

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

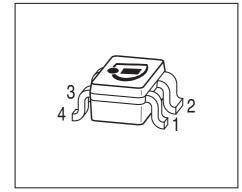
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

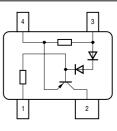
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Active Bias Controller


Characteristics

- Supplies stable bias current even at low battery voltage and extreme ambient temperature variation
- Low voltage drop of 0.7V

Application notes

- Stabilizing bias current of NPN transistors and FET's from less than 0.2mA up to more than 200mA
- Ideal supplement for Sieget and other transistors
- also usable as current source up to 5mA

- Pb-free (RoHS compliant) package¹⁾
- Qualified according AEC Q101

Туре	Marking	Pin Configuration				Package
BCR400W	W4s	1=GND/ E _{NPN}	2=Contr/ B _{NPN}	3V _S	4=Rext/ C _{NPN}	SOT343

(E_{NPN}, B_{NPN}, C_{NPN} are electrodes of a stabilized NPN transistor)

Maximum Ratings

Parameter	Symbol	Value	Unit	
Source voltage	V _S	18	V	
Control current	I _{Contr.}	10	mA	
Control voltage	V _{Contr.}	16	V	
Reverse voltage between all terminals	V _R	0.5		
Total power dissipation, T_S = 117 °C	P _{tot}	330	mW	
Junction temperature	T _j	150	°C	
Storage temperature	T _{stg}	-65 150		

Thermal Resistance

Junction - soldering point ²⁾	R _{thJS}	≤ 100	K/W
ourrous coraciming point	า "แมง		

1

2007-05-29

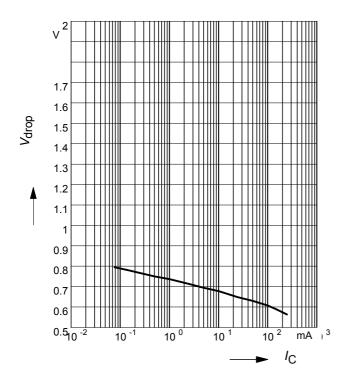
¹Pb-containing package may be available upon special request

²For calculation of R_{thJA} please refer to Application Note Thermal Resistance

Electrical Characteristics at T_A =25°C, unless otherwise specified

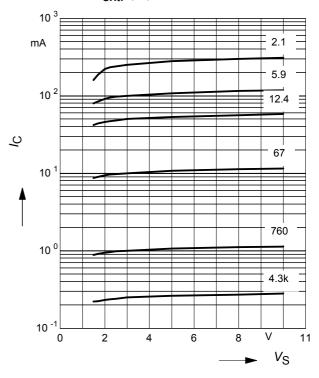
Parameter	Symbol		Values		
		min.	typ.	max.	
DC Characteristics	•		•		
Additional current consumption	10	-	20	40	μA
<i>V</i> _S = 3 V					
Lowest stabilizing current	I _{min}	-	0.1	-	mA
V _S = 3 V					
DC Characteristics with stabilized NPN-Tran	nsistors				
Lowest sufficient battery voltage	V _{Smin}	-	1.6	-	V
$I_{\rm B}$ (NPN) < 0.5mA					
Voltage drop (V _S - V _{CE})	$V_{\rm drop}$	-	0.65	-	
$I_{\rm C}$ = 25 mA					
Change of I _C versus h _{FE}	$\Delta I_{\rm C}/I_{\rm C}$	-	0.08	-	Δh _{FE} /
h _{FE} = 50					h _{FE}
Change of $I_{\mathbb{C}}$ versus $V_{\mathbb{S}}$	$\Delta I_{\rm C}/I_{\rm C}$	-	0.15	-	$\Delta V_{\rm S}/V_{\rm S}$
$V_{S} = 3 \text{ V}$					
Change of $I_{\mathbb{C}}$ versus $T_{\mathbb{A}}$	$\Delta I_{\text{C}}/I_{\text{C}}$	-	0.2	-	%/K

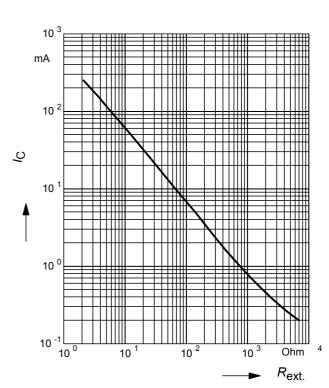
2 2007-05-29



Collector current $I_{C} = f(h_{FE})$

 $I_{\mathbb{C}}$ and h_{FE} refer to stabilized NPN Transistor Parameter $R_{\mathsf{ext.}}$ (Ω)

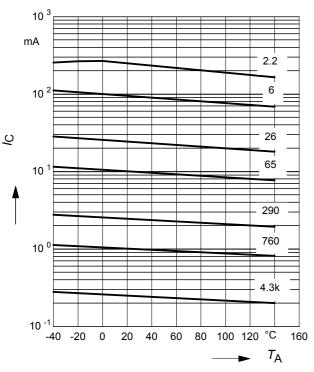

Voltage drop $V_{drop} = f(I_C)$


Collector Current $I_C = f(V_S)$

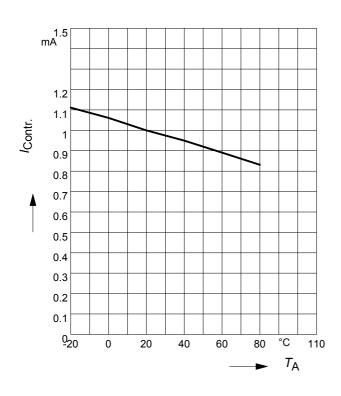
of stabilized NPN Transistor

Parameter $R_{\text{ext.}}(\Omega)$

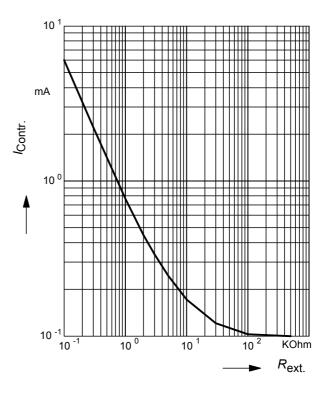
Collector current $I_C = f(R_{ext.})$ of stabilized NPN Transistor



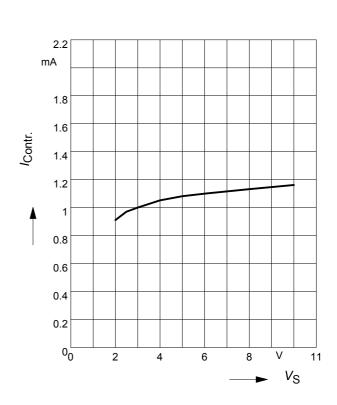
Collector current $T_A = f(I_C)$


of stabilized NPN Transistor

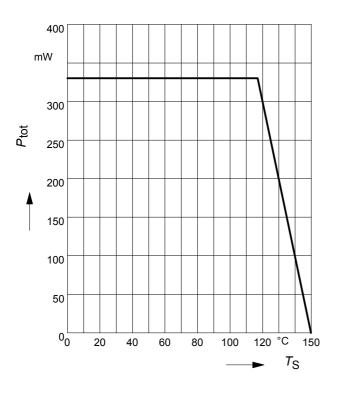
Parameter: $R_{\text{ext.}}(\Omega)$


Control current $I = f(T_A)$

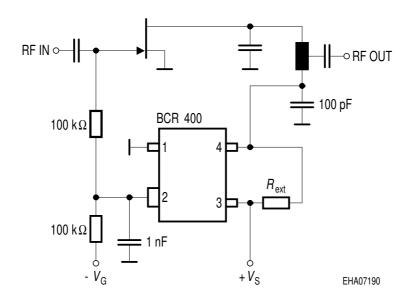
in current source application


Control current $I = f(R_{ext.})$

in current source application


Control current $I = f(V_S)$

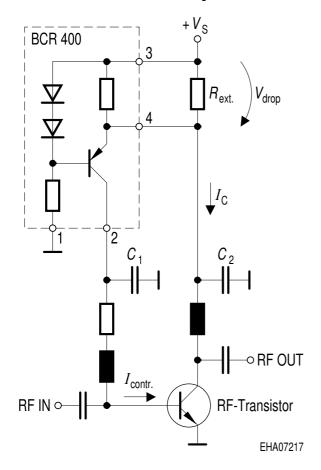
in current source application



Total power dissipation $P_{\text{tot}} = f(T_{\text{S}})$

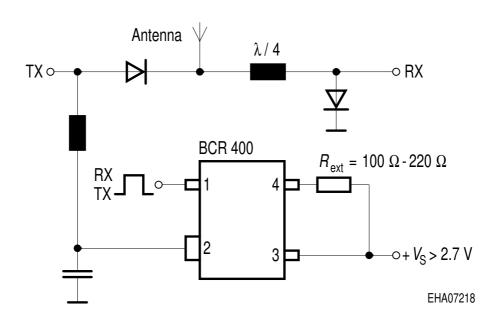
Note that up to $T_{\rm S}$ =115°C it is not possible to exceed $P_{\rm tot}$ respecting the maximum ratings of $V_{\rm S}$ and $I_{\rm Contr.}$ The collector or drain current (respectively) of the stabilized RF transistor does not affect BCR 400 directly, as it provides just the base current.

Typical application for GaAs FET with active bias controller



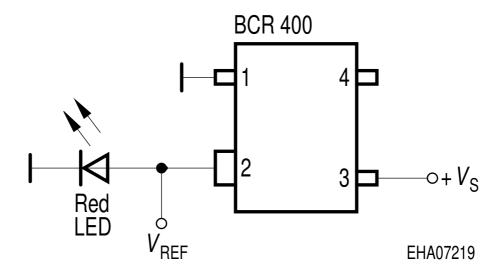
5

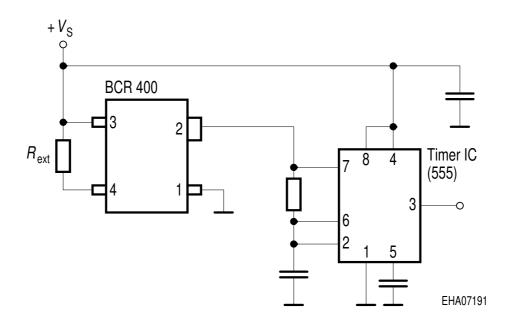
2007-05-29


RF transistor controlled by BCR400

Be aware that BCR400 stabilized bias current of transistors in an active control loop

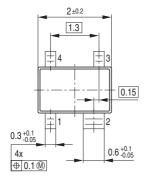
In order to avoid loop ascillation (hunting), time constants must be chosen adequately, i.e. C1 >= 10 x C2

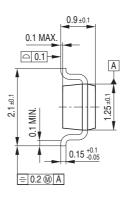

RX/TX antenna switch, compatible to control logic and working at wide battery voltage range

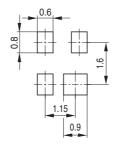

6 2007-05-29

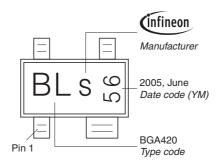
Low voltage reference

Precision timer with BCR400 providing constant charge current

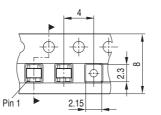



7 2007-05-29


Package Outline



Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

9

2007-05-29