

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LED Driver

BCR402W

Datasheet

Revision 2.0, 2012-04-12

Power Management & Multimarket

Edition 2012-04-12

Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Revision History							
Page or Item	Page or Item Subjects (major changes since previous revision)						
Revision 2.0, 2012-04-12							
All	Datasheet layout updated						
Table 2-1	$V_{ m out}$ limit increased						
Table 2-3	R _{int} limits tightened						

Trademarks of Infineon Technologies AG

AURIXTM, C166TM, Canpaktm, CIPOSTM, CIPURSETM, EconoPacktm, CoolMostm, CoolSettm, Corecontroltm, Crossavetm, Davetm, DI-Poltm, EasyPIMTM, EconoBridgetm, EconoDualtm, EconoPimtm, EconoPacktm, Eicedrivertm, eupectm, Fcostm, Hitfettm, HybridPacktm, I²rftm, Isofacetm, Isopacktm, MIPaqtm, ModStacktm, my-dtm, NovalithIctm, OptiMostm, Origatm, Powercodetm; Primariontm, Primariontm, Primariontm, Primariontm, Propertm, Rasictm, Reversavetm, Satrictm, Siegettm, Sindriontm, Sipmostm, Smartlewistm, Solid Flashtm, Tempfettm, thinQ!tm, Trenchstoptm, Tricoretm.

Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-11-11

Table of Contents

Table of Contents

	Table of Contents	. 4
	List of Figures	. 5
	List of Tables	. 6
1	LED Driver	. 7
1.1	Features	. 7
1.2	Applications	
1.3	General Description	. 7
2	Electrical Characteristics	. 9
3	Typical characteristics	10
4	Application hints	14
5	Package	15
	Terminology	16

List of Figures

List of Figures

Figure 1-1	Pin configuration and typical application	. 8
Figure 3-1	Total Power Dissipation $P_{tot} = f(T_S)$	10
Figure 3-2	Permissible Pulse Load $R_{thJS} = f(t_p)$	10
Figure 3-3	Permissible Pulse Load $P_{totmax} / P_{totDC} = f(t_p)$	11
Figure 3-4	Output Current versus $V_S I_{out} = f(V_S)$, 2 LEDs load with $V_F = 3.8V$ in series, $R_{ext} = Parameter$	12
Figure 3-5	Supply Current versus $V_S I_S = f(V_S)$, 2 LEDs load with $V_F = 3.8V$ in series	12
Figure 3-6	Output Current versus R _{ext} I _{out} = f(R _{ext}), V _S = 10 V, V _{out} = 7.6 V	13
Figure 3-7	Output Current versus $V_{drop}I_{out} = f(V_{drop}), V_S = 10 V, V_{out} = 7.6 V$	13
Figure 4-1	Application Circuit: Stand alone current source	14
Figure 4-2	Application Circuit: Supply voltages > 18 V	14
Figure 5-1	Package Outline for SOT343 (dimensions in mm)	15
Figure 5-2	Package Footprint for SOT343 (dimensions in mm)	15
Figure 5-3	Tape and Reel Information for SOT343 (dimensions in mm)	15

BCR402W

List of Tables

List of Tables

Table 2-1	Maximum Ratings at T_A = 25 °C, unless otherwise specified	9
Table 2-2	Thermal Resistance at T_A = 25 °C, unless otherwise specified	9
Table 2-3	Electrical Characteristics at T_A = 25 °C, unless otherwise specified	9
Table 2-4	DC Characteristics with stabilized LED load at T_{Δ} = 25 °C, unless otherwise specified	9

LED Driver

1 LED Driver

1.1 Features

- LED drive current preset to 20 mA
- Output current adjustable up to 60 mA with an external resistor
- Easy paralleling of drivers to increase current
- Supply voltage up to 18 V
- High current accuracy at supply voltage variation
- Low voltage overhead of 1.2 V
- Up to 500 mW power dissipation in a small SOT343 package
- Negative thermal coefficient of -0.3 %/K reduces output current at higher temperatures
- · RoHS compliant (Pb-free) package
- Automotive qualified according AEC Q101

1.2 Applications

- · Channel letters for advertising, LED strips for decorative lighting
- Aircraft, train, ship illumination
- · Retrofits for general lighting, white goods like refrigerator lighting
- Medical lighting
- · Automotive applications like CHMSL and rear combination lights

1.3 General Description

The BCR402W is a cost efficient LED driver to drive low power LEDs. The advantages towards resistor biasing are:

- · homogenous light output despite of varying forward voltages in different LED strings
- homogenous light output of LEDs despite of voltage drop across long supply lines
- homogenous light output independent from supply voltage variations
- longer lifetime of the LEDs due to reduced output current at higher temperatures (negative thermal coefficient)

The advantages towards discrete solutions are:

- lower assembly cost
- · smaller form factor
- · higher reliability due to less soldering joints
- higher output current accuracy due to pretested LED drivers

Dimming is possible by using an external digital transistor at the ground pin.

The BCR402W can be operated at higher supply voltages adding LEDs between the supply voltage V_S and the power supply pin of the LED driver. You can find further details in our application notes.

SOT343-3D

LED Driver

The BCR402W is a perfect fit for numerous low power LED applications by combining small form factor with low cost. These LED drivers offer several advantages to resistors like significantly higher current control at very low voltage drop ensuring high lifetime of the LEDs.

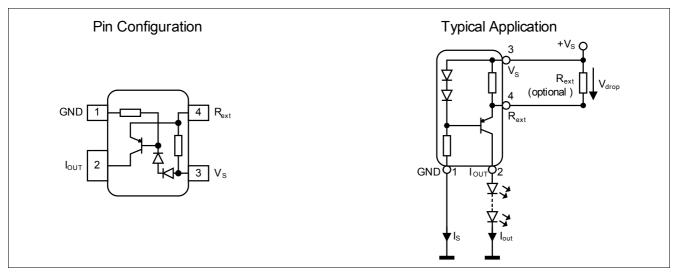


Figure 1-1 Pin configuration and typical application

Туре	Marking		Package			
BCR402W	W6s	1 = GND	2 = I _{OUT}	3 = V _S	4 = R _{ext}	SOT343

Electrical Characteristics

2 Electrical Characteristics

Table 2-1 Maximum Ratings at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V_{S}	-	-	18	V	
Output current	I_{out}	-	-	60	mA	
Output voltage	V_{out}	-	-	18	V	
Reverse voltage between all terminals	V_{R}	-	-	0.5	V	
Total power dissipation	P_{tot}	-	-	500	mW	<i>T</i> _S ≤ 95 °C
Junction temperature	T_{J}	-	-	150	°C	
Storage temperature range	T_{STG}	-65	-	150	°C	

Attention: Stresses above the max. values listed here may cause permanent damage to the device.

Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit.

Table 2-2 Thermal Resistance at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
Junction - soldering point ¹⁾	R_{thJS}	-	-	110	K/W	

¹⁾ For calculation of $R_{\rm thJA}$ please refer to Application Note AN077 (Thermal Resistance Calculation)

Table 2-3 Electrical Characteristics at $T_{\rm A}$ = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Collector-emitter breakdown voltage	$V_{BR(CEO)}$	18	-	-	V	$I_{\rm C}$ = 100 μ A, $I_{\rm B}$ = 0
Supply current	I_{S}	350	440	540	μA	V _S = 10 V
DC current gain	h_{FE}	-	150	-	-	$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 1 V
Internal resistor	R_{int}	33	38	45	Ω	I_{Rint} = 10 mA
Output current	I_{out}	18	20	22	mA	$V_{\rm S}$ = 10 V $V_{\rm out}$ = 7.6 V
						$V_{\rm out}$ = 7.6 V
Voltage drop (V_{Rext})	V_{drop}	-	0.76	-	V	I_{out} = 20 mA

Table 2-4 DC Characteristics with stabilized LED load at $T_{\rm A}$ = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Lowest sufficient supply voltage overhead	V_{Smin}	-	1.2	-	V	I _{out} > 8 mA
Output current change $versusT_A$	$\Delta I_{\rm out}/I_{\rm out}$	-	-0.3	-	%/K	V _S = 10 V
Output current change versus $V_{\rm S}$	$\Delta I_{\rm out}/I_{\rm out}$	-	2	-	%/V	V _S = 10 V

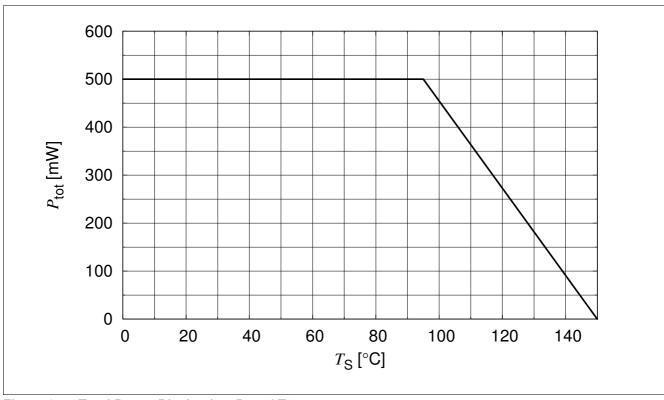


Figure 3-1 Total Power Dissipation $P_{\text{tot}} = f(T_{\text{S}})$

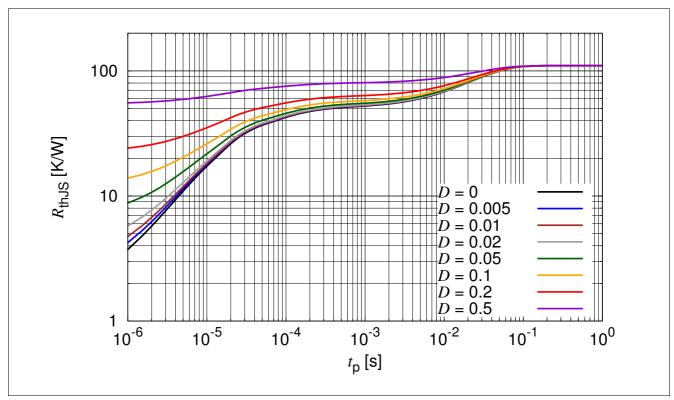


Figure 3-2 Permissible Pulse Load $R_{thJS} = f(t_p)$

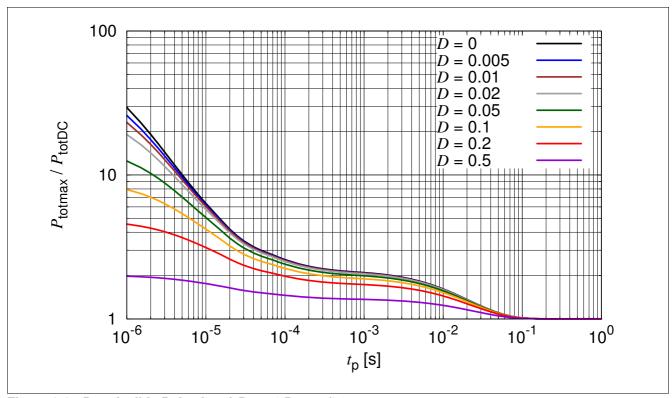


Figure 3-3 Permissible Pulse Load $P_{\text{totmax}} / P_{\text{totDC}} = f(t_p)$

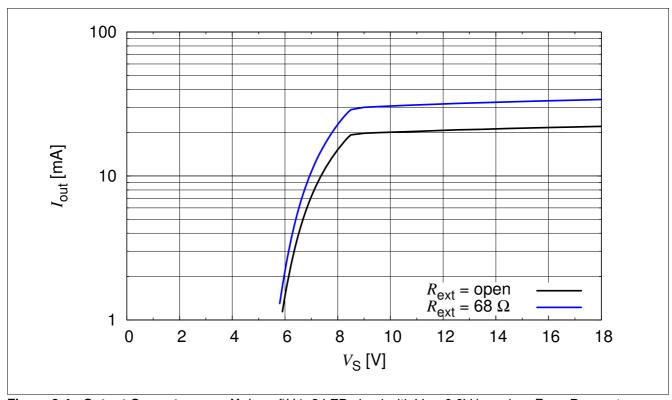


Figure 3-4 Output Current versus $V_S I_{out} = f(V_S)$, 2 LEDs load with $V_F = 3.8V$ in series, $R_{ext} = Parameter$

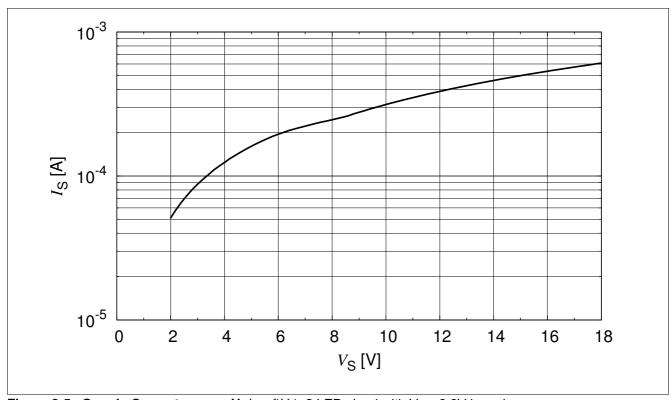


Figure 3-5 Supply Current versus $V_S I_S = f(V_S)$, 2 LEDs load with $V_F = 3.8V$ in series

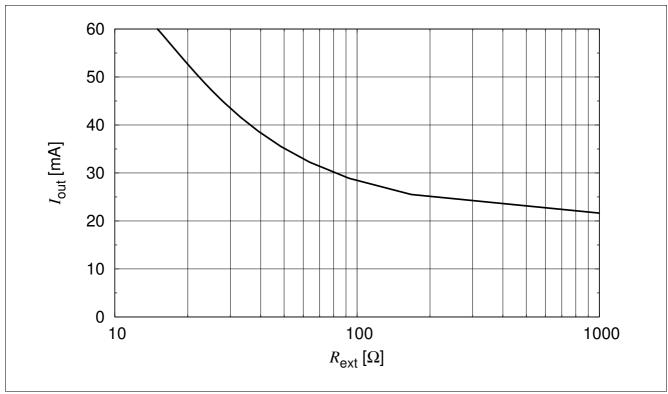


Figure 3-6 Output Current versus $R_{\text{ext}} I_{\text{out}} = f(R_{\text{ext}})$, $V_{\text{S}} = 10 \text{ V}$, $V_{\text{out}} = 7.6 \text{ V}$

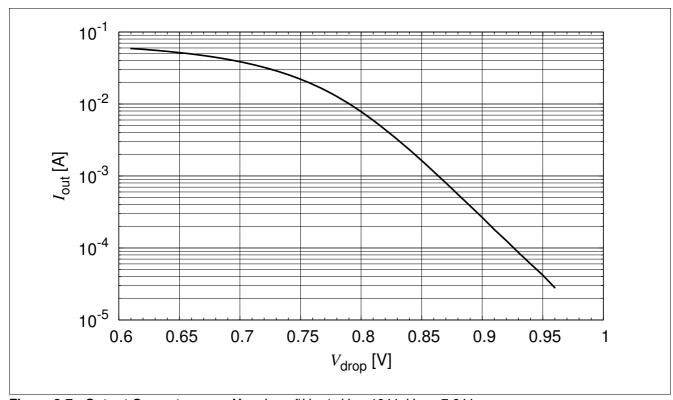


Figure 3-7 Output Current versus $V_{drop} I_{out} = f(V_{drop})$, $V_{S} = 10 \text{ V}$, $V_{out} = 7.6 \text{ V}$

Application hints

4 Application hints

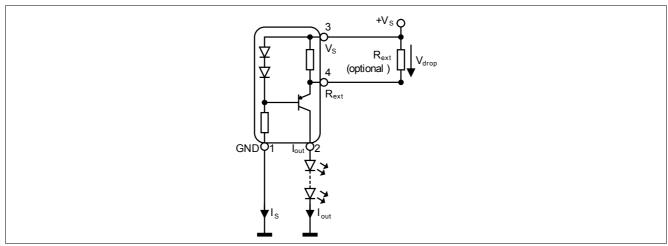


Figure 4-1 Application Circuit: Stand alone current source

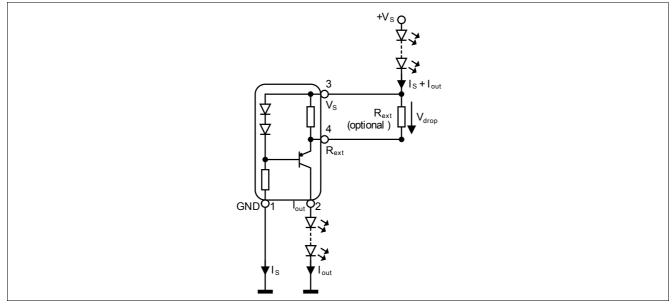


Figure 4-2 Application Circuit: Supply voltages > 18 V

Application hints

BCR402W serves as an easy to use constant current source for LEDs. In stand alone application an external resistor $R_{\rm ext}$ can be connected to adjust the current between 20 mA and 60 mA. $R_{\rm ext}$ can be determined by using **Figure 3-6**. Connecting a low tolerance resistor $R_{\rm ext}$ will improve the overall accuracy of the current sense resistance formed by the parallel connection of $R_{\rm int}$ and $R_{\rm ext}$ leading to an improved current accuracy. Please take into account that the resulting output currents will be slightly lower due to the self heating of the component and the negative thermal coefficient.

Please visit our web site www.infineon.com/lowcostleddriver for detailed application notes.

Package

5 Package

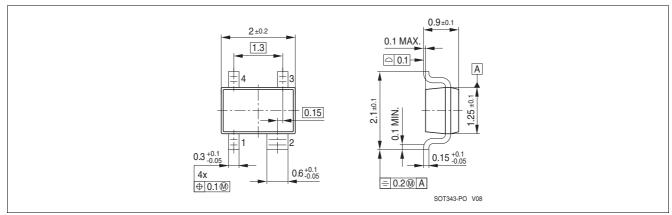


Figure 5-1 Package Outline for SOT343 (dimensions in mm)

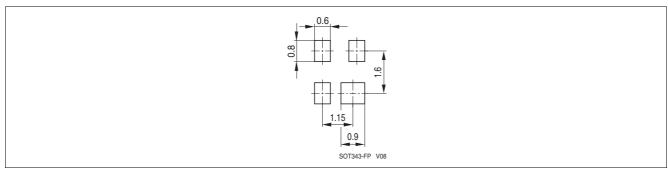


Figure 5-2 Package Footprint for SOT343 (dimensions in mm)

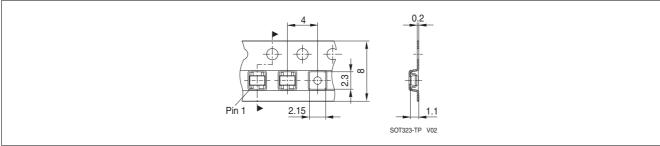


Figure 5-3 Tape and Reel Information for SOT343 (dimensions in mm)

Terminology

Terminology

 $\Delta I_{\text{out}}/I_{\text{out}}$ Output current change

 h_{FE} DC current gain I_{EN} Enable current I_{LED} LED current I_{out} Output current Reverse current I_{R} LED Light Emitting Diode PCB **Printed Circuit Board** P_{tot} Total power dissipation **PWM** Pulse Width Modulation

 $R_{\rm B}$ Bias resistor $R_{\rm ext}$ External resistor $R_{\rm int}$ Internal resistor

RoHs Restriction of Hazardous Substance directive R_{thJS} Thermal resistance junction to soldering point

 T_{A} Ambient temperature T_{J} Junction temperature

 $T_{\rm S}$ Soldering point temperature

 T_{stg} Storage temperature

 $V_{\mathrm{BR(CEO)}}$ Collector-emitter breakdown voltage

 V_{BR} Breakdown voltage

 $egin{array}{ll} V_{
m drop} &
m Voltage \ drop \ V_{
m out} &
m Output \ voltage \ V_{
m R} &
m Reverse \ voltage \ V_{
m S} &
m Supply \ voltage \ \end{array}$

 $V_{
m Smin}$ Lowest sufficient supply voltage overhead

w w w .in fineon.com