

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LED Driver

Features

- LED drive current of 10mA
- Output current adjustable up to 60mA with external resistor
- Supply voltage up to 18V
- Easy paralleling of drivers to increase current
- Low voltage overhead of 1.2V
- High current accuracy at supply voltage variation
- No EMI
- Reduced output current at higher temperatures negative thermal coefficient of -0.3% / K
- RoHS compliant (pb-free) SOT143R package
- Qualified according AEC Q101

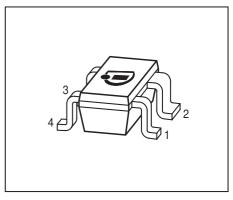
Applications

- Channel letters for advertising, LED strips for decorative lighting
- Aircraft, train, ship illumination
- Retrofits for general lighting, white goods like refrigerator lighting
- Medical lighting

General Description

The BCR401R is a cost efficient LED driver to drive low power LED's. The advantages towards resistor biasing are:

- homogenous light output despite varying forward voltages in different LED strings
- homogenous light output of LED's despite voltage drop across long supply lines
- homogenous light output independent from supply voltage variations
- longer lifetime of the LED's due to reduced output current at higher temperatures (negative thermal coefficient)

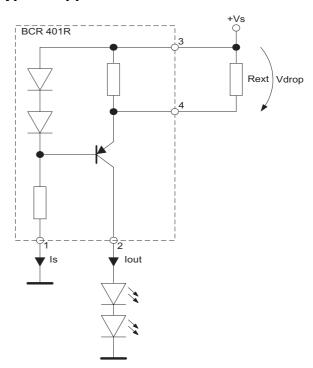

The advantages towards discrete solutions are:

- lower assembly cost
- smaller form factor
- better quality due to less soldering points
- higher output current accuracy due to pretested LED drivers

Dimming is possible by using an external digital transistor at the ground pin.

The BCR401R can be operated at higher supply voltages by putting LED's between the power supply +VS and the power supply pin of the LED driver. You can find further details in the application note AN066.

The BCR401R is a perfect fit for numerous low power LED applications by combining small form factor with low cost. These LED drivers offer several advantages to resistors like significantly higher current control at very low voltage drop ensuring high lifetime of LED's.



Pin Configuration

Typical Application

Туре	Marking	Pin Configuration Package				Package
BCR401R	W5s	1 = GND	2 = <i>I</i> _{out}	$3 = V_{S}$	$4 = R_{\text{ext}}$	SOT143R

Maximum Ratings

Parameter	Symbol	Value	Unit	
Supply voltage	V _S	18	V	
Output current	l _{out}	60	mA	
Output voltage	V _{out}	16	V	
Reverse voltage between all terminals	V_{R}	0.5		
Total power dissipation, $T_S = 75 ^{\circ}\text{C}$	P _{tot}	330	mW	
Junction temperature	T _j	150	°C	
Storage temperature	T _{stg}	-65 150		

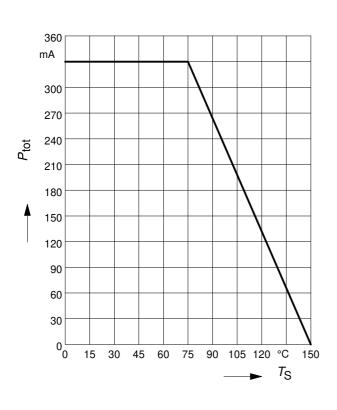
Thermal Resistance

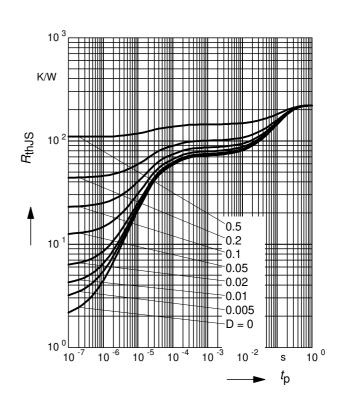
Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	225	K/W

2

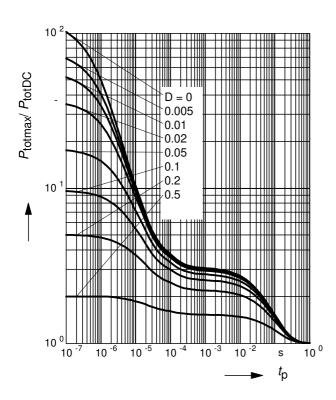
 $^{^{1}\}mathrm{For}$ calculation of R_{thJA} please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A=25$ °C, unless otherwise specified


Parameter	Symbol	Values			Unit
		min.	typ.	max.	1
Characteristics					
Collector-emitter breakdown voltage	$V_{\rm BR(CEO)}$	18	-	-	-
$I_{\rm C} = 100 \ \mu {\rm A}, \ I_{\rm B} = 0$					
Supply current	l _S	350	440	540	μΑ
$V_{S} = 10 \text{ V}$					
DC current gain	h_{FE}	-	150	-	-
$I_{\rm C} = 50 \text{ mA}, \ V_{\rm CE} = 1 \text{ V}$					
Internal resistor	R _{int}	66	79	94	Ω
$I_{Rint} = 10 \text{ mA}$					
Output current	<i>I</i> out	9	10	11	mA
$V_{S} = 10 \text{ V}, \ V_{out} = 7.6 \text{ V}$					
Voltage drop ($V_S - V_E$)	$V_{\rm drop}$	-	0.79	-	V
$I_{out} = 20 \text{ mA}$					
DC Characteristics with stabilized LED load	d				
Lowest sufficient supply voltage overhead	V _{Smin}	-	1.2	-	V
$I_{\text{out}} > 8\text{mA}$					
Output current change versus T_{A}	$\Delta \emph{I}$ out/ \emph{I} out	-	-0.3	-	%/K
$V_{S} = 10 \text{ V}$					
Output current change versus V _S	$\Delta \emph{I}$ out/ \emph{I} out		2	-	%/V
$V_{\rm S} = 10 \text{ V}$					

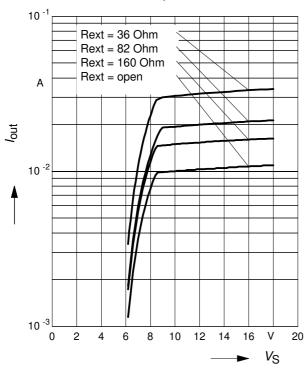

3 2009-11-13

Total power dissipation $P_{tot} = f(T_S)$


Permissible Pulse Load $R_{thJS} = f(t_p)$

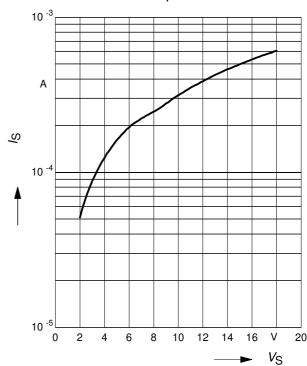
Permissible Pulse Load

$$P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$$

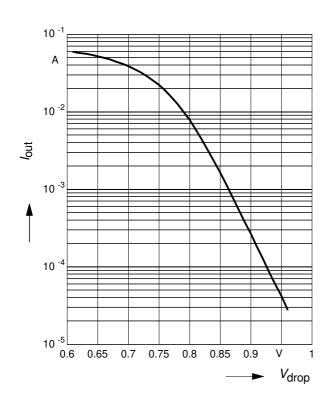

4

Output current versus supply voltage

 $I_{out} = f(V_S); R_{ext} = Parameter$


Load: two LEDs with $V_F = 3.8V$ in series

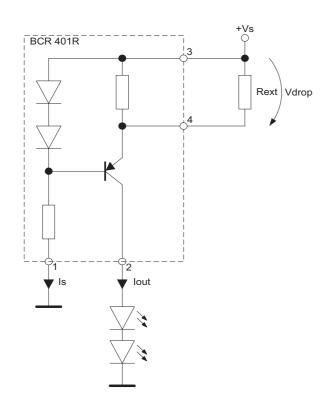
Supply current versus supply voltage

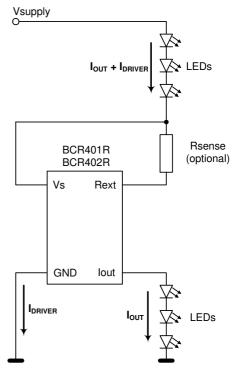

$$I_{S} = f(V_{S})$$

Load: two LEDs with $V_F = 3.8V$ in series

Output current versus reference voltage

$$I_{\text{out}} = f(V_{\text{DROP}}); V_{\text{S}} = 10V; V_{\text{out}} = 7.6V$$


5



Standard Application Circuit:

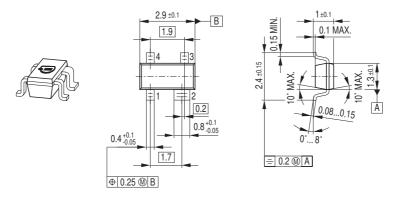
Application Circuit:

Application hints

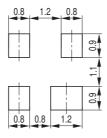
BCR401R serves as an easy to use constant current source for LEDs. In stand alone application an external resistor can be connected to adjust the current from 10 mA to 60 mA. Rext can be determined by using the diagram 'Output current versus external resistor', or by refering to diagram 'Output current versus reference voltage'. Look for your desired output current on the y axis and read out the corresponding Vdrop. Calculate Rext: Rext = Vdrop / (lout -(Vdrop/Rint))

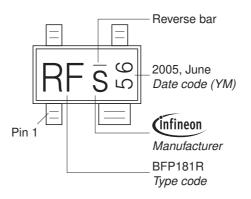
Please take into account that the resulting output currents will be slightly lower due to the self heating of the component and the negative thermal coefficient.

Please visit our web site for application notes: www.infineon.com/lowcostleddriver

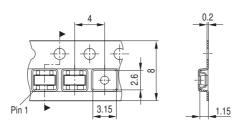

- AN066 explains the basic concept
- AN077 gives hints to thermal design
- AN159 provides information how to add a power transistor to increase the output current

6


2009-11-13


Package Outline

Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2007. All Rights Reserved.

Attention please!

The information given in this data sheet shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.

Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

8

2009-11-13