

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Sound Processors for Car Audios

Pb Free

General-Purpose Electronic Volume with Built-in Advanced Switch

BD3460FS,BD3461FS,BD3464FV,BD3465FV

No.11085EBT09

Description

BD3460FS, BD3461FS, BD3464FV, BD3465FV is 4ch / 6ch electronic volume which has audio efficiency of the industry best level. It has <code>[Outside sound mixing function (with volume)]</code> (BD3461FS, BD3465FV) in favorite channel to mixing of the portable telephone and car navigation's guide sound. Also, which has <code>[Ground isolation amplifier]</code> (BD3460FS, BD3461FS) when connecting with the outside voice inputs such as portable audio and car navigation. It is lineup and possible to be chosen to the use by it. Also, Rohm has the volume switching shock sound prevention technique "Advanced switch". Therefore, it supports the construct of the high quality car audio space by the simple control.

Features

- 1) Reduce switching noise of volume by using advanced switch circuit. (Possible to control all steps)
- 2) Low distortion (0.0004% typ), Low noise (1.6µVrms)
- 3) Mixing for external sound monaural 3ch. It is possible that is mixed to front/Rear/Sub output (BD3461FS) Front/Rear output (BD3465FV) Lch/Rch independently.
- 4) Built-in 3ch ATT for external sound mixing that can be controlled independently. (BD3461FS, BD3465FV)
- 5) Built-in buffered stereo ground isolation amplifier inputs, ideal for external input. (BD3460FS, BD3461FS)
- 6) Bi-CMOS process is suitable for the design of low current and low energy. And it provides more quality for small scale regulator and heat in a set.
- 7) Package is SSOP-A24,SSOP-B20. Putting input-terminals together and output-terminals together can make PCB layout easier and can makes area of PCB smaller.
- 8) It is possible to control by 3.3V / 5V for I²C BUS.

Applications

It is the optimal for the car audio. Besides, it is possible to use for the car navigation, audio equipment of mini Compo, micro Compo, DVD, TV etc with all kinds.

●Line up matrix

Function	BD3460FS	BD3461FS	BD3464FV	BD3465FV
Volume	6ch	6ch	4ch	4ch
Input for external sound mixing	-	0	-	0
GND isolation amplifier	0	0	-	-
Package	SSOP-A24	SSOP-A24	SSOP-B20	SSOP-B20

● Absolute maximum ratings (Ta=25°C)

Parame	Parameter		Ratings	Unit	
Power supply Voltage		VCC	10.0V	V	
Input voltage		VIN	VCC+0.3 ~ GND-0.3	V	
Dawer Dissination	BD3460FS BD3461FS	D4	1000 **1	mW	
Power Dissipation	BD3464FV BD3465FV	Pd	810 ^{*2}	11100	
Storage Temperature		Tastg	-55 ~ +150	°C	

This value decreases 8mW/°C for Ta=25°C or more. Thermal resistance θja=125.0 (°C/W)

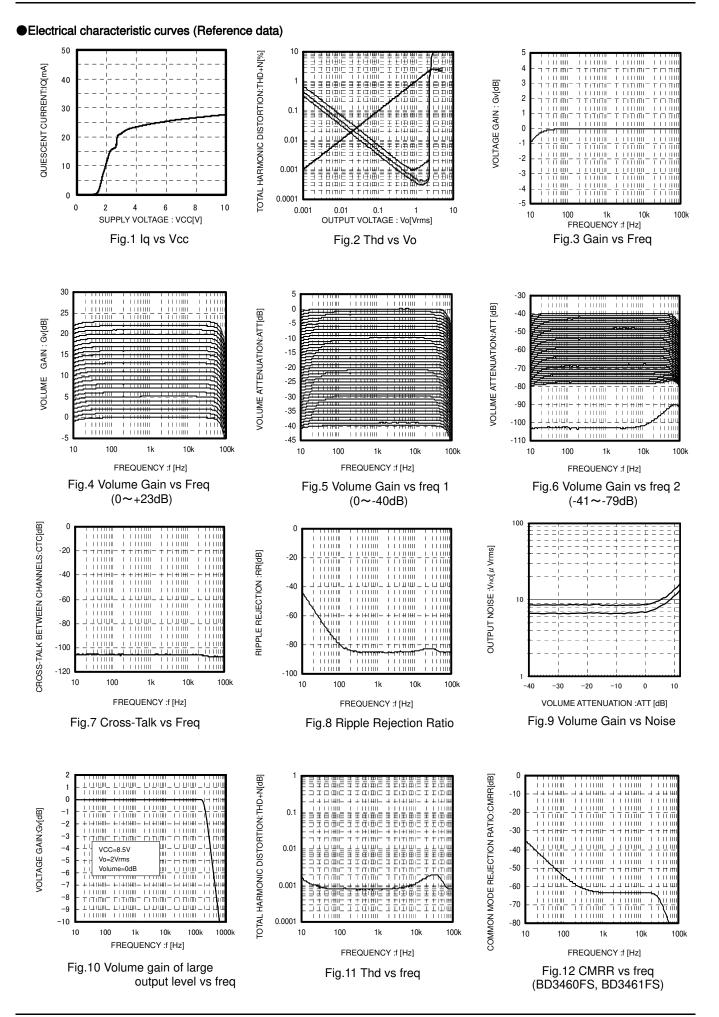
ROHM standard board shall be mounted.

ROHM Standard board Size : 70×70×1.6(mm³)

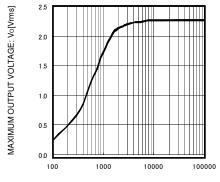
material : FR4 grass epoxy board(3% or less of copper foil area)

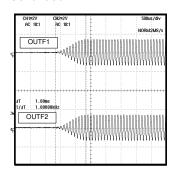
Operating conditions

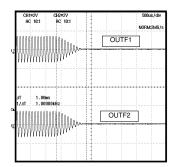
F-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								
Parameter	Cymbol		Ratings					
Farameter	Symbol	Min.	Тур	Max.	Unit			
Power supply Voltage	VCC	7.0	-	9.5	٧			
Temperature	Topr	-40	-	+85	°C			


 $[\]mbox{\%2}$ This value decreases 6.5mW/°C for Ta=25°C or more. Thermal resistance $\mbox{$\theta$}$ ja=153.8 (°C/W)

Electrical characteristics


Unless specified particularly, Ta=25°C, VCC=8.5V, f=1kHz, Vin=1Vrms, Rg=600 Ω , RL=10k Ω , INF1 input, Volume 0dB


pecined particularly, 1a=23 0, voc	, IIL-IUKS	z, iivi i iiipat, voidine oab				
Parameter	Symbol	Min.		Max.	Unit	Condition
Current upon no signal	IQ	_	25	40	mA	No signal
Voltage gain	GV	-1.5	0	1.5	dB	Gv=20log(VOUT/VIN)
Channel balance	СВ	-1.5	0	1.5	dB	CB=GV1-GV2
Total harmonic distortion	THD	_	0.0004	0.05	%	VOUT=1Vrms BW=400-30kHz
Output noise voltage *	VNO	_	1.9	10	μVrms	Rg=0Ω BW=IHF-A
Residual output noise voltage *	VNOR	_	1.6	10	μVrms	Volume=- ∞ dB Rg=0 Ω BW=IHF-A
Cross-talk between channels *	СТС	_	-105	-90	dB	Rg=0Ω CTC=20log(VOUT/VIN) BW=IHF-A f=100Hz
Ripple rejection	RR	_	-80	-40	THD	VRR=100mVrms RR=20log(VOUT/VCCIN)
Input impedance	R _{IN D}	70	100	130	kΩ	
Common mode rejection ratio *	CMRR	50	65	1	dB	PIN and NIN input CMRR=20log10(VIN/VOUT) BW=IHF-A
Input impedance	R _{IN V}	70	100	130	kΩ	
Maximum input voltage	V_{IM}	2	2.35	ı	Vrms	VIM at THD+N(VOUT)=1% BW=400-30kHz
Maximum gain	G _{V BST}	21	23	25	dB	Gain=23dB VIN=100mVrms G _V =20log(VOUT/VIN)
Maximum attenuation *	G _{V MIN}	_	-109	-90	dB	Volume=-∞dB Gv=20log(VOUT/VIN) BW=IHF-A
Step resolution	G _{V STEP}	_	1	_	dB	GAIN&ATT=+23~-79dB
Gain set error	G _{V ERR}	-2	0	2	dB	Gain=+1~+23dB
Attenuation set error 1	G _{V ERR1}	-2	0	2	dB	ATT=-1~-15dB
Attenuation set error 2	G _{V ERR2}	-3	0	3	dB	ATT=-16~-47dB
Attenuation set error 3	G _{V ERR3}	-4	0	4	dB	ATT=-48~-79dB
Output impedance	R _{OUT}	-	_	50	Ω	Vin=100mVrms
Maximum output voltage	VOM	2	2.35	_	Vrms	THD+N=1% BW=400-30kHz
Input impedance	R _{IN M}	70	100	130	kΩ	
Maximum attenuation *	G _{M MIN}	_	-90	_	dB	G _M =20log(VOUT/VIN) BW=IHF-A, ATT=-∞dB
Step resolution 1	G _{M STEP1}	_	8	_	dB	ATT=0~-32dB
Step resolution 2	G _{M STEP2}	_	16	— tion is used	dB	ATT=-32∼-64dB
	Parameter Current upon no signal Voltage gain Channel balance Total harmonic distortion Output noise voltage * Residual output noise voltage * Cross-talk between channels * Ripple rejection Input impedance Common mode rejection ratio * Input impedance Maximum input voltage Maximum gain Maximum attenuation * Step resolution Gain set error Attenuation set error 1 Attenuation set error 3 Output impedance Maximum output voltage Input impedance Maximum output voltage Input impedance Maximum output voltage Input impedance Maximum attenuation * Step resolution 1	Parameter Symbol Current upon no signal IQ Voltage gain GV Channel balance CB Total harmonic distortion THD Output noise voltage * VNO Residual output noise voltage * VNOR Cross-talk between channels * CTC Ripple rejection RR Input impedance R _{IN D} Common mode rejection ratio * CMRR Input impedance R _{IN V} Maximum input voltage V _{IM} Maximum gain G _{V BST} Maximum attenuation * G _{V ERR} Attenuation set error 1 G _{V ERR} Attenuation set error 2 G _{V ERR2} Attenuation set error 3 G _{V ERR3} Output impedance R _{IN M} Maximum output voltage VOM Input impedance R _{OUT} Maximum output voltage VOM Input impedance R _{IN M} Maximum attenuation * G _{M MIN}	Parameter Symbol Min. Current upon no signal IQ − Voltage gain GV -1.5 Channel balance CB -1.5 Total harmonic distortion THD − Output noise voltage * VNOR − Residual output noise voltage * VNOR − Residual output noise voltage * VNOR − Cross-talk between channels * CTC − Ripple rejection RR − Input impedance R _{IND} 70 Common mode rejection ratio * CMRR 50 Input impedance R _{INV} 70 Maximum input voltage V _{IM} 2 Maximum gain Gv BST 21 Maximum attenuation * Gv BST 21 Maximum attenuation * Gv ERR1 -2 Attenuation set error 1 Gv ERR2 -3 Attenuation set error 2 Gv ERR2 -3 Attenuation set error 3 Gv ERR3 -4 Output impedance	Parameter Limit Min. Typ. Current upon no signal IQ − 25 Voltage gain GV -1.5 0 Channel balance CB -1.5 0 Total harmonic distortion THD − 0.0004 Output noise voltage * VNOR − 1.9 Residual output noise voltage * VNOR − 1.6 Cross-talk between channels * CTC − -105 Ripple rejection RR − -80 Input impedance RIND 70 100 Common mode rejection ratio * CMRR 50 65 Input impedance RINV 70 100 Maximum input voltage VIM 2 2.35 Maximum gain GV BST 21 23 Maximum attenuation * GV BST 21 23 Maximum attenuation set error 1 GV ERR -2 0 Attenuation set error 3 GV ERR <t< td=""><td>Parameter Symbol Limit Current upon no signal IQ − 25 40 Voltage gain GV -1.5 0 1.5 Channel balance CB -1.5 0 1.5 Total harmonic distortion THD − 0.0004 0.05 Output noise voltage * VNOR − 1.9 10 Residual output noise voltage * VNOR − 1.6 10 Cross-talk between channels * CTC − -105 -90 Ripple rejection RR − -80 -40 Input impedance RIND 70 100 130 Common mode rejection ratio * CMRR 50 65 − Input impedance RINV 70 100 130 Maximum input voltage VIM 2 2.35 − Maximum attenuation * GV BST 21 23 25 Maximum attenuation set error 1 GV ERRI</td><td>Parameter Symbol Min. Typ. Max. Current upon no signal IQ — 25 40 mA Voltage gain GV -1.5 0 1.5 dB Channel balance CB -1.5 0 1.5 dB Total harmonic distortion THD — 0.0004 0.05 % Output noise voltage * VNOR — 1.9 10 μVrms Residual output noise voltage * VNOR — 1.6 10 μVrms Cross-talk between channels * CTC — -105 -90 dB Ripple rejection RR — -80 -40 THD Input impedance R_{IND} 70 100 130 kΩ Common mode rejection ratio * CMRR 50 65 — dB Input impedance R_{IND} 70 100 130 kΩ Maximum gain Gv sst 21 23 25 <t< td=""></t<></td></t<>	Parameter Symbol Limit Current upon no signal IQ − 25 40 Voltage gain GV -1.5 0 1.5 Channel balance CB -1.5 0 1.5 Total harmonic distortion THD − 0.0004 0.05 Output noise voltage * VNOR − 1.9 10 Residual output noise voltage * VNOR − 1.6 10 Cross-talk between channels * CTC − -105 -90 Ripple rejection RR − -80 -40 Input impedance RIND 70 100 130 Common mode rejection ratio * CMRR 50 65 − Input impedance RINV 70 100 130 Maximum input voltage VIM 2 2.35 − Maximum attenuation * GV BST 21 23 25 Maximum attenuation set error 1 GV ERRI	Parameter Symbol Min. Typ. Max. Current upon no signal IQ — 25 40 mA Voltage gain GV -1.5 0 1.5 dB Channel balance CB -1.5 0 1.5 dB Total harmonic distortion THD — 0.0004 0.05 % Output noise voltage * VNOR — 1.9 10 μVrms Residual output noise voltage * VNOR — 1.6 10 μVrms Cross-talk between channels * CTC — -105 -90 dB Ripple rejection RR — -80 -40 THD Input impedance R _{IND} 70 100 130 kΩ Common mode rejection ratio * CMRR 50 65 — dB Input impedance R _{IND} 70 100 130 kΩ Maximum gain Gv sst 21 23 25 <t< td=""></t<>


VP-9690A(Average value detection, effective value display) filter by Matsushita Communication is used for * measurement. Phase between input / output is same.

● Electrical characteristic curves (Reference data) - Continued

LOAD RESISTANCE : $RL[\Omega]$ Fig.13 Rload vs Vo

Fig.14 Advanced Switch 1

Fig.15 Advanced Switch 2

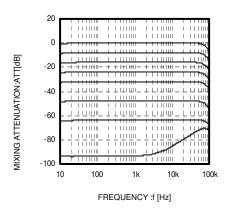


Fig.16 Mixing attenuation vs freq (BD3461FS, BD3465FV)

Block diagram and pin configuration

Fig.17 BD3460FS

Descriptions of terminal

Terminal No.	Terminal Name	Description	Terminal No.	Terminal Name	Description
1	INF1	Front input terminal of 1ch	13	OUTS2	Subwoofer output terminal of 2ch
2	INF2	Front input terminal of 2ch	14	OUTS1	Subwoofer output terminal of 1ch
3	INR1	Rear input terminal of 1ch	15	OUTR2	Rear output terminal of 2ch
4	INR2	Rear input terminal of 2ch	16	OUTR1	Rear output terminal of 1ch
5	INS1	Subwoofer input terminal of 1ch	17	OUTF2	Front output terminal of 2ch
6	INS2	Subwoofer input terminal of 2ch	18	OUTF1	Front output terminal of 1ch
7	PIN2	DIFF amp positive input terminal of 2ch	19	VCC	Power supply terminal
8	NIN2	DIFF amp negative input terminal of 2ch	20	CS	Chip select terminal
9	DIFFOUT2	DIFF amp output terminal of 2ch	21	SCL	I ² C Communication clock terminal
10	DIFFOUT1	DIFF amp output terminal of 1ch	22	SDA	I ² C Communication data terminal
11	NIN1	DIFF amp negative input terminal of 1ch	23	GND	GND terminal
12	PIN1	DIFF amp positive input terminal of 1ch	24	FIL	VCC/2 terminal

6/28

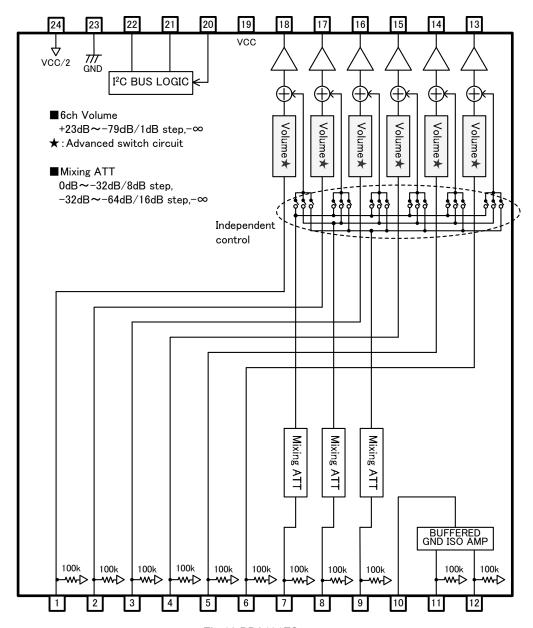


Fig.18 BD3461FS

Descriptions of terminal

Terminal No.	Terminal Name	Description	Terminal No.	Terminal Name	Description
1	INF1	Front input terminal of 1ch	13	OUTS2	Subwoofer output terminal of 2ch
2	INF2	Front input terminal of 2ch	14	OUTS1	Subwoofer output terminal of 1ch
3	INR1	Rear input terminal of 1ch	15	OUTR2	Rear output terminal of 2ch
4	INR2	Rear input terminal of 2ch	16	OUTR1	Rear output terminal of 1ch
5	INS1	Subwoofer input terminal of 1ch	17	OUTF2	Front output terminal of 2ch
6	INS2	Subwoofer input terminal of 2ch	18	OUTF1	Front output terminal of 1ch
7	EXT1	External input terminal of 1ch	19	VCC	Power supply terminal
8	EXT2	External input terminal of 2ch	20	CS	Chip select terminal
9	EXT3	External input terminal of 3ch	21	SCL	I ² C Communication clock terminal
10	DIFFOUT	DIFF amp output terminal	22	SDA	I ² C Communication data terminal
11	NIN	DIFF amp negative input terminal	23	GND	GND terminal
12	PIN	DIFF amp positive input terminal	24	FIL	VCC/2 terminal

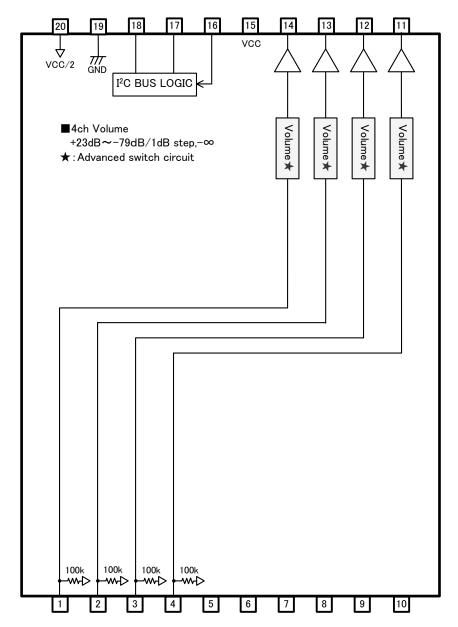


Fig.19 BD3464FV

Descriptions of terminal

Termina I No.	Terminal Name	Description	Terminal No.	Terminal Name	Description
1	INF1	Front input terminal of 1ch	11	OUTR2	Rear output terminal of 2ch
2	INF2	Front input terminal of 2ch	12	OUTR1	Rear output terminal of 1ch
3	INR1	Rear input terminal of 1ch	13	OUTF2	Front output terminal of 2ch
4	INR2	Rear input terminal of 2ch	14	OUTF1	Front output terminal of 1ch
5	NC		15	VCC	Power supply terminal
6	NC		16	CS	Chip select terminal
7	TEST1	Test Pin	17	SCL	I ² C Communication clock terminal
8	TEST2	Test Pin	18	SDA	I ² C Communication data terminal
9	TEST3	Test Pin	19	GND	GND terminal
10	NC		20	FIL	VCC/2 terminal

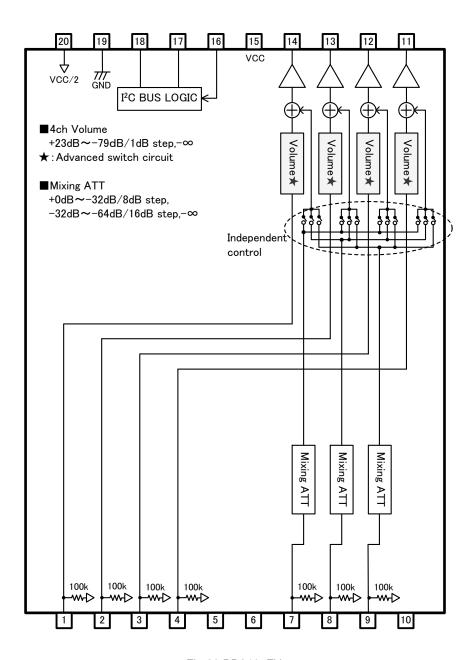


Fig.20 BD3465FV

Descriptions of terminal

Terminal No.	Terminal Name	Description	Terminal No.	Terminal Name	Description
1	INF1	Front input terminal of 1ch	11	OUTR2	Rear output terminal of 2ch
2	INF2	Front input terminal of 2ch	12	OUTR1	Rear output terminal of 1ch
3	INR1	Rear input terminal of 1ch	13	OUTF2	Front output terminal of 2ch
4	INR2	Rear input terminal of 2ch	14	OUTF1	Front output terminal of 1ch
5	NC		15	VCC	Power supply terminal
6	NC		16	CS	Chip select terminal
7	EXT1	External input terminal of 1ch	17	SCL	I ² C Communication clock terminal
8	EXT2	External input terminal of 2ch	18	SDA	I ² C Communication data terminal
9	EXT3	External input terminal of 3ch	19	GND	GND terminal
10	NC		20	FIL	VCC/2 terminal

●Timing Chart

CONTROL SIGNAL SPECIFICATION

(1) Electrical specifications and timing for bus lines and I/O stages

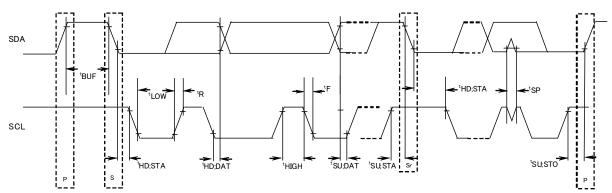
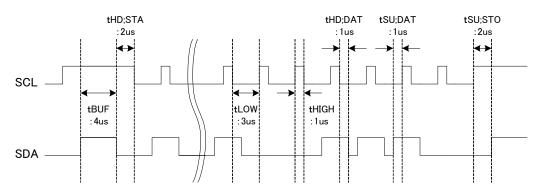


Fig.21 Definition of timing on the I²C-bus

Table 1 Characteristics of the SDA and SCL bus lines for I²C-bus devices (Unless specified particularly, Ta=25°C, VCC=8.5V)


	Parameter	Symbol	Fast-mod	Unit	
	Farameter	Symbol	Min	Max	Offic
1	SCL clock frequency	fSCL	0	400	kHz
2	Bus free time between a STOP and START condition	tBUF	1.3	_	μS
3	Hold time (repeated) START condition. After this period, the first clock pulse is generated	tHD;STA	0.6	_	μS
4	LOW period of the SCL clock	tLOW	1.3	_	μS
5	HIGH period of the SCL clock	tHIGH	0.6	_	μS
6	Set-up time for a repeated START condition	tSU;STA	0.6	_	μS
7	Data hold time	tHD;DAT	0*	_	μS
8	Data set-up time	tSU; DAT	100	_	ns
9	Set-up time for STOP condition	tSU;STO	0.6	_	μS

All values referred to VIH min. and VIL max. Levels (see Table 2).

About 7(tHD;DAT), 8(tSU;DAT), make it the setup which a margin is fully in .

Table 2 Characteristics of the SDA and SCL I/O stages for I²C-bus devices

	Parameter	Symbol	Fast-mod	Unit	
	Farameter	Symbol	Min	Max	Offic
10	LOW level input voltage	VIL	-0.5	1	V
11	HIGH level input voltage	VIH	2.3	_	V
12	Pulse width of spikes which must be suppressed by the input filter.	Tsp	0	50	ns
13	LOW level output voltage (open drain or open collector): at 3mA sink current	VOL1	0	0.4	٧
14	Input current each I/O pin with an input voltage between 0.4V and 0.9 VDDmax.	li	-10	10	μA

SCL clock frequency: 250kHz

Fig.22 A command timing example in the I²C data transmission

^{*} A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH min. of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.

(2)I²C BUS FORMAT

	MSB	LSB	MSB	LSB		MSB	LSB		
S	Slave Addre	ess /	A Select	Address	Α	Data		Α	Р
1bit	it 8bit		8bit 1bit 8bit 1bit 8bit					1bit	1bit
	S = Start conditions (Recognition of start bit)								
	Slave Address = Recognition of slave address. 7 bits in upper order are voluntary.							ıry.	
		The least significant bit is "L" due to writing.							
	Α	=	ACKNOWLE	DGE bit (Red	cognit	ion of acknowled	gement)		
	Select Add	dress =	Select every	of volume, b	ass a	nd treble.			
	Data = Data on every volume and tone.								
	Р	=	Stop conditio	n (Recognitio	on of s	stop bit)			

(3)I²C BUS Interface Protocol

1)Basic form

S	Slave Address	Α	Select Address		Α	Data	Α	Р
N	ISB LSE		/ISB	LSB	MS			

2) Automatic increment (Select Address increases (+1) according to the number of data.

;	S	Slave Address	Α	Select Add	ress A	١.	Data1	Α	Data2	Α		DataN	Α	Р
	М	ISB LSB	М	ISB	LSB I	MSE	3 LSB	MS	SB LSB		М	SB LSB		

(Example)

- ①Data1 shall be set as data of address specified by Select Address.
- ②Data2 shall be set as data of address specified by Select Address +1. ③DataN shall be set as data of address specified by Select Address +N-1.
- 3)Configuration unavailable for transmission (In this case, only Select Address1 is set.

_	,	3				(,							
	S	Slave Ad	ldress	Α	Select	Address1	Α	Data	Α	Select Ac	ldress 2	Α	Data	Α	Р
	MS	SB	LSB	M	SB	LSB	MS	B LSB	M	ISB	LSB	MS	B LSB		
			(Note)	If ar	ny data is	transmitte	d as	Select A	\ddr	ess 2 next t	to data, it	is re	cognize	d	
				а	s data, n	ot as Selec	t Add	dress 2.							

(4)Slave address

Because the slave address can be changed by the setting of CS, it is possible to use two chips at the same time on identical BUS.

MSB

				L	SB			
SEL Voltage Condition	A6	A5	A4	A3	A2	A1	A0	R/W
GND ~ 0.2×VCC	1	0	0	0	0	0	0	0
0.8×VCC ~ VCC	1	0	0	0	0	1	0	0

Establish the voltage of CS in the condition to have been defined.

80H 84H

(5)Select Address & Data

BD3460FS, BD3464FV

	Select	MSB			Da	ata			LSB		
Items to be set	Address (hex)	D7	D6	D5	D4	D3	D2	D1	D0		
Initial Setup 1	01	0	0 0 0 0 0 0								
Volume 1ch Front	28		Volume Gain / Attenuation								
Volume 2ch Front	29			Vo	olume Gain	/ Attenuati	on				
Volume 1ch Rear	2A			Vo	olume Gain	/ Attenuati	on				
Volume 2ch Rear	2B			Vo	olume Gain	/ Attenuati	on				
Volume 1ch Sub	2C			Vo	olume Gain	/ Attenuati	on				
Volume 2ch Sub	2D			Vo	olume Gain	/ Attenuati	on				
Test Mode	F0										
System Reset	FE	1 0 0 0 0 0 1									

Advanced switch

(Note)

- 1.In function changing of the hatching part, it works Advanced switch.
- 2.Select Address 2 C & 2 D can set only BD3460FS. Set all data of BD3464FV to "1".
- 3. Upon continuous data transfer, the Select Address is circulated by the automatic increment function, as shown below.

BD3461FS, BD3465FV

	Select	MSB			Da	ata			LSB		
Items to be set	Address (hex)	D7	D6	D5	D4	D3	D2	D1	D0		
Initial Setup 1	01	0	0	0	0	0	1	0	0		
Volume 1ch Front	28			Vo	olume Gain	/ Attenuati	on				
Volume 2ch Front	29			Vo	olume Gain	/ Attenuati	on				
Volume 1ch Rear	2A		Volume Gain / Attenuation								
Volume 2ch Rear	2B		Volume Gain / Attenuation								
Volume 1ch Sub	2C		Volume Gain / Attenuation								
Volume 2ch Sub	2D		Volume Gain / Attenuation								
EXT 1 ON/OFF	30	EXT1	EXT1	EXT1	EXT1	EXT1	EXT1	0	0		
LX1 1 ON/OTT	30	S2	S1	R2	R1	F2	F1	U	0		
EXT 2 ON/OFF	31	EXT2	EXT2	EXT2	EXT2	EXT2	EXT2	0	0		
LX1 2 ON/OTT	31	S2	S1	R2	R1	F2	F1		U		
EXT 3 ON/OFF	32	EXT3	EXT3	EXT3	EXT3	EXT3	EXT3	0	0		
LAT 3 ON/OFF	32	S2	S1	R2	R1	F2	F1		U		
EXT 1 ATT	33	0	0	0	0	0		T1 Attenua			
EXT 2 ATT	34	0	0	0	0	0	EXT2 Attenuation				
EXT 3 ATT	35	0	0	0	0	0	EXT3 Attenuation				
Test Mode	F0	0	0	0	0	0	0 0 0				
System Reset	FE	1	0	0	0	0	0	0	1		

Advanced switch

(Note)

- 1. In function changing of the hatching part, it works Advanced switch.
- 2. Select Address 2 C & 2 D can set only BD3461FS. Set all data of BD3465FV to "1".
- 3. Upon continuous data transfer, the Select Address is circulated by the automatic increment function, as shown below.

$$\rightarrow$$
01 \rightarrow 28 \rightarrow 29 \rightarrow 2A \rightarrow 2B \rightarrow 2C \rightarrow 2D \rightarrow 30 \rightarrow 31 \rightarrow 32 \rightarrow 33 \rightarrow 34 \rightarrow 35 \longrightarrow

4. When changing "EXT = ON/OFF", it is not corresponded for advance switch. Therefore, please do the measure that applies mute on the side of a set at the time of these setting changes

Select address 28, 29, 2A, 2B, 2C 2D(hex)

Gain & ATT	MSB	,	Volum	e Gair	ı/Atten	uation		LSB
Gaill & All	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	0	0	0
Dualsibition W	0	0	0	0	0	0	0	1
Prohibition ※	:	:			• •	• •	:	:
	0	1	1	0	1	0	0	0
23dB	0	1	1	0	1	0	0	1
22dB	0	1	1	0	1	0	1	0
21dB	0	1	1	0	1	0	1	1
:	:	:	:		:	:	:	:
-78dB	1	1	0	0	1	1	1	0
-78dB	1	1	0	0	1	1	1	0
-79dB	1	1	0	0	1	1	1	1
	1	1	0	1	0	0	0	0
Prohibition 💥	:	:	:	:			:	:
	1	1	1	1	1	1	1	0
-∞dB	1	1	1	1	1	1	1	1

- ※ Gain is set to "-∞dB" when sending "Prohibition data".
- Select Address 2 C & 2 D can set only BD3460FS, BD3461FS. Set all data of BD3464FV & BD3465FV to "1".

Select address 30, 31, 32(hex)

MODE	MSB		EXT1 F1								
MODE	D7	D6	D5	D4	D3	D2	D1	D0			
OFF	EXT1	EXT1	EXT1	EXT1	EXT1	0	0	0			
ON	S2	S1	R2	R1	F2	1	U	U			

MODE	MSB		EXT1 F2								
MODE	D7	D6	D5	D4	D3	D2	D1	D0			
OFF	EXT1	EXT1	EXT1	EXT1	0	EXT1	0	0			
ON	S2	S1	R2	R1	1	F1	0	U			

MODE	MSB			EXT	1 R1			LSB
IVIODE	D7	D6	D5	D4	D3	D2	D1	D0
OFF	EXT1	EXT1	EXT1	0	EXT1	EXT1	0	0
ON	S2	S1	R2	1	F2	F1	U	U

MODE	MSB		EXT1 R2								
WODE	D7	D6	D5	D4	D3	D2	D1	D0			
OFF	EXT1	EXT1	0	EXT1	EXT1	EXT1	0	0			
ON	S2	S1	1	R1	F2	F1	U	U			

MODE	MSB		EXT1 S1							
MODE	D7	D6	D5	D4	D3	D2	D1	D0		
OFF	EXT1	0	EXT1	EXT1	EXT1	EXT1	0	0		
ON	S2	1	R2	R1	F2	F1	U	U		

MODE	MSB		EXT1 S2								
IVIODE	D7	D6	D5	D4	D3	D2	D1	D0			
OFF	0	EXT1	EXT1	EXT1	EXT1	EXT1	0	0			
ON	1	S1	R2	R1	F2	F1	U	U			

:Initial condition

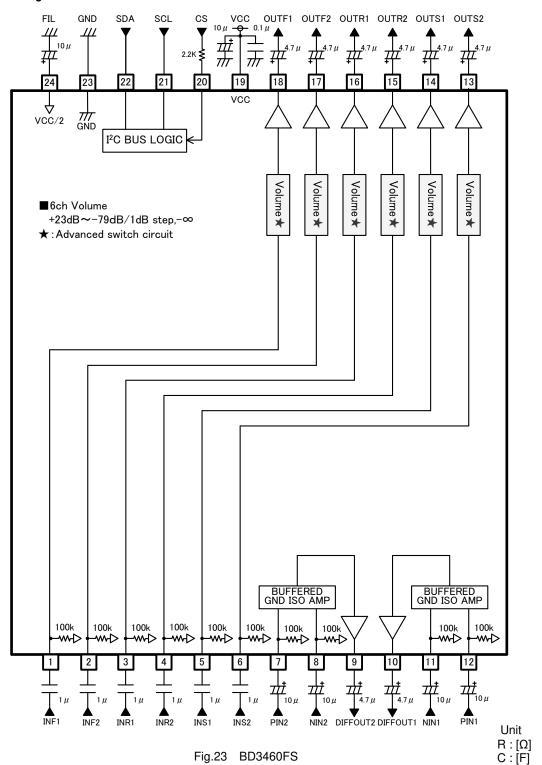
Select address 33, 34, 35(hex)

Gain	MSB		EXT Attenuation							
Gaill	D7	D6	D5	D4	D3	D2	D1	D0		
0dB					0 0 0 0 0 1 0 1	0	0	0		
-8dB						0	1			
-16dB						0	1	0		
-24dB	0	0	0	0		1	1			
-32dB	0	0	U	0	0	1 0	0			
-48dB						1	0	1		
-64dB						1	1	0		
-∞dB						1	1	1		

\•/	Select Address 30, 31	00 00	04 05		DD0404E0	0 DD040EEV
•X•	Salact Addrage 30 31	377 373	3/1 35	can cat anii	/ BD3/61ES	X. RIT3/165EV
/∙ \	Delect Address 50. 51	02.00.	UT. UU	can set onit		C DDOTOOL V

leitial·	condition
ı .iriillai	CONGILION

(6)About power on reset


At one of supply voltage circuit made initialization inside IC is built-in. Please send data to all address as initial data at supply voltage on. And please supply mute at set side until this initial data is sent.

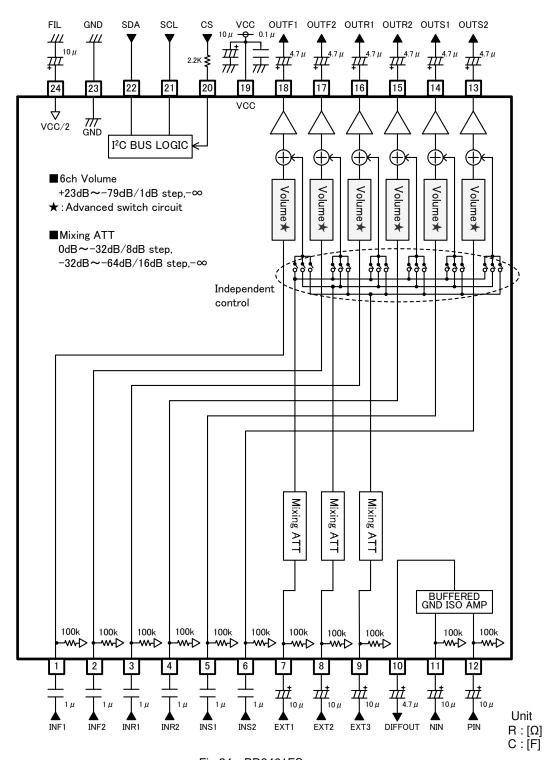
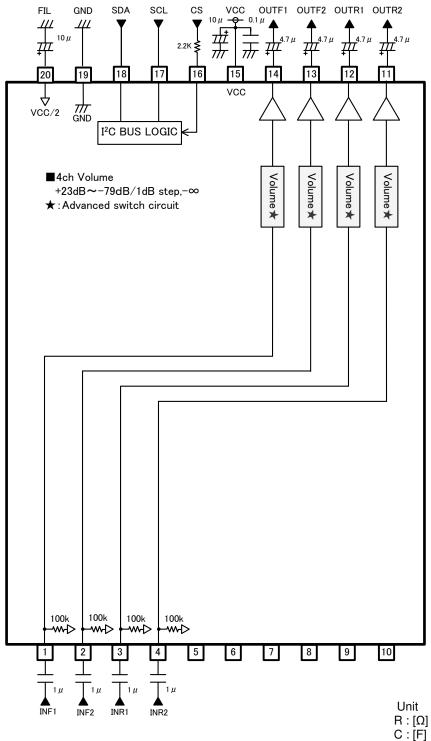
Itom	Symbol		Limit		Unit	Condition	
Item	Symbol	Min.	Тур.	Max.	Ullit		
Rise time of VCC	Trise	20	_	-	µsec	VCC rise time from 0V to 3V	
VCC voltage of release power on reset	Vpor	_	4.1	_	V		

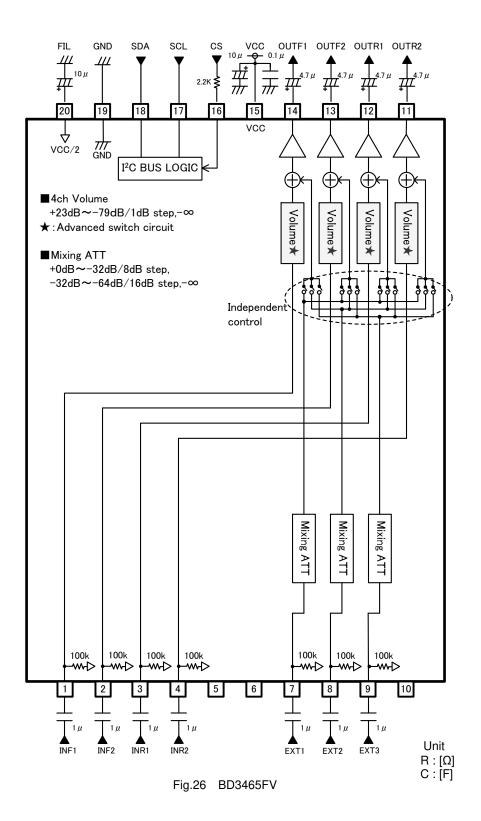
/olume g	ain/at							1	,				r		1	1	r	
(dB)	D7	D6	D5	D4	D3	D2	D1	D0		(dB)	D7	D6	D5	D4	D3	D2	D1	DO
+23	0	1	1	0	1	0	0	1		-29	1	0	0	1	1	1	0	1
+22	0	1	1	0	1	0	1	0		-30	1	0	0	1	1	1	1	0
+21	0	1	1	0	1	0	1	1		-31	1	0	0	1	1	1	1	1
+20	0	1	1	0	1	1	0	0		-32	1	0	1	0	0	0	0	0
+19	0	1	1	0	1	1	0	1		-33	1	0	1	0	0	0	0	1
+18	0	1	1	0	1	1	1	0		-34	1	0	1	0	0	0	1	0
+17	0	1	1	0	1	1	1	1		-35	1	0	1	0	0	0	1	1
+16	0	1	1	1	0	0	0	0		-36	1	0	1	0	0	1	0	0
+15	0	1	1	1	0	0	0	1		-37	1	0	1	0	0	1	0	1
+14	0	1	1	1	0	0	1	0		-38	1	0	1	0	0	1	1	C
+13	0	1	1	1	0	0	1	1		-39	1	0	1	0	0	1	1	1
+12	0	1	1	1	0	1	0	0		-40	1	0	1	0	1	0	0	(
+11	0	1	1	1	0	1	0	1		-41	1	0	1	0	1	0	0	1
+10	0	1	1	1	0	1	1	0		-42	1	0	1	0	1	0	1	C
+9	0	1	1	1	0	1	1	1		-43	1	0	1	0	1	0	1	1
+8	0	1	1	1	1	0	0	0		-44	1	0	1	0	1	1	0	(
+7	0	1	1	1	1	0	0	1		-45	1	0	1	0	1	1	0	1
+6	0	1	1	1	1	0	1	0		-46	1	0	1	0	1	1	1	(
+5	0	1	1	1	1	0	1	1		-47	1	0	1	0	1	1	1	1
+4	0	1	1	1	1	1	0	0		-48	1	0	1	1	0	0	0	(
+3	0	1	1	1	1	1	0	1		-49	1	0	1	1	0	0	0	1
+2	0	1	1	1	1	1	1	0		-50	1	0	1	1	0	0	1	(
+1	0	1	1	1	1	1	1	1		-51	1	0	1	1	0	0	1	-
0	1	0	0	0	0	0	0	0		-52	1	0	1	1	0	1	0	(
-1	1	0	0	0	0	0	0	1		-53	1	0	1	1	0	1	0	1
-2	1	0	0	0	0	0	1	0		-54	1	0	1	1	0	1	1	(
-3	1	0	0	0	0	0	1	1		-55	1	0	1	1	0	1	1	1
-4	1	0	0	0	0	1	0	0		-56	1	0	1	1	1	0	0	(
-5	1	0	0	0	0	1	0	1		-57	1	0	1	1	1	0	0	Ì
<u>-6</u>	1	0	0	0	0	1	1	0		-58	1	0	1	1	1	0	1	(
- 7	1	0	0	0	0	1	1	1		-59	1	0	1	1	1	0	1	-
-8	1	0	0	0	1	0	0	0		-60	1	0	1	1	1	1	0	(
<u>-9</u>	1	0	0	0	1	0	0	1		-61	1	0	1	1	1	1	0	-
-10	1	0	0	0	1	0	1	0		-62	1	0	1	1	1	1	1	(
-11	1	0	0	0	1	0	1	1		-63	1	0	1	1	1	1	1	
-12	1	0	0	0	1	1	0	0		-64	1	1	0	0	0	0	0	(
-13	1	0	0	0	1	1	0	1		-65	1	1	0	0	0	0	0	-
-14	1	0	0		1						1		0	0	0	_		_
-14	1	0	0	0	1	1	1	0		-66 -67	1	1	0	0	0	0	1	1
		0											0		0			
-16	1		0	1	0	0	0	0		-68	1	1		0		1	0	(
-17	1	0	0	1	0	0	0	1		-69 -70	1	1	0	0	0	1	0	
-18	1	0	0	1	0	0	1	0		-70 -71	1	1	0	0	0	1	1	(
-19	1	0	0	1	0	0	1	1		-71	1	1	0	0	0	1	1	
-20	1	0	0	1	0	1	0	0		-72	1	1	0	0	1	0	0	(
-21	1	0	0	1	0	1	0	1		-73	1	1	0	0	1	0	0	L.
-22	1	0	0	1	0	1	1	0		-74	1	1	0	0	1	0	1	(
-23	1	0	0	1	0	1	1	1		-75	1	1	0	0	1	0	1	
-24	1	0	0	1	1	0	0	0		-76	1	1	0	0	1	1	0	(
-25	1	0	0	1	1	0	0	1		-77	1	1	0	0	1	1	0	
-26	1	0	0	1	1	0	1	0		-78	1	1	0	0	1	1	1	(
-27	1	0	0	1	1	0	1	1		-79	1	1	0	0	1	1	1	1
-28	1	0	0	1	1	1	0	0		-∞	1	1	1	1	1	1	1	-

: Initial condition

Application Circuit Diagram

- ① Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND.
- 2 Lines of GND shall be one-point connected.
- Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.
 Lines of SCL and SDA of I²C BUS shall not be parallel if possible.
- - The lines shall be shielded, if they are adjacent to each other.
- (5) Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.


Fig.24 BD3461FS

- ① Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND.
- ② Lines of GND shall be one-point connected.
- ③ Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.
- 4 Lines of SCL and SDA of I²C BUS shall not be parallel if possible.
 - The lines shall be shielded, if they are adjacent to each other.
- ⑤ Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.

Fig.25 BD3464FV

- 1 Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND.
- 2 Lines of GND shall be one-point connected.
 3 Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.
- 4 Lines of SCL and SDA of I²C BUS shall not be parallel if possible.
 - The lines shall be shielded, if they are adjacent to each other.
- 5 Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.

- ① Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to GND.
- 2 Lines of GND shall be one-point connected.
 3 Wiring pattern of Digital shall be away from that of analog unit and cross-talk shall not be acceptable.
- 4 Lines of SCL and SDA of I²C BUS shall not be parallel if possible.
 - The lines shall be shielded, if they are adjacent to each other.
- 5 Lines of analog input shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.

Interfaces

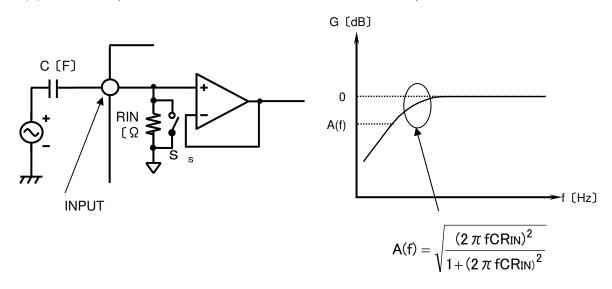
Terminal Name	Terminal Voltage	Equivalent Circuit	Terminal Description
INF1 INF2 INR1 INR2 INS1 INS2 PIN2 NIN2 NIN1 PIN1 PIN1 EXT1 EXT2 EXT3	4.25	Vcc	A terminal for signal input. The input impedance is 100kΩ(typ). INS1 and INS2 are only BD3460FS and BD3461FS's terminals, PIN2,NIN2,NIN1 and PIN1 are only BD3460FS's one, NIN and PIN are only BD3461FS's one, EXT1,EXT2 and EXT3 are only BD3461FS and BD3465FV's one.
DIFOUT2 DIFOUT1 DIFOUT OUTS2 OUTS1 OUTR2 OUTR1 OUTF2 OUTF1	4.25	VCC QND QND	A terminal for fader output. DIFOUT2 and DIFOUT1 are only BD3460FS's terminals, DIFOUT is only BD3461FS's one, OUTS2, and OUTS1 are only BD3460FS and BD3461FS's one.
CS	-	VCC GND	A terminal for slave addresses selection. "CS" is "High"→slave address "84 H" "CS" is "Low"→ slave address "80 H"

The figure in the pin explanation and input/output equivalent circuit is reference value, it doesn't guarantee the value.

Terminal Name	Terminal Voltage	Equivalent Circuit	Terminal Description
VCC	8.5		Power supply terminal.
SCL	ı	Vcc O O O I.65V	A terminal for clock input of I ² C BUS communication.
SDA		Vcc O J J 1.65V	A terminal for data input of I ² C BUS communication.
GND	0		Ground terminal.
FIL	4.25	VCC	Voltage for reference bias of analog signal system. The simple precharge circuit and simple discharge circuit for an external capacitor are built in.

The figure in the pin explanation and input/output equivalent circuit is reference value, it doesn't guarantee the value.

Notes for use

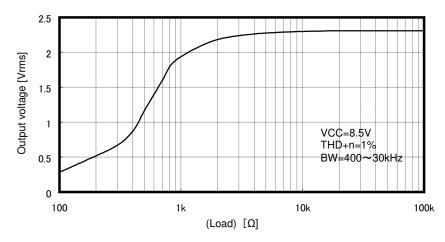

1. Absolute maximum rating voltage

When it impressed the voltage on VCC more than the absolute maximum rating voltage, circuit currents increase rapidly, and there is absolutely a case to reach characteristic deterioration and destruction of a device. In particular in a serge examination of a set, when it is expected the impressing serge at VCC terminal, please do not impress the large and over the absolute maximum rating voltage (including a operating voltage + serge ingredient (around 14V)).

2. About a signal input part

1)About constant set up of input coupling capacitor

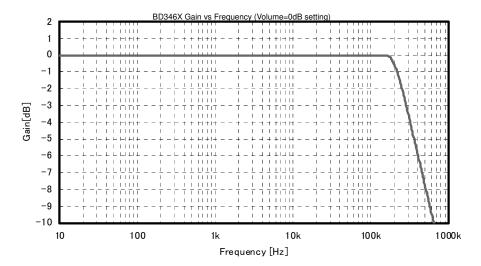
In the signal input terminal, the constant setting of input coupling capacitor C(F) be sufficient input impedance $R_{IN}(\Omega)$ inside IC and please decide. The first HPF characteristic of RC is composed.



3. About output load characteristics)

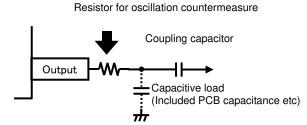
The usages of load for output are below (reference). Please use the load more than $10[k\Omega](TYP)$.

Output pin on target


Catpat pin on tai	901			
Pin Name	Pin name	Pin name	Pin name	Pin name
OUTF1	OUTR1	OUTS1	DIFOUT1	DIFOUT
OUTF2	OUTR2	OUTS2	DIFOUT2	

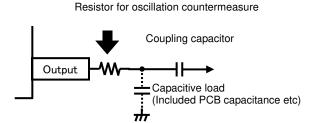
Output load characteristic at Vcc=8.5V. (Reference)

4. Frequency characteristic at large output level


High slew-rate amplifiers are used for high quality sound. This IC is corresponded to "192kHz sampling on DVD-Audio highest quality". Output level is "2Vrms, 192kHz flat(typ)". (See the below graph (reference)).

5. Oscillation countermeasure for GND isolation amplifier outputs

Using higher capacitor than 10pF at GND isolation amplifier outputs (DIFOUT1, DIFOUT2, DIFOUT) may cause oscillation. As oscillation countermeasure, insert resistor in series to terminal directly as below.

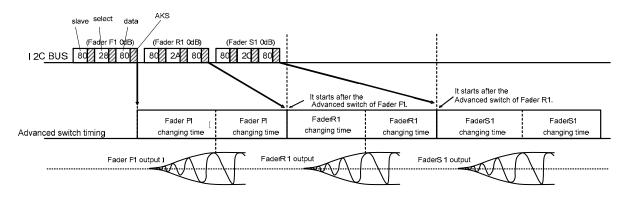

Capacitance	Resistor in series to terminal directly
C<10pF	Not necessary
10 <c<100pf< td=""><td>220Ω</td></c<100pf<>	220Ω

6. Oscillation countermeasure for volume outputs at power supply ON/OFF

If using higher capacitor than 22pF at volume outputs, oscillation may occur a moment when turning ON/OFF power supply (when VCC is about 3~4 V). As oscillation countermeasure, insert resistor in series to terminal directly as below, and set volume output mute outside this device when turning ON/OFF power supply.

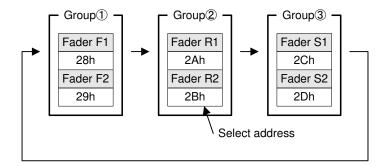
Capacitance	Resistor in series to terminal directly
C<22pF	Not necessary
22 < C < 220nF	2200

7. I2C BUS Transferring Data


[1] The kind of the Transferring Data

- 1-1. he data setup except Advanced switch (the data without hatching of a data format) does not have the regulation on transferring data.
- 1-2. The data setup of Advanced switch (the data with hatching of a data format) does not have the regulation on transferring data too. But Advanced switch order follows the following [2].

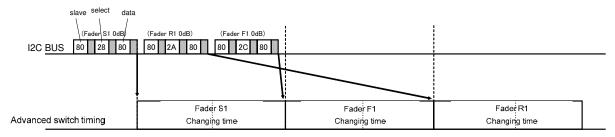
[2] Transferring data of the Advanced switch


2-1. The timing chart from the transferring data timing to the Advanced switch start timing is as follows.

■Transferring data example 1

It is the same even if it transfers data in auto increment mode.

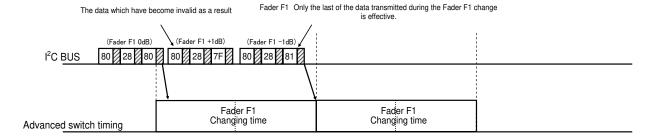
There are no timing regulations of I²C BUS transferring data. But the timing of a change start after the end of the present change. In addition, the timing of Advanced switch is not depended of a transferring data turn, but conforms in turn of the following figure.



The turn of Advanced switch start

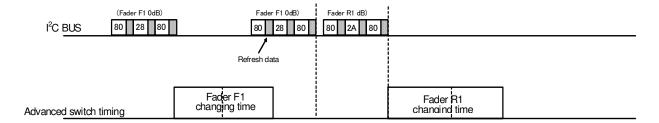
The block in the same group can start the Advanced switch in the same time.

■Transferring data example 2


The transferring data turn differs from the actual change turn as below.

Please transfer data after the present Advanced switch, if it wants to make a transferring data turn and Advanced switch turn the same.

■Transferring data example 3


Priority is given to the data of the same select address when it is transferred to the timing which Advanced switch has not ended. In addition, when two or more data are transferred to the same select address, the end transferred data is effective.

■Transferring data example 4

Refresh data is the same as the present setup data, therefore Advanced switch does not change.

The gain change data of other channels are transferred after refresh data as below.

