

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

2.7V 10F ULTRACAPACITOR CELL

FEATURES AND BENEFITS

- High performance product with low ESR
- Exceptional shock and vibration resistance
- Long lifetimes with up to 500,000 duty cycles*
- Compliant with UL, RoHS and REACH requirements

TYPICAL APPLICATIONS

- Actuators
- Emergency Lighting
- Telematics
- Automotive
- Security Equipment
- · Backup System
- · Smoke Detectors
- · Advanced Metering

PRODUCT SPECIFICATIONS & CHARACTERISTICS

BCAP0010 P270 S01 | BCAP0010 P270 S12 ESHSR-0010C0-002R7 |

ELECTRICAL	
Rated Voltage, V _R	2.7 VDC
Surge Voltage ¹	2.85 VDC
Rated Capacitance, C3	10 F
Min. / Max. Capacitance, Initial	9 F / 12 F
Typical Capacitance, Initial ^{2,3}	10.6 F
Rated (Max.) ESR _{DC} , Initial ³	30 mΩ
Typical ESR _{DC} , Initial ^{2,3}	25 mΩ
Typical ESR _{DC} , Initial, 5 sec ^{2,3}	46 mΩ
Maximum Leakage Current⁴	23 μΑ
Maximum Peak Current, Non-repetitive ⁵	10 A
PHYSICAL	
Nominal Mass	3.1 a

Nominal Mass

POWER & ENERGY

Operating Temp. Range	Standard (-40°C to 65°C) at 2.7 V	Extended (-40°C to 85°C) at 2.3 V
Maximum Stored Energy, E _{max} ^{6,9}	10.1 mWh	7.3 mWh
Gravimetric Specific Energy ⁶	3.2 Wh/kg	2.3 Wh/kg
Usable Specific Power ⁶	9.4 kW/kg	6.8 kW/kg
Impedance Match Specific Power ⁶	19.5 kW/kg	14.2 kW/kg

	ь.	ш	. /	1/	M	
	Е	ш	V	I <i>F</i>	٦.	
	_			•••		_

Typical Thermal Resistance (R _{th} , Housing) ⁸	42°C/W
Typical Thermal Capacitance (C _{th})	2.7 J/°C
Usable Continuous Current (BOL) $(\Delta T = 15 ^{\circ}C)^{8,10}$	3.4 A
Usable Continuous Current (BOL) $(\Lambda T = 40 \text{ °C})^{8,10}$	5.6 A

,	
LIFE*	
Projected DC Life at Room Temperature (At rated voltage and 25°C, EOL¹0)	10 years
DC Life at High Temperature (At rated voltage and 65°C, EOL¹0)	1,500 hours
DC Life at De-rated Voltage & Higher Temperature (At 2.3V and 85°C, EOL¹º)	1,500 hours
Projected Cycle Life at Room Temperature ⁷ (Constant current charge-discharge from V _R to 1/2V _R at 25°C, EOL¹0)	500,000 cycles
Shelf Life (Stored uncharged at 25°C)	4 years

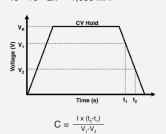
SAFETY

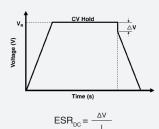
Certifications	ROHS, REACH,
Certifications	UL 810A

^{*}Results may vary. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.

Datasheet: 2.7V 10F ULTRACAPACITOR CELL

Surge Voltage 1.


Absolute maximum voltage, non-repetitive. Duration not to exceed 1 second.


- "Typical" values represent mean values of production sample 2.
- Rated Capacitance & ESR_{pc} (measure method)
 - Capacitance: Constant current charge (10 mA/F) to V_p, 5 min hold at V_p constant current discharge 10 mA/F to 0.1V.

e.g. in case of 2.7V 10F cell, 10 * 10 = 100 mA

 \bullet ESR_{DC}: Constant current charge (10 mA/F) to V_R, 5 min hold at V_R, constant current discharge (40 * C * V [mA]) to 0.1 V.

e.g. in case of 2.7V 10F cell, charge with 10 * 10 = 100 mA and discharge with 40 * 10 * 2.7 = 1,080 mA

where C is the capacitance (F);
I is the absolute value of the discharge current (A);

V_R is the rated voltage (V);

 V_1 is the measurement start voltage, 0.8xV_R (V);

 V_2 is the measurement end voltage, $0.4xV_R(V)$; t, is the time from start of discharge to reach $V_A(s)$;

is the time from start of discharge to reach V_2 (s);

 $\dot{E}SR_{DC}$ is the DC-ESR (Ω);

 ΔV is the voltage drop during first 10ms of discharge (V).

Typical ESR_{pc}, Initial, 5 sec tested per Maxwell Application Note, "Test Procedures for Capacitance, ESR, Leakage Current and Self-Discharge Characterizations of Ultracapacitors" available at www.maxwell.com.

- Maximum Leakage Current
 - · Current measured after 72 hrs at rated voltage and 25°C. Initial leakage current can be higher.
 - · If applicable, module leakage current is the sum of cell and balancing circuit leakage currents.
- Maximum Peak Current
 - Current needed to discharge cell/module from rated voltage to half-rated voltage in 1 second.

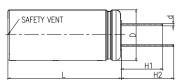
1/2 V $I = \frac{1}{\Delta t / C + ESR_{DC}}$

where Δt is the discharge time (sec): $\Delta t = 1$ sec in this case

- The stated maximum peak current should not be used in normal operation and is only provided as a reference value.
- Energy & Power (Based on IEC 62391-2)
 - Maximum Stored Energy, $E_{max}(Wh) = \frac{72 C V_R}{3.600}$
 - Gravimetric Specific Energy (Wh/kg) = -
 - Usable Specific Power (W/kg) = ESR_{DC} x mass
 - Impedance Match Specific Power (W/kg) = $\frac{SLEC \cdot R}{ESR_{DC} \times mass}$
 - · Presented Power and Energy values are calculated based on Rated Capacitance & Rated (Max.) $\mathrm{ESR}_{\mathrm{DC}}$, Initial values.
- Cycle Life Test Profile

Cycle life varies depending upon application-specific characteristics. Actual results will vary.

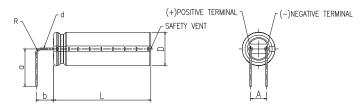
- 8. Temperature Rise at Constant Current
 - ΔT=I_{RMS}² x ESR_{DC} x R_{th}


where ΔT : Temperature rise over ambient (°C) I_{RMS} : Maximum continuous or RMS current (A) R_{th} : Thermal resistance, cell to ambient (°C/W) ESR_{DC} : Rated (Max.) $ESR_{DC}(\Omega)$.

(Note: Design should consider EOL ESR $_{\rm DC}$ for application temperature rise evaluation.)

- Per United Nations material classification UN3499, all Maxwell ultracapacitors have less than 10 Wh capacity to meet the requirements of Special Provisions 361. Both individual ultracapacitors and modules composed of those ultracapacitors shipped by Maxwell can be transported without being treated as dangerous goods (hazardous materials) under transportation regulations.
- BOL: Beginning of Life, rated initial product performance EOL: End of Life criteria.
 - · Capacitance: 80% of min. BOL rating
 - ESR_{DC}: 2x max. BOL rating

BCAP00010 P270 S01



When ordering, please reference the Maxwell Model Number below.

Maxwell Model Number: Maxwell Part Number: Alternate Model Number: BCAP0010 P270 S01 133516 ESHSR-0010C0-002R7 BCAP0010 P270 S12 134092

BCAP00010 P270 S12

	Dimensions (mm)								
Part Description	L	D	d	A	H1	H2	R	a	b
	(±1.0)	(+0.5)	(±0.05)	(±0.5)	(min.)	(min.)	(min.)	(±0.5)	(±0.5)
BCAP0010 P270 S01	30.5	10.0	0.60	5.0	15.0	19.0	-	-	-
BCAP0010 P270 S12	30.5	10.0	0.60	5.0	-	-	1.5	11.5	5.5

The information in this document is correct at time of printing and is subject to change without notice. Images are not to scale.

Maxwell Technologies, Inc. **Global Headquarters** 3888 Calle Fortunada

USA Tel: +1 (858) 503-3300 Fax: +1 (858) 503-3301

San Diego, CA 92123

Maxwell Technologies SA

Route de Montena 65 CH-1728 Rossens Switzerland

Tel: +41 (0)26 411 85 00 Fax: +41 (0)26 411 85 05 Maxwell Technologies, GmbH

Leopoldstrasse 244 80807 Munich Germany

Tel: +49 (0)89 4161403 0 Fax: +49 (0)89 4161403 99 **Maxwell Technologies** Shanghai Trading Co., Ltd.

Room 1005, 1006, and 1007 No. 1898, Gonghexin Road, Jin An District, Shanghai 2000072, P.R. China

Tel: +86 21 3852 4000 Fax: +82 21 3852 4099 Nesscap Co., Ltd. 17, Dongtangiheung-ro

681 Beon-gil, Giheung-gu, Yongin-si, Gyeonggi-do 17102 Republic of Korea

Tel: +82 31 289 0721 Fax: +82 31 286 6767

MAXWELL TECHNOLOGIES, MAXWELL, MAXWELL CERTIFIED INTEGRATOR, ENABLING ENERGY'S FUTURE, NESSCAP, XP, BOOSTCAP, D CELL, CONDIS and their respective designs and/or logos are either trademarks or registered trademarks of Maxwell Technologies, Inc., and/or its affiliates, and may not be copied, imitated or used, in whole or in part, without the prior written permission Maxwell Technologies, Inc. All contents copyright © 2018 Maxwell Technologies, Inc. All rights reserved. No portion of these materials may be reproduced in any form, or by any means, without prior written permission from Maxwell Technologies, Inc.

