

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

General Purpose Transistors

PNP Silicon

Features

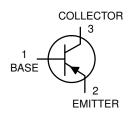
- S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage BC856, SBC856 BC857, SBC857 BC858, NSVBC858, BC859	V _{CEO}	-65 -45 -30	>
Collector-Base Voltage BC856, SBC856 BC857, SBC857 BC858, NSVBC858, BC859	V _{CBO}	-80 -50 -30	V
Emitter-Base Voltage	V _{EBO}	-5.0	V
Collector Current – Continuous	I _C	-100	mAdc
Collector Current – Peak	I _C	-200	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board, (Note 1) T _A = 25°C Derate above 25°C	P _D	225 1.8	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	556	°C/W
Total Device Dissipation Alumina Substrate, (Note 2) T _A = 25°C Derate above 25°C	P _D	300 2.4	mW mW/°C
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	417	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. $FR-5 = 1.0 \times 0.75 \times 0.062$ in.
- 2. Alumina = $0.4 \times 0.3 \times 0.024$ in 99.5% alumina.

ON Semiconductor®

www.onsemi.com

SOT-23 (TO-236) CASE 318 STYLE 6

MARKING DIAGRAM

xx = Device Code

xx = (Refer to page 6)

M = Date Code*

= Pb–Free Package

(Note: Microdot may be in either location)
*Date Code orientation and/or overbar may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_A = 25$ °C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector – Emitter Breakdown Voltage BC856, SBC856 Series $(I_C = -10 \text{ mA})$ BC857, SBC857 Series BC858, NSBVC858 BC859 Series	V _{(BR)CEO}	-65 -45 -30	- - -	- - -	V
$\begin{tabular}{ll} Collector-Emitter Breakdown Voltage & BC856 S, SBC856eries \\ (I_C=-10~\mu\text{A},~V_{EB}=0) & BC857\text{A},~SBC857\text{A},~BC857\text{B},~SBC857\text{B} Only \\ & BC858,~NSVB858,~BC859~Series \\ \end{tabular}$	V _{(BR)CES}	-80 -50 -30	- - -	- - -	V
$ \begin{array}{ccc} \text{Collector-Base Breakdown Voltage} & \text{BC856, SBC856 Series} \\ \text{(I}_{\text{C}} = -10~\mu\text{A}) & \text{BC857, SBC857 Series} \\ & \text{BC858, NSVBC858, BC859 Series} \end{array} $	V _{(BR)CBO}	-80 -50 -30	- - -	- - -	V
Emitter – Base Breakdown Voltage BC856, SBC856 Series $(I_E=-1.0~\mu\text{A})$ BC857, SBC857 Series BC858, NSVBC858, BC859 Series	$V_{(BR)EBO}$	-5.0 -5.0 -5.0	- - -	- - -	V
Collector Cutoff Current ($V_{CB} = -30 \text{ V}$) ($V_{CB} = -30 \text{ V}$, $T_A = 150^{\circ}\text{C}$)	I _{CBO}	- -	_ _	–15 –4.0	nA μA
ON CHARACTERISTICS				•	•
DC Current Gain BC856A, SBC856A, BC857A, SBC857A, BC858A $(I_C = -10 \mu\text{A}, V_{CE} = -5.0 \text{V})$ BC856B, SBC856B, BC857B, SBC857B, BC858B, NSVBC858B	h _{FE}	- -	90 150	_ _	_
BC857C, SBC857C BC858C		-	270	-	
$(I_{C} = -2.0 \text{ mA}, V_{CE} = -5.0 \text{ V})$ BC856A, SBC856A, BC857A, SBC857A, BC858A		125	180	250	
BC856B, SBC856B, BC857B, SBC857B, BC858B, NSVBC858B, BC859B BC857C, SBC857C, BC858C, BC859C		220 420	290 520	475 800	
Collector – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{CE(sat)}	- -	- -	-0.3 -0.65	V
Base – Emitter Saturation Voltage ($I_C = -10$ mA, $I_B = -0.5$ mA) ($I_C = -100$ mA, $I_B = -5.0$ mA)	V _{BE(sat)}	- -	-0.7 -0.9	- -	V
Base – Emitter On Voltage (I_C = -2.0 mA, V_{CE} = -5.0 V) (I_C = -10 mA, V_{CE} = -5.0 V)	V _{BE(on)}	-0.6 -	_ _	-0.75 -0.82	V
SMALL-SIGNAL CHARACTERISTICS					
Current – Gain – Bandwidth Product (I _C = -10 mA, V _{CE} = -5.0 Vdc, f = 100 MHz)	f _T	100	-	_	MHz
Output Capacitance (V _{CB} = -10 V, f = 1.0 MHz)	C _{ob}	-	-	4.5	pF
Noise Figure (I _C = -0.2 mA, V _{CE} = -5.0 Vdc, R _S = 2.0 k Ω , f = 1.0 kHz, BW = 200 Hz) BC856, SBC856, BC857, SBC857, BC858, NSVBC858 Series BC859 Series	NF	- -	- -	10 4.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

BC857/BC858/BC859/SBC857/NSVBC858

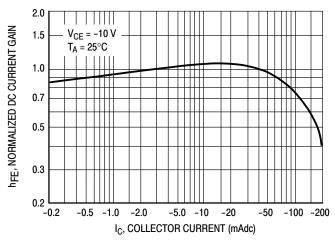


Figure 1. Normalized DC Current Gain

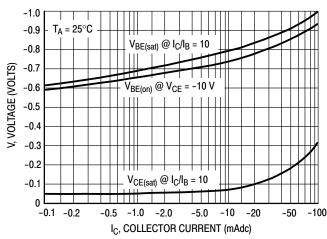


Figure 2. "Saturation" and "On" Voltages

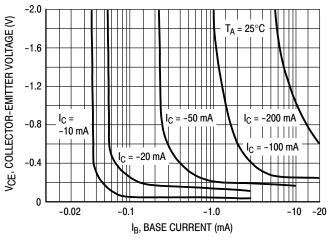


Figure 3. Collector Saturation Region

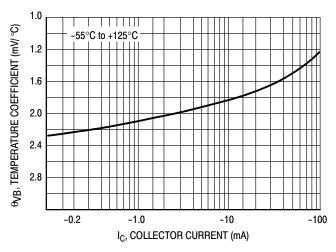


Figure 4. Base-Emitter Temperature Coefficient

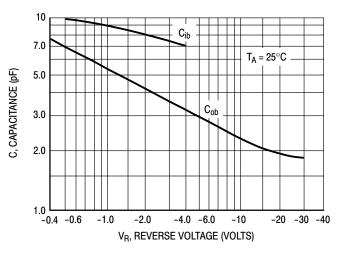


Figure 5. Capacitances

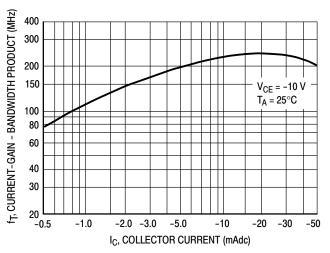


Figure 6. Current-Gain - Bandwidth Product

BC856/SBC856

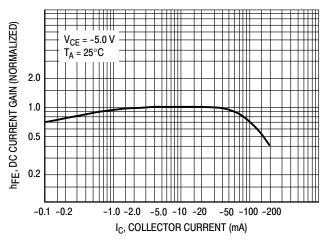


Figure 7. DC Current Gain

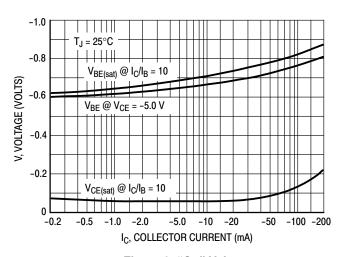


Figure 8. "On" Voltage

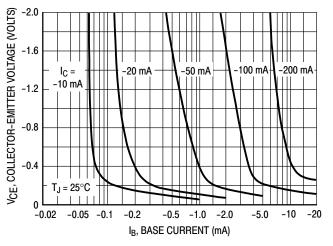


Figure 9. Collector Saturation Region



Figure 10. Base-Emitter Temperature Coefficient

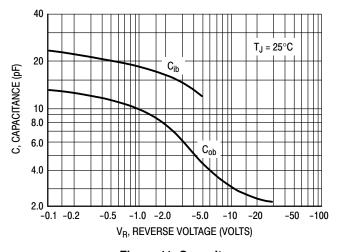


Figure 11. Capacitance

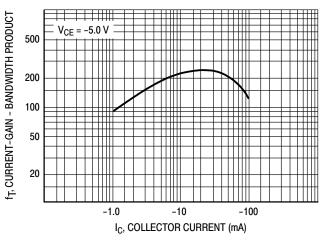


Figure 12. Current-Gain - Bandwidth Product

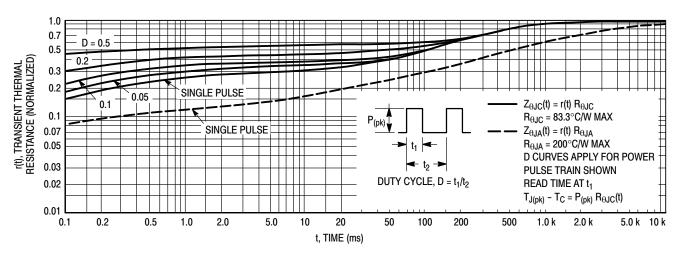


Figure 13. Thermal Response

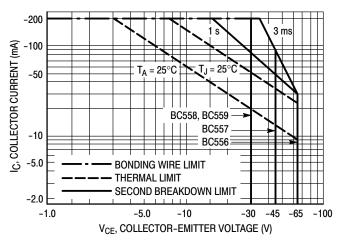
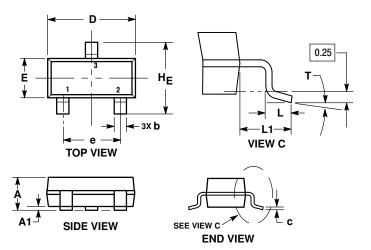


Figure 14. Active Region Safe Operating Area

The safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation. Collector load lines for specific circuits must fall below the limits indicated by the applicable curve.

The data of Figure 14 is based upon $T_{J(pk)} = 150^{\circ}C$; T_{C} or T_{A} is variable depending upon conditions. Pulse curves are valid for duty cycles to 10% provided $T_{J(pk)} \leq 150^{\circ}C$. $T_{J(pk)}$ may be calculated from the data in Figure 13. At high case or ambient temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by the secondary breakdown.


ORDERING INFORMATION

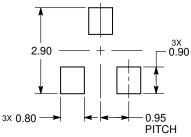
Device	Marking	Package	Shipping [†]
BC856ALT1G	3A	SOT-23	3,000 / Tape & Reel
SBC856ALT1G*		(Pb-Free)	
BC856ALT3G			10,000 / Tape & Reel
BC856BLT1G	3B	SOT-23	3,000 / Tape & Reel
SBC856BLT1G*		(Pb-Free)	
BC856BLT3G			10,000 / Tape & Reel
SBC856BLT3G*			
BC857ALT1G	3E	SOT-23	3,000 / Tape & Reel
SBC857ALT1G*		(Pb-Free)	
BC857BLT1G	3F	SOT-23	3,000 / Tape & Reel
SBC857BLT1G*		(Pb-Free)	
BC857BLT3G			10,000 / Tape & Reel
NSVBC857BLT3G*			
BC857CLT1G	3G	SOT-23	3,000 / Tape & Reel
SBC857CLT1G*		(Pb-Free)	
BC857CLT3G			10,000 / Tape & Reel
BC858ALT1G	3J	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858BLT1G	3K	SOT-23	
NSVBC858BLT1G*		(Pb-Free)	
BC858BLT3G	3L	SOT-23 (Pb-Free)	10,000 / Tape & Reel
BC858CLT1G		SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC858CLT3G		SOT-23 (Pb-Free)	10,000 / Tape & Reel
BC859BLT1G	4B	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC859BLT3G		SOT-23 (Pb-Free)	10,000 / Tape & Reel
BC859CLT1G	4C	SOT-23 (Pb-Free)	3,000 / Tape & Reel
BC859CLT3G		SOT-23 (Pb-Free)	10,000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
*S and NSV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q101 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SOT-23 (TO-236) CASE 318-08 **ISSUE AR**

- TES:
 DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH,
- PROTRUSIONS, OR GATE BURRS


	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
С	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
е	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
HE	2.10	2.40	2.64	0.083	0.094	0.104
Т	0°		10°	0°		10°

STYLE 6:

PIN 1. BASE

EMITTER COLLECTOR

RECOMMENDED SOLDERING FOOTPRINT*

DIMENSIONS: MILLIMETERS

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor, "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

ON Semiconductor Website: www.onsemi.com

0 BC856ALT1/D

Phone: 81–3–5817–1050