Forward Current (I_F) of 10 mA. 2. Input pulse is adjusted so I_{R(peak)} is equal to 10 mA. 3. t_p » t_{rr}

Figure 1. Recovery Time Equivalent Test Circuit

BAT54CXV3T1

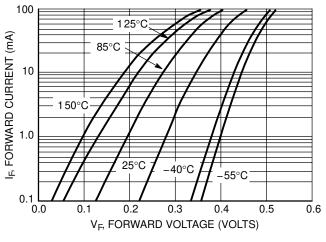


Figure 2. Forward Voltage

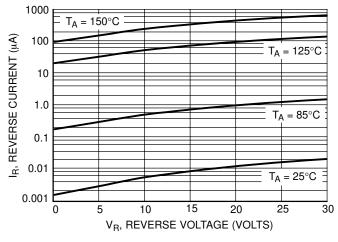


Figure 3. Leakage Current

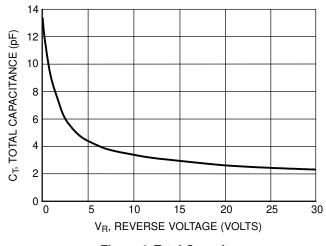
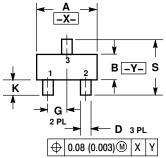
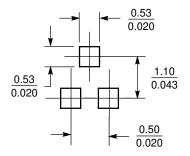



Figure 4. Total Capacitance

PACKAGE DIMENSIONS

SC-89, 3-LEAD CASE 463C-03 ISSUE C


- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI
- Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETERS 2
- MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS 3. IS THE MINIMUM THICKNESS OF BASE MATERIAL
- 4. 463C-01 OBSOLETE, NEW STANDARD 463C-02.

3. CATHODE

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	1.50	1.60	1.70	0.059	0.063	0.067	
В	0.75	0.85	0.95	0.030	0.034	0.040	
С	0.60	0.70	0.80	0.024	0.028	0.031	
D	0.23	0.28	0.33	0.009	0.011	0.013	
G	0.50 BSC			0.020 BSC			
н	0.53 REF		0.021 REF				
J	0.10	0.15	0.20	0.004	0.006	0.008	
K	0.30	0.40	0.50	0.012	0.016	0.020	
L	1.10 REF		0.043 REF				
М			10			10	
Ν			10 -			10	
S	1.50	1.60	1.70	0.059	0.063	0.067	

STYLE 3: PIN 1. ANODE 2. ANODE SEATING -T-

SOLDERING FOOTPRINT*

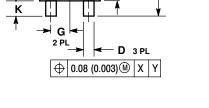
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

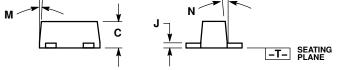
ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082-1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com


N. American Technical Support: 800-282-9855 Toll Free USA/Canada


Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850

ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

