

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

BCM856BS; BCM856BS/DG BCM856DS; BCM856DS/DG

PNP/PNP matched double transistors

Rev. 01 — 7 August 2008

Product data sheet

1. Product profile

1.1 General description

PNP/PNP matched double transistors in small Surface-Mounted Device (SMD) plastic packages. The transistors are fully isolated internally.

Table 1. Product overview

Type number	Package		Package configuration
	NXP	JEITA	
BCM856BS	SOT363	SC-88	very small
BCM856BS/DG			
BCM856DS	SOT457	SC-74	small
BCM856DS/DG			

1.2 Features

- Current gain matching
- Base-emitter voltage matching
- Drop-in replacement for standard double transistors
- AEC-Q101 qualified

1.3 Applications

- Current mirror
- Differential amplifier

1.4 Quick reference data

Table 2. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per transis	stor					
V_{CEO}	collector-emitter voltage	open base	-	-	-65	V
I _C	collector current		-	-	-100	mA
h _{FE}	DC current gain	$V_{CE} = -5 \text{ V};$ $I_{C} = -2 \text{ mA}$	200	290	450	

2 of 14

Table 2. Quick reference data ...continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per device						
h _{FE1} /h _{FE2}	h _{FE} matching	$V_{CE} = -5 \text{ V};$ $I_C = -2 \text{ mA}$	[1] 0.9	1	-	
$V_{BE1}-V_{BE2}$	V _{BE} matching	$V_{CE} = -5 \text{ V};$ $I_C = -2 \text{ mA}$	[2] _	-	2	mV

^[1] The smaller of the two values is taken as the numerator.

2. Pinning information

Table 3. Pinning

	•			
Pin	Description	Simplified outline Gra	phic symbol	
1	emitter TR1			
2	base TR1	6 5 4	6 5 4	
3	collector TR2		TR2	
4	emitter TR2	\\\\\\\\\\\\\^{\tau}	R1	
5	base TR2			
6	collector TR1	001aab555	1 2 3	
			sym018	

3. Ordering information

Table 4. Ordering information

Type number	Package					
	Name	Description	Version			
BCM856BS	SC-88	plastic surface-mounted package; 6 leads	SOT363			
BCM856BS/DG						
BCM856DS	SC-74	plastic surface-mounted package (TSOP6); 6 leads	SOT457			
BCM856DS/DG						

^[2] The smaller of the two values is subtracted from the larger value.

4. Marking

Table 5. Marking codes

Type number	Marking code ^[1]
BCM856BS	*BS
BCM856BS/DG	PB*
BCM856DS	DS
BCM856DS/DG	R9

^{[1] * = -:} made in Hong Kong

5. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Per trans	sistor				
V_{CBO}	collector-base voltage	open emitter	-	-80	V
V_{CEO}	collector-emitter voltage	open base	-	-65	V
V_{EBO}	emitter-base voltage	open collector	-	-5	V
I _C	collector current		-	-100	mA
I_{CM}	peak collector current	single pulse; $t_p \le 1 \text{ ms}$	-	-200	mA
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C			
	BCM856BS (SOT363) BCM856BS/DG (SOT363)		<u>[1]</u> _	200	mW
	BCM856DS (SOT457) BCM856DS/DG (SOT457)		<u>[1]</u> -	250	mW
Per device	ce				
P _{tot}	total power dissipation	T _{amb} ≤ 25 °C			
	BCM856BS (SOT363) BCM856BS/DG (SOT363)		<u>[1]</u> -	300	mW
	BCM856DS (SOT457) BCM856DS/DG (SOT457)		<u>[1]</u> -	380	mW
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-55	+150	°C
T _{stg}	storage temperature		-65	+150	°C

^[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

^{* =} p: made in Hong Kong

^{* =} t: made in Malaysia

^{* =} W: made in China

6. Thermal characteristics

Table 7. Thermal characteristics

Table 7.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per trans	sistor					
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air				
	BCM856BS (SOT363) BCM856BS/DG (SOT363)		[1] _	-	625	K/W
	BCM856DS (SOT457) BCM856DS/DG (SOT457)		[1] _	-	500	K/W
Per devi	се					
R _{th(j-a)}	thermal resistance from junction to ambient	in free air				
	BCM856BS (SOT363) BCM856BS/DG (SOT363)		[1] -	-	416	K/W
	BCM856DS (SOT457) BCM856DS/DG (SOT457)		[1] -	-	328	K/W

^[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

7. Characteristics

Table 8. Characteristics

T_{amb} = 25 °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Per transis	stor					
I_{CBO}	collector-base cut-off current	$V_{CB} = -30 \text{ V};$ $I_E = 0 \text{ A}$	-	-	–15	nA
		$V_{CB} = -30 \text{ V};$ $I_{E} = 0 \text{ A};$ $T_{j} = 150 \text{ °C}$	-	-	- 5	μΑ
I _{EBO}	emitter-base cut-off current	$V_{EB} = -5 \text{ V};$ $I_{C} = 0 \text{ A}$	-	-	-100	nA
h _{FE}	DC current gain	$V_{CE} = -5 \text{ V};$ $I_C = -10 \mu\text{A}$	-	250	-	
		$V_{CE} = -5 \text{ V};$ $I_{C} = -2 \text{ mA}$	200	290	450	
V _{CEsat}	collector-emitter saturation voltage	$I_C = -10 \text{ mA};$ $I_B = -0.5 \text{ mA}$	-	-50	-200	mV
		$I_C = -100 \text{ mA};$ $I_B = -5 \text{ mA}$	-	-200	-400	mV
V _{BEsat}	base-emitter saturation voltage	$I_{C} = -10 \text{ mA};$ $I_{B} = -0.5 \text{ mA}$	[1] -	-760	-	mV
		$I_C = -100 \text{ mA};$ $I_B = -5 \text{ mA}$	[1] -	-920	-	mV

BCM856BS_BCM856DS_1 © NXP B.V. 2008. All rights reserved.

Table 8. Characteristics ...continued $T_{amb} = 25 \,^{\circ}C$ unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Unit	
base-emitter voltage	$V_{CE} = -5 \text{ V};$ $I_{C} = -2 \text{ mA}$	[2] -600	-650	-700	mV	
	$V_{CE} = -5 \text{ V};$ $I_{C} = -10 \text{ mA}$	[2] _	-	-760	mV	
collector capacitance	$V_{CB} = -10 \text{ V};$ $I_E = i_e = 0 \text{ A};$ $f = 1 \text{ MHz}$	-	-	2.2	pF	
emitter capacitance	$V_{EB} = -0.5 \text{ V};$ $I_{C} = i_{c} = 0 \text{ A};$ $f = 1 \text{ MHz}$	-	10	-	pF	
transition frequency	$V_{CE} = -5 \text{ V};$ $I_{C} = -10 \text{ mA};$ $f = 100 \text{ MHz}$	100	175	-	MHz	
noise figure	$V_{CE} = -5 \text{ V};$ $I_{C} = -0.2 \text{ mA};$ $R_{S} = 2 \text{ k}\Omega;$ $f = 10 \text{ Hz to}$ 15.7 kHz	-	1.6	-	dB	
	$V_{CE} = -5 \text{ V};$ $I_{C} = -0.2 \text{ mA};$ $R_{S} = 2 \text{ k}\Omega;$ $f = 1 \text{ kHz};$ $B = 200 \text{ Hz}$	-	3.1	-	dB	
Per device						
h _{FE} matching	$V_{CE} = -5 \text{ V};$ $I_{C} = -2 \text{ mA}$	<u>3</u> 0.9	1	-		
V _{BE} matching	$V_{CF} = -5 \text{ V};$	[4] _	_	2	mV	
	collector capacitance emitter capacitance transition frequency noise figure h _{FE} matching	$\begin{array}{lll} \text{base-emitter voltage} & V_{\text{CE}} = -5 \text{ V;} \\ I_{\text{C}} = -2 \text{ mA} \\ \hline & V_{\text{CE}} = -5 \text{ V;} \\ I_{\text{C}} = -10 \text{ mA} \\ \hline \\ \text{collector capacitance} & V_{\text{CB}} = -10 \text{ V;} \\ I_{\text{E}} = i_{\text{e}} = 0 \text{ A;} \\ f = 1 \text{ MHz} \\ \hline \\ \text{emitter capacitance} & V_{\text{EB}} = -0.5 \text{ V;} \\ I_{\text{C}} = i_{\text{c}} = 0 \text{ A;} \\ f = 1 \text{ MHz} \\ \hline \\ \text{transition frequency} & V_{\text{CE}} = -5 \text{ V;} \\ I_{\text{C}} = -10 \text{ mA;} \\ f = 100 \text{ MHz} \\ \hline \\ \text{noise figure} & V_{\text{CE}} = -5 \text{ V;} \\ I_{\text{C}} = -0.2 \text{ mA;} \\ R_{\text{S}} = 2 \text{ k}\Omega; \\ f = 10 \text{ Hz to} \\ 15.7 \text{ kHz} \\ \hline \\ V_{\text{CE}} = -5 \text{ V;} \\ I_{\text{C}} = -0.2 \text{ mA;} \\ R_{\text{S}} = 2 \text{ k}\Omega; \\ f = 1 \text{ kHz;} \\ B = 200 \text{ Hz} \\ \hline \\ \\ \\ \text{h}_{\text{FE}} \text{ matching} & V_{\text{CE}} = -5 \text{ V;} \\ I_{\text{C}} = -2 \text{ mA} \\ \hline \end{array}$	$\begin{array}{c} \text{base-emitter voltage} & V_{\text{CE}} = -5 \text{ V}; \\ I_{\text{C}} = -2 \text{ mA} \\ \hline & V_{\text{CE}} = -5 \text{ V}; \\ I_{\text{C}} = -10 \text{ mA} \\ \hline & V_{\text{CE}} = -5 \text{ V}; \\ I_{\text{C}} = -10 \text{ mA} \\ \hline & \text{collector capacitance} \\ \hline & V_{\text{CB}} = -10 \text{ V}; \\ I_{\text{E}} = i_{\text{e}} = 0 \text{ A}; \\ f = 1 \text{ MHz} \\ \hline & \text{emitter capacitance} \\ \hline & V_{\text{EB}} = -0.5 \text{ V}; \\ I_{\text{C}} = i_{\text{c}} = 0 \text{ A}; \\ f = 1 \text{ MHz} \\ \hline & \text{transition frequency} \\ \hline & V_{\text{CE}} = -5 \text{ V}; \\ I_{\text{C}} = -10 \text{ mA}; \\ f = 100 \text{ MHz} \\ \hline & \text{noise figure} \\ \hline & V_{\text{CE}} = -5 \text{ V}; \\ I_{\text{C}} = -0.2 \text{ mA}; \\ R_{\text{S}} = 2 \text{ k}\Omega; \\ f = 10 \text{ Hz to} \\ 15.7 \text{ kHz} \\ \hline & V_{\text{CE}} = -5 \text{ V}; \\ I_{\text{C}} = -0.2 \text{ mA}; \\ R_{\text{S}} = 2 \text{ k}\Omega; \\ f = 1 \text{ kHz}; \\ B = 200 \text{ Hz} \\ \hline \\ \hline & \text{h}_{\text{FE}} \text{ matching} \\ \hline & V_{\text{CE}} = -5 \text{ V}; \\ I_{\text{C}} = -2 \text{ mA} \\ \hline \end{array} \qquad \begin{array}{c} \boxed{3} \text{ 0.9} \\ \boxed{3} \text{ 0.9} \\ \hline \end{array}$	$\begin{array}{c} \text{base-emitter voltage} \\ & \begin{array}{c} V_{\text{CE}} = -5 \ V; \\ & \begin{array}{c} I_{\text{C}} = -2 \ \text{mA} \\ \end{array} \\ \hline V_{\text{CE}} = -5 \ V; \\ & \begin{array}{c} I_{\text{C}} = -10 \ \text{mA} \\ \end{array} \\ \hline \text{collector capacitance} \\ \hline \\ \text{Collector capacitance} \\ \hline \\ \text{Collector capacitance} \\ \hline \\ \text{V}_{\text{CB}} = -10 \ V; \\ & \begin{array}{c} I_{\text{E}} = i_{\text{e}} = 0 \ \text{A}; \\ f = 1 \ \text{MHz} \\ \end{array} \\ \hline \\ \text{emitter capacitance} \\ \hline \\ \text{V}_{\text{CB}} = -0.5 \ V; \\ & \begin{array}{c} I_{\text{C}} = i_{\text{C}} = 0 \ \text{A}; \\ f = 1 \ \text{MHz} \\ \end{array} \\ \hline \\ \text{transition frequency} \\ \hline \\ \text{V}_{\text{CE}} = -5 \ V; \\ & \begin{array}{c} I_{\text{C}} = -10 \ \text{mA}; \\ f = 100 \ \text{MHz} \\ \hline \\ \text{Noise figure} \\ \hline \\ \text{Noise figure} \\ \hline \\ \hline \\ \text{V}_{\text{CE}} = -5 \ V; \\ & \begin{array}{c} I_{\text{C}} = -0.2 \ \text{mA}; \\ I_{\text{C}} = -0.2 \ \text{mA}; \\ I_{\text{C}} = -0.2 \ \text{mA}; \\ \hline \\ \text{R}_{\text{S}} = 2 \ \text{k} \Omega; \\ f = 1 \ \text{kHz}; \\ B = 200 \ \text{Hz} \\ \hline \\ \hline \\ \hline \\ \text{h}_{\text{FE}} \ \text{matching} \\ \hline \\ \hline \\ \text{V}_{\text{CE}} = -5 \ \text{V}; \\ & \begin{array}{c} I_{\text{C}} = -5 \ \text{V}; \\ & \begin{array}{c} I_{\text{C}} = -5 \ \text{V}; \\ & \begin{array}{c} I_{\text{C}} = -2 \ \text{mA} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \text{N}_{\text{CE}} = -2 \ \text{mA} \\ \hline \end{array} \\ \hline \\ \hline \\ \text{N}_{\text{CE}} = -2 \ \text{mA} \\ \hline \\ \hline \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

^[1] V_{BEsat} decreases by about 1.7 mV/K with increasing temperature.

^[2] V_{BE} decreases by about 2 mV/K with increasing temperature.

^[3] The smaller of the two values is taken as the numerator.

^[4] The smaller of the two values is subtracted from the larger value.

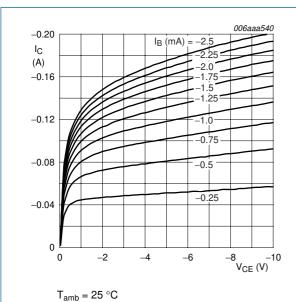
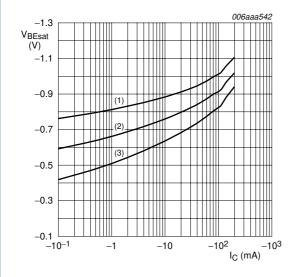
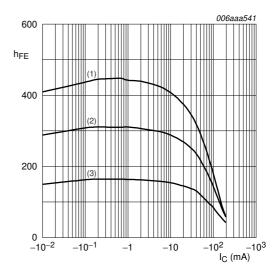



Fig 1. Collector current as a function of collector-emitter voltage; typical values

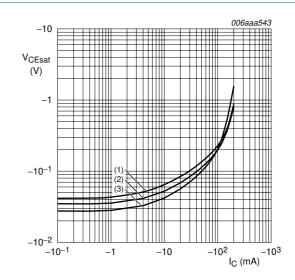

 $I_{\rm C}/I_{\rm B} = 20$

(1) $T_{amb} = -55 \, ^{\circ}C$

(2) $T_{amb} = 25 \, ^{\circ}C$

(3) $T_{amb} = 100 \, ^{\circ}C$

Fig 3. Base-emitter saturation voltage as a function of collector current; typical values

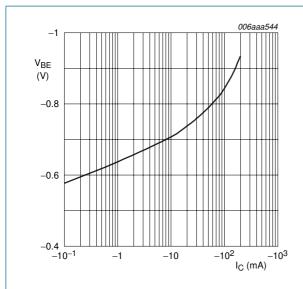

 $V_{CE} = -5 \text{ V}$

(1) $T_{amb} = 100 \, ^{\circ}C$

(2) $T_{amb} = 25 \, ^{\circ}C$

(3) $T_{amb} = -55 \, ^{\circ}C$

Fig 2. DC current gain as a function of collector current; typical values


 $I_{\rm C}/I_{\rm B} = 20$

(1) $T_{amb} = 100 \, ^{\circ}C$

(2) $T_{amb} = 25 \, ^{\circ}C$

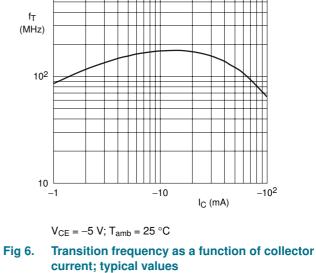

(3) $T_{amb} = -55 \, ^{\circ}C$

Fig 4. Collector-emitter saturation voltage as a function of collector current; typical values

 $V_{CE} = -5 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}$

Base-emitter voltage as a function of collector Fig 5. current; typical values

10³

current; typical values

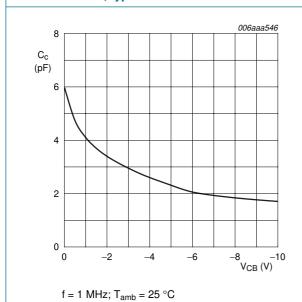
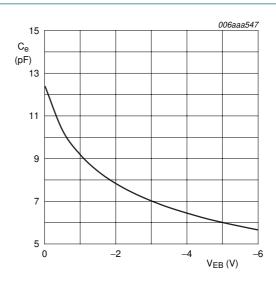
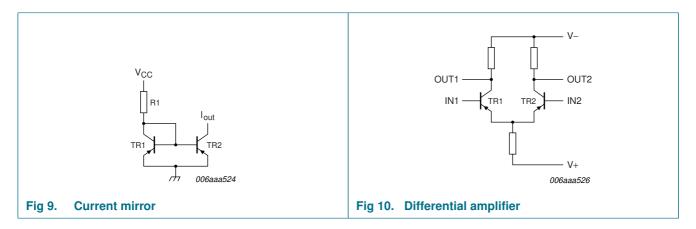



Fig 7. Collector capacitance as a function of

collector-base voltage; typical values

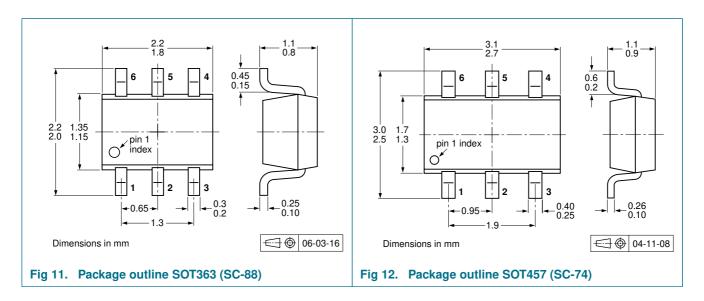


f = 1 MHz; $T_{amb} = 25 \, ^{\circ}\text{C}$

Fig 8. Emitter capacitance as a function of emitter-base voltage; typical values

BCM856BS BCM856DS 1 © NXP B.V. 2008. All rights reserved.

8. Application information



9. Test information

9.1 Quality information

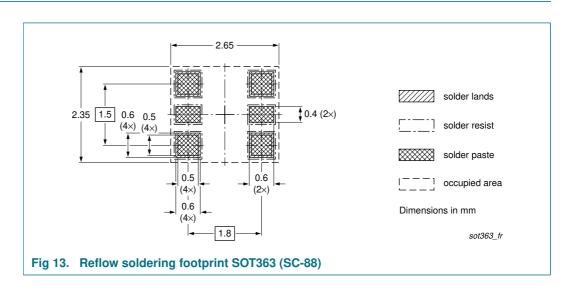
This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard *Q101 - Stress test qualification for discrete semiconductors*, and is suitable for use in automotive applications.

10. Package outline

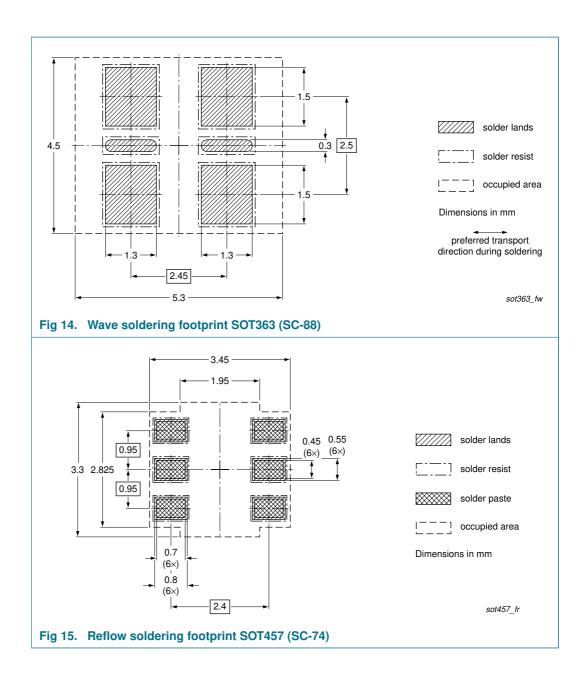
BCM856BS_BCM856DS_1 © NXP B.V. 2008. All rights reserved.

9 of 14

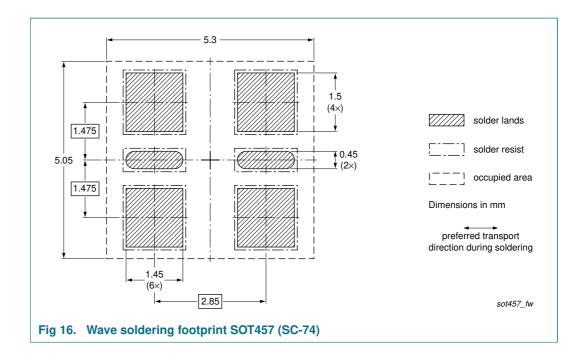
11. Packing information


Table 9. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]


Type number	Package	Description		Packing q	uantity
				3000	10000
BCM856BS	SOT363	4 mm pitch, 8 mm tape and reel; T1	[2]	-115	-135
		4 mm pitch, 8 mm tape and reel; T2	[3]	-125	-165
BCM856BS/DG	SOT363	4 mm pitch, 8 mm tape and reel; T1	[2]	-115	-135
		4 mm pitch, 8 mm tape and reel; T2	[3]	-125	-165
BCM856DS	SOT457	4 mm pitch, 8 mm tape and reel; T1	[2]	-115	-135
		4 mm pitch, 8 mm tape and reel; T2	[3]	-125	-165
BCM856DS/DG	SOT457	4 mm pitch, 8 mm tape and reel; T1	[2]	-115	-135
		4 mm pitch, 8 mm tape and reel; T2	[3]	-125	-165

- [1] For further information and the availability of packing methods, see Section 15.
- [2] T1: normal taping
- [3] T2: reverse taping


12. Soldering

PNP/PNP matched double transistors

PNP/PNP matched double transistors

PNP/PNP matched double transistors

13. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BCM856BS_BCM856DS_1	20080807	Product data sheet	-	-

PNP/PNP matched double transistors

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

BCM856BS_BCM856DS_1 © NXP B.V. 2008. All rights reserved.

PNP/PNP matched double transistors

16. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking
5	Limiting values
6	Thermal characteristics 4
7	Characteristics 4
8	Application information 8
9	Test information 8
9.1	Quality information 8
10	Package outline 8
11	Packing information 9
12	Soldering 9
13	Revision history 12
14	Legal information
14.1	Data sheet status
14.2	Definitions
14.3	Disclaimers
14.4	Trademarks13
15	Contact information
16	Contents 14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

