: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Sound Processors for Home Theater Systems

4ch Sound Processor with Built-in Micro-step Volume

BD34700FV

General Description

The BD34700FV is a 4ch independent volume system. Micro-step volume can reduce the switching pop noise when volume changes, so it can achieve a high-quality set. It is most suitable for subvolume of the multi channel volume such as AV receivers, but is most suitable for main volume of simple systems such as 2 ch .

Features

■ Micro-step volume can reduce the switching pop noise when volume changes.

- Micro-step volume can reduce the capacitor for the DC offset cut
- 2-wire serial bus control, corresponding to $3.3 / 5 \mathrm{~V}$.
- It is controllable to two chips on the same serial bus by using chip select terminal.

Applications

- Most suitable for the AV receivers, home theater and mini-component systems

Typical Application Circuit

Key Features

| ■ Total harmonic distortion: | 0.0004% (Typ.) |
| :--- | ---: | ---: |
| Maximum output voltage: | 4.2 Vrms (Typ.) |
| Output noise voltage: | 1.5 VVrms (Typ.) |
| ■ Residual output noise voltage: | 1.0 VVrms (Typ.) |
| - Cross-talk between channels: | -105 dB (Typ.) |

Package	W(Typ.) $\times \mathbf{D}$ (Typ.) $\times \mathbf{H}($ Max. $)$
SSOP-B40	$13.60 \mathrm{~mm} \times 7.80 \mathrm{~mm} \times 2.00 \mathrm{~mm}$

Figure 1. Application Circuit

Pin Configuration

Figure 2. Pin Configuration

Description of terminal

Terminal Number	Symbol	Function	Terminal Number	Symbol	Function
1	VEES	Negative power supply terminal	21	VOUTR2	Volume output terminal R2
2	TEST	TEST terminal	22	VOUTL2	Volume output terminal L2
3	TEST	TEST terminal	23	TEST	TEST terminal
4	GND	Analog ground terminal	24	TEST	TEST terminal
5	GND	Analog ground terminal	25	VOUTR1	Volume output terminal R1
6	NC	Non connection	26	VOUTL1	Volume output terminal L1
7	VINL1	Volume input terminal L1	27	GND	Analog ground terminal
8	VINR1	Volume input terminal R1	28	GND	Analog ground terminal
9	VINL2	Volume input terminal L2	29	GND	Analog ground terminal
10	VINR2	Volume input terminal R2	30	GND	Analog ground terminal
11	GND	Analog ground terminal	31	GND	Analog ground terminal
12	GND	Analog ground terminal	32	GND	Analog ground terminal
13	GND	Analog ground terminal	33	GND	Analog ground terminal
14	CHIP	Chip select	34	GND	Analog ground terminal
15	NC	Non connection	35	NC	Non connection
16	VCC	Positive power supply terminal	36	NC	Non connection
17	DGND	Digital ground terminal	37	TEST	TEST terminal
18	DA	Data and latch input terminal	38	TEST	TEST terminal
19	CL	Clock input terminal	39	TEST	TEST terminal
20	VEE	Negative power supply terminal	40	TEST	TEST terminal

Block Diagram

Figure 3. Block Diagram

Absolute Maximum Ratings

Item	Symbol	Rating	Unit
Positive power supply	VCC	+7.75 ${ }^{\text {(Note1) }}$	V
Negative power supply	VEE	-7.75 (Note1)	V
Power dissipation	Pd	1.12 (Note2)	W
Input voltage	Vin	Vee-0.2 to Vcc+0.2	V
Operating temperature	Topr	-40 to +85 (Note3)	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

(Note1) The maximum voltage that can be applied based on GND.
(Note2) This value decreases $9.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or more. A standard board, $70 \times 70 \times 1.6 \mathrm{~mm}$, shall be mounted.
(Note3) If it within operation voltage range, circuit functions operation is guaranteed within operation temp.
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Operating Condition

Item	Symbol	Rating	Unit
Positive power supply	VCC	+6.5 to $+7.5^{\text {(Note4,5) }}$	V
Negative power supply	VEE	-6.5 to $-7 . \mathbf{~}^{\text {(Note4,5) }}$	V

(Note4) Applying a voltage based on GND.
(Note5) Within operation temp range, basic circuit function Operation is guaranteed within operation voltage range.
But please confirm set up of constant and element, voltage set up and temp set up on use.
Please watch out except condition stipulated by electrical characteristics within the range, It cannot guarantee standard value of electrical characteristics. But it retains original function

Electrical characteristic

Unless specified particularly, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=7 \mathrm{~V}$, Vee $=-7 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}$, Vin $=1 \mathrm{Vrms}, \mathrm{RL}=10 \mathrm{k} \Omega$,
Stereo input =VINL1,VINR1, Stereo output=VOUTL1,VOUTR1, Volume=0dB.

	Item	Symbol	Limit			Unit	Conditions
			Min.	Typ.	Max.		
TOTAL	Positive circuit current	Iqp	-	22	44	mA	No signal
	Negative circuit current	Iqn	-44	-22	-	mA	No signal
	Output voltage gain	Gv	-1.5	0	1.5	dB	21,22,25,26pin output
	Channel balance	CB	-0.5	0	0.5	dB	L Channel reference,
	Total harmonic distortion	THD	-	0.0004	0.02	\%	BW=400 to 30 kHz 21,22,25,26pin output
	Maximum output voltage	Vom	3.8	4.2	-	Vrms	$\begin{aligned} & \text { THD }=1 \% \text {, } \\ & \text { VOLUME }=+10 \mathrm{~dB} \\ & 21,22,25,26 \text { pin output } \end{aligned}$
	Output noise voltage *	Vno	-	1.5	10	$\mu \mathrm{Vrms}$	$\mathrm{Rg}=0 \Omega$, $\mathrm{BW}=\mathrm{IHF}-\mathrm{A}$ 21,22,25,26pin output
	Residual output noise voltage *	Vnor	-	1	8	$\mu \mathrm{Vrms}$	Volume=Mute, $\mathrm{Rg}=0 \Omega$, $\mathrm{BW}=\mathrm{IHF}-\mathrm{A}$ 21,22,25,26pin output
	Cross-talk between channels *	CT	-	-105	-80	dB	$\mathrm{Rg}=0 \Omega$, $\mathrm{BW}=\mathrm{IHF}-\mathrm{A}$ 21,22,25,26pin output
	Input impedance	Rin	32	47	62	k Ω	7 to 10pin
VOLUME	Maximum attenuation *	ATTmax	-	-115	-100	dB	Volume=Mute, BW=IHF-A

※VP-9690A(Average value detection, effective value display) filter by Panasonic is used for $*$ measurement.

Typical Performance Curve(s)

Figure 4. Circuit Currents vs. Circuit Voltage

Figure 6. Volume Gain vs. Input Frequency (0 dB to -32 dB setting)

Figure 5. Volume Gain vs. Input Frequency (32dB to 0 dB setting)

Figure 7. Volume Gain vs. Input Frequency (-32dB to -64 dB setting)

Figure 8. Volume Gain vs. Input Frequency (-64dB to -95 dB setting)

Figure 9. THD + N vs. Input Voltage

Specifications for Control Signal

(1) Timing of control signal

Data is read at a rising edge of clock.
Latch is read at a falling edge of clock. And Data on the latest 16bit are taken in the inside of this IC.
Be sure to set DA and CL to LOW after latching.
1 byte=16bit

Figure 10. The timing definition of the control signal.

Item	Symbol	Limit			Unit
		Min.	Typ.	Max.	
Clock width	twc	1.0	-	-	$\mu \mathrm{sec}$
Data width	twd	1.0	-	-	$\mu \mathrm{sec}$
Latch width	twl	1.0	-	-	$\mu \mathrm{sec}$
Low hold width	twh	1.0	-	-	$\mu \mathrm{sec}$
Data setup time (DATA \rightarrow CLK)	tsd	0.5	-	-	$\mu \mathrm{sec}$
Data hold time (CLK \rightarrow DATA)	thd	0.5	-	-	$\mu \mathrm{sec}$
Latch setup time (CLK \rightarrow LATCH)	tsl	0.5	-	-	$\mu \mathrm{sec}$
Latch hold time	thl	0.5	-	-	$\mu \mathrm{sec}$
Latch Low setup time	ts	0.5	-	-	$\mu \mathrm{sec}$
Latch Low hold time	th	0.5	-	-	$\mu \mathrm{sec}$

(2) Voltage of control signal (CL, DA, CHIP)

Item	Conditions	Limit			Unit
		Min.	Typ.	$\begin{gathered} \text { Max. } \\ (<\mathrm{Vcc}) \end{gathered}$	
High input voltage	$\begin{aligned} & \mathrm{Vcc}=+6.5 \text { to }+7.5 \mathrm{~V} \\ & \mathrm{Vee}=-6.5 \text { to }-7.5 \mathrm{~V} \end{aligned}$	2.3	-	5.5	V
Low input voltage		0	-	1.0	V

(3) Basic Structure of Control Data
\leftarrow Input Direction

(4) Table of Control Data

Select Addre ss No.	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	Chip Select	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0		0	1
2	0	0	MUTE on/off L2,R2	0	0	0	0	MUTE on/off L1,R1	0	0	0	0	0		1	0
3	Volume channel Select			Volume									0		1	1
7	$A \rightarrow B$ switch-time			$B \rightarrow A$ switch-time			Base clock	0	0	System reset	0	0	1		1	1
BD3843FS (6ch Selector IC)													*	1	0	0
BD3841FS (9ch Selector IC)													*	1	0	1
BD3812F (2ch volume IC)													*	1	1	*

- Serial control lines can be shared with BD34701KS2(8ch Volume IC) to set different data by chip select.
- Serial control lines can be shared with BD3843FS(6ch selector IC), BD3841FS(9ch selector IC) and BD3812F(2ch volume IC).
- Initialize all data at every turning on the power supply.
(Example)

- At the second time after turning on the power supply, eight any data to be changed.
(5) Chip Select Setting Table

CHIP terminal condition	D2
0 (LOW)	0
1 (HIGH)	1

BD34700FV can be operated in combination with another by setting the CHIP terminal.

Select Address No. 2 Setting Table																	
Function \& Setting		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
س苂	ON	0	0	0	0	0	0	0	MUTE on/off L1,R1	0	0	0	0	0	Chip	1	0
<O-	OFF			1													
耑	ON			MUTE on/off L2,R2					0								
¢	OFF								1								

Select Address No. 3 Setting Table

Function \& Setting		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	Non select	0	0	0	Volume									0	Chip Select	1	1
	R2	0	1	0													
	L2	0		1													
	R1	1		0													
	L1	1		1													
$\begin{aligned} & \otimes \\ & \frac{1}{\bar{O}} \\ & \hline 8 \end{aligned}$	MUTE	Volume Channel Select			1	1	1	1	1	1	1	1	1				
					1	1	1	1	1	1	1	0					
	Prohibition				:	-	:		-		-	-					
					0	1	0	0	0	0	0	1					
	+32.0dB				0	1	0	0	0	0	0	0					
	+31.5dB				0	0	1	1	1	1	1	1					
	+31.0dB				0	0	1	1	1	1	1	0					
	+30.5dB				0	0	1	1	1	1	0	1					
	+30.0dB				0	0	1	1	1	1	0	0					
	+29.5dB				0	0	1	1	1	0	1	1					
	+29.0dB				0	0	1	1	1	0	1	0					
	+28.5dB				0	0	1	1	1	0	0	1					
	+28.0dB				0	0	1	1	1	0	0	0					
	+27.5dB				0	0	1	1	0	1	1	1					
	+27.0dB				0	0	1	1	0	1	1	0					
	+26.5dB				0	0	1	1	0	1	0	1					
	+26.0dB				0	0	1	1	0	1	0	0					
	+25.5dB				0	0	1	1	0	0	1	1					
	+25.0dB				0	0	1	1	0	0	1	0					
	+24.5dB				0	0	1	1	0	0	0	1					
	+24.0dB				0	0	1	1	0	0	0	0					
	+23.5dB				0	0	1	0	1	1	1	1					
	+23.0dB				0	0	1	0	1	1	1	0					
	+22.5dB				0	0	1	0	1	1	0	1					
	+22.0dB				0	0	1	0	1	1	0	0					
	+21.5dB				0	0	1	0	1	0	1	1					
	+21.0dB				0	0	1	0	1	0	1	0					
	+20.5dB				0	0	1	0	1	0	0	1					
	+20.0dB				0	0	1	0	1	0	0	0					
	+19.5dB				0	0	1	0	0	1	1	1					
	+19.0dB				0	0	1	0	0	1	1	0					
	+18.5dB				0	0	1	0	0	1	0	1					
	+18.0dB				0	0	1	0	0	1	0	0					
	+17.5dB				0	0	1	0	0	0	1	1					
	+17.0dB				0	0	1	0	0	0	1	0					
	+16.5dB				0	0	1	0	0	0	0	1					
	+16.0dB				0	0	1	0	0	0	0	0					
	+15.5dB				0	0	0	1	1	1	1	1					

Select Address No. 3 Setting Table

Fun	on \& Setting	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{aligned} & \otimes \\ & \stackrel{0}{5} \\ & \hline \frac{1}{9} \end{aligned}$	+15.0dB	Volume Channel Select				0	0	0	1	1	1	1	0	0	Chip Select	1	1
	+14.5dB					0	0	0	1	1	1	0	1				
	+14.0dB					0	0	0	1	1	1	0	0				
	+13.5dB					0	0	0	1	1	0	1	1				
	+13.0dB					0	0	0	1	1	0	1	0				
	+12.5dB					0	0	0	1	1	0	0	1				
	+12.0dB					0	0	0	1	1	0	0	0				
	+11.5dB					0	0	0	1	0	1	1	1				
	+11.0dB					0	0	0	1	0	1	1	0				
	+10.5dB					0	0	0	1	0	1	0	1				
	+10.0dB					0	0	0	1	0	1	0	0				
	+9.5dB					0	0	0	1	0	0	1	1				
	+9.0dB					0	0	0	1	0	0	1	0				
	+8.5dB					0	0	0	1	0	0	0	1				
	$+8.0 \mathrm{~dB}$					0	0	0	1	0	0	0	0				
	$+7.5 \mathrm{~dB}$				1	0	0	0	0	1	1	1	1				
	+7.0dB					0	0	0	0	1	1	1	0				
	+6.5dB					0	0	0	0	1	1	0	1				
	+6.0dB					0	0	0	0	1	1	0	0				
	$+5.5 \mathrm{~dB}$					0	0	0	0	1	0	1	1				
	+5.0dB					0	0	0	0	1	0	1	0				
	$+4.5 \mathrm{~dB}$					0	0	0	0	1	0	0	1				
	+4.0dB					0	0	0	0	1	0	0	0				
	$+3.5 \mathrm{~dB}$					0	0	0	0	0	1	1	1				
	+3.0dB					0	0	0	0	0	1	1	0				
	$+2.5 \mathrm{~dB}$					0	0	0	0	0	1	0	1				
	+2.0dB					0	0	0	0	0	1	0	0				
	+1.5dB					0	0	0	0	0	0	1	1				
	+1.0dB					0	0	0	0	0	0	1	0				
	$+0.5 \mathrm{~dB}$					0	0	0	0	0	0	0	1				
	Prohibition					0	0	0	0	0	0	0	0				
	-0dB				0	0	0	0	0	0	0	0	0				
	-0.5dB				0	0	0	0	0	0	0	1					
	-1.0dB				0	0	0	0	0	0	1	0					
	-1.5dB				0	0	0	0	0	0	1	1					
	-2.0dB				0	0	0	0	0	1	0	0					
	-2.5dB				0	0	0	0	0	1	0	1					
	-3.0dB				0	0	0	0	0	1	1	0					
	-3.5dB				0	0	0	0	0	1	1	1					
	-4.0dB				0	0	0	0	1	0	0	0					
	-4.5dB				0	0	0	0	1	0	0	1					
	-5.0dB				0	0	0	0	1	0	1	0					
	-5.5dB				0	0	0	0	1	0	1	1					
	-6.0dB				0	0	0	0	1	1	0	0					
	-6.5dB				0	0	0	0	1	1	0	1					
	-7.0dB				0	0	0	0	1	1	1	0					
	-7.5dB				0	0	0	0	1	1	1	1					

Select Address No. 3 Setting Table

Function \& Setting		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{aligned} & \otimes \\ & \stackrel{0}{5} \\ & \hline \frac{0}{9} \end{aligned}$	-8.0dB	Volume Channel Select			0	0	0	0	1	0	0	0	0	0	Chip Select	1	1
	-8.5dB				0	0	0	1	0	0	0	1					
	-9.0dB				0	0	0	1	0	0	1	0					
	-9.5dB				0	0	0	1	0	0	1	1					
	-10.0dB				0	0	0	1	0	1	0	0					
	-10.5dB				0	0	0	1	0	1	0	1					
	-11.0dB				0	0	0	1	0	1	1	0					
	-11.5dB				0	0	0	1	0	1	1	1					
	-12.0dB				0	0	0	1	1	0	0	0					
	-12.5dB				0	0	0	1	1	0	0	1					
	-13.0dB				0	0	0	1	1	0	1	0					
	-13.5dB				0	0	0	1	1	0	1	1					
	-14.0dB				0	0	0	1	1	1	0	0					
	-14.5dB				0	0	0	1	1	1	0	1					
	-15.0dB				0	0	0	1	1	1	1	0					
	-15.5dB				0	0	0	1	1	1	1	1					
	-16.0dB				0	0	1	0	0	0	0	0					
	-16.5dB				0	0	1	0	0	0	0	1					
	-17.0dB				0	0	1	0	0	0	1	0					
	-17.5dB				0	0	1	0	0	0	1	1					
	-18.0dB				0	0	1	0	0	1	0	0					
	-18.5dB				0	0	1	0	0	1	0	1					
	-19.0dB				0	0	1	0	0	1	1	0					
	-19.5dB				0	0	1	0	0	1	1	1					
	-20.0dB				0	0	1	0	1	0	0	0					
	-20.5dB				0	0	1	0	1	0	0	1					
	-21.0dB				0	0	1	0	1	0	1	0					
	-21.5dB				0	0	1	0	1	0	1	1					
	-22.0dB				0	0	1	0	1	1	0	0					
	-22.5dB				0	0	1	0	1	1	0	1					
	-23.0dB				0	0	1	0	1	1	1	0					
	-23.5dB				0	0	1	0	1	1	1	1					
	-24.0dB				0	0	1	1	0	0	0	0					
	-24.5dB				0	0	1	1	0	0	0	1					
	-25.0dB				0	0	1	1	0	0	1	0					
	-25.5dB				0	0	1	1	0	0	1	1					
	-26.0dB				0	0	1	1	0	1	0	0					
	-26.5dB				0	0	1	1	0	1	0	1					
	-27.0dB				0	0	1	1	0	1	1	0					
	-27.5dB				0	0	1	1	0	1	1	1					
	-28.0dB				0	0	1	1	1	0	0	0					
	-28.5dB				0	0	1	1	1	0	0	1					
	-29.0dB				0	0	1	1	1	0	1	0					
	-29.5dB				0	0	1	1	1	0	1	1					
	-30.0dB				0	0	1	1	1	1	0	0					
	-30.5dB				0	0	1	1	1	1	0	1					
	-31.0dB				0	0	1	1	1	1	1	0					

Select Address No. 3 Setting Table

Function \& Setting		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
$$	-31.5dB	Volume Channel Select			0	0	0	1	1	1	1	1	1	0	Chip Select	1	1
	-32.0dB				0	1	0	0	0	0	0	0					
	-32.5dB				0	1	0	0	0	0	0	1					
	-33.0dB				0	1	0	0	0	0	1	0					
	-33.5dB				0	1	0	0	0	0	1	1					
	-34.0dB				0	1	0	0	0	1	0	0					
	-34.5dB				0	1	0	0	0	1	0	1					
	-35.0dB				0	1	0	0	0	1	1	0					
	-35.5dB				0	1	0	0	0	1	1	1					
	-36.0dB				0	1	0	0	1	0	0	0					
	-36.5dB				0	1	0	0	1	0	0	1					
	-37.0dB				0	1	0	0	1	0	1	0					
	-37.5dB				0	1	0	0	1	0	1	1					
	-38.0dB				0	1	0	0	1	1	0	0					
	-38.5dB				0	1	0	0	1	1	0	1					
	-39.0dB				0	1	0	0	1	1	1	0					
	-39.5dB				0	1	0	0	1	1	1	1					
	-40.0dB				0	1	0	1	0	0	0	0					
	-40.5dB				0	1	0	1	0	0	0	1					
	-41.0dB				0	1	0	1	0	0	1	0					
	-41.5dB				0	1	0	1	0	0	1	1					
	-42.0dB				0	1	0	1	0	1	0	0					
	-42.5dB				0	1	0	1	0	1	0	1					
	-43.0dB				0	1	0	1	0	1	1	0					
	-43.5dB				0	1	0	1	0	1	1	1					
	-44.0dB				0	1	0	1	1	0	0	0					
	-44.5dB				0	1	0	1	1	0	0	1					
	-45.0dB				0	1	0	1	1	0	1	0					
	-45.5dB				0	1	0	1	1	0	1	1					
	-46.0dB				0	1	0	1	1	1	0	0					
	-46.5dB				0	1	0	1	1	1	0	1					
	-47.0dB				0	1	0	1	1	1	1	0					
	-47.5dB				0	1	0	1	1	1	1	1					
	-48.0dB				0	1	1	0	0	0	0	0					
	-48.5dB				0	1	1	0	0	0	0	1					
	-49.0dB				0	1	1	0	0	0	1	0					
	-49.5dB				0	1	1	0	0	0	1	1					
	-50.0dB				0	1	1	0	0	1	0	0					
	-50.5dB				0	1	1	0	0	1	0	1					
	-51.0dB				0	1	1	0	0	1	1	0					
	-51.5dB				0	1	1	0	0	1	1	1					
	-52.0dB				0	1	1	0	1	0	0	0					
	-52.5dB				0	1	1	0	1	0	0	1					
	-53.0dB				0	1	1	0	1	0	1	0					
	-53.5dB				0	1	1	0	1	0	1	1					
	-54.0dB				0	1	1	0	1	1	0	0					
	-54.5dB				0	1	1	0	1	1	0	1					

Select Address No. 3 Setting Table

Select Address No. 3 Setting Table

Function \& Setting		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
$\begin{aligned} & 0 \\ & \frac{1}{3} \\ & \hline 0 \end{aligned}$	-78.5dB	Volume Channel Select			0	1	0	0	1	1	1	0	1	0	Chip Select	1	1
	-79.0dB				1	0	0	1	1	1	1	0					
	-79.5dB				1	0	0	1	1	1	1	1					
	-80.0dB				1	0	1	0	0	0	0	0					
	-80.5dB				1	0	1	0	0	0	0	1					
	-81.0dB				1	0	1	0	0	0	1	0					
	-81.5dB				1	0	1	0	0	0	1	1					
	-82.0dB				1	0	1	0	0	1	0	0					
	-82.5dB				1	0	1	0	0	1	0	1					
	-83.0dB				1	0	1	0	0	1	1	0					
	-83.5dB				1	0	1	0	0	1	1	1					
	-84.0dB				1	0	1	0	1	0	0	0					
	-84.5dB				1	0	1	0	1	0	0	1					
	-85.0dB				1	0	1	0	1	0	1	0					
	-85.5dB				1	0	1	0	1	0	1	1					
	-86.0dB				1	0	1	0	1	1	0	0					
	-86.5dB				1	0	1	0	1	1	0	1					
	-87.0dB				1	0	1	0	1	1	1	0					
	-87.5dB				1	0	1	0	1	1	1	1					
	-88.0dB				1	0	1	1	0	0	0	0					
	-88.5dB				1	0	1	1	0	0	0	1					
	-89.0dB				1	0	1	1	0	0	1	0					
	-89.5dB				1	0	1	1	0	0	1	1					
	-90.0dB				1	0	1	1	0	1	0	0					
	-90.5dB				1	0	1	1	0	1	0	1					
	-91.0dB				1	0	1	1	0	1	1	0					
	-91.5dB				1	0	1	1	0	1	1	1					
	-92.0dB				1	0	1	1	1	0	0	0					
	-92.5dB				1	0	1	1	1	0	0	1					
	-93.0dB				1	0	1	1	1	0	1	0					
	-93.5dB				1	0	1	1	1	0	1	1					
	-94.0dB				1	0	1	1	1	1	0	0					
	-94.5dB				1	0	1	1	1	1	0	1					
	-95.0dB				1	0	1	1	1	1	1	0					
	Prohibition				1	0	1	1	1	1	1	1					
					-	-	-	-	-			-					
					1	1	1	1	1	1	1	1					

Select Address No. 7 Setting Table

Function \& Setting		D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
	11 msec	0	0	0	$\mathrm{B} \rightarrow \mathrm{~A}$ switching-time			Base clock	0	0	System Reset	0	0	1	Chip Select	1	1
	5 msec	0	0	1													
	7 msec	0	1	0													
	14 msec	0	1	1													
	3 msec	1	0	0													
	2 msec	1	0	1													
		1	1	0													
		1	1	1													
	11 msec				0	0	0										
	5 msec				0	0	1										
	7 msec				0	1	0										
	14 msec				0	1	1										
0 ¢	3 msec				1	0	0										
3	2 msec		$\rightarrow \mathrm{B}$		1	0	1										
			hing-		1	1	0										
	Pronibition				1	1	1										
$\begin{array}{\|lll} \hline 0 & \frac{1}{0} \\ 0 \\ 0 & 0 \\ 0 \end{array}$	x1				$\mathrm{B} \rightarrow \mathrm{~A}$ switching-time			0									
	$\times 1 / 2$							1									
	Normal							Base clock			0						
	Reset							1									

Volume changing needs the time that is following Figure. (Ex. It selected $11 \mathrm{msec}, 22 \mathrm{msec}$ need.)

Figure 11. About [$A \rightarrow B$ switching-time $][B \rightarrow A$ switching-time $]$
Base clock is able to change Internal Oscillator Frequency. For example, when Base clock select $\times 1 / 2$, $A->B$ and $B->A$ switching time is to be two times. (ex. $11 \mathrm{msec}->22 \mathrm{msec}$)
-Caution on send data
When send the same channel data among the switching process, internal operation is as below.

Figure 12. The switching process with send data
(2)data is sent during $A->B$ switching time, it is valid.
(3)data and (4)data are sent during $B->A$ switching time, it is valid at the next processing time. But (3)data is replaced by (4)data.
-About pop noise in gain changing
The level of the pop noise sometimes varies in the difference in output $D C$ offset of the inside condition A and B.

Application Circuit Diagram

Figure 13. Application Circuit Diagram

[^0]
Power Dissipation

About the thermal design by the IC
Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum ratings may degrade and destroy elements. Careful consideration must be given to the heat of the IC from the two standpoints of immediate damage and long-term reliability of operation.

Figure 14. Temperature Derating Curve
Note) Value is actual measurements and is not guaranteed.
Power dissipation values vary according to the board on which the IC is mounted.

I/O equivalence circuit(s)

Terminal Number	Terminal Name	Terminal Voltage (V)	Equivalent Circuit	Description of terminal
1	VEES	-7		Negative power supply terminal
$\begin{aligned} & 4 \\ & 5 \\ & 5 \\ & 11 \\ & 12 \\ & 13 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \\ & 33 \\ & 34 \end{aligned}$	AGND	0		Analog ground terminals.
$\begin{aligned} & 16 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { VCC } \\ & \text { VEE } \end{aligned}$	$\begin{gathered} +7 \\ -7 \end{gathered}$		Positive power supply terminal and Negative power supply terminal
17	DGND	0		Digital ground terminal.
$\begin{aligned} & 18 \\ & 19 \\ & 14 \end{aligned}$	$\begin{gathered} \mathrm{DA} \\ \mathrm{CL} \\ \mathrm{CHIP} \end{gathered}$	-		Input terminals for a clock and data.
$\begin{aligned} & 21 \\ & 22 \\ & 25 \\ & 26 \end{aligned}$	VOUTR2 VOUTL2 VOUTR1 VOUTL1	0		Output terminals for analog sound signal.

Terminal Number	Terminal Name	Terminal Voltage (V)	Equivalent Circuit	Description of terminal
$\begin{gathered} 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	VINL1 VINR1 VINL2 VINR2	0		Input terminals for stereo sound signal. Input impedance is $47 \mathrm{k} \Omega$ (Typ.).
$\begin{gathered} 2 \\ 3 \\ 33 \\ 24 \\ 37 \\ 38 \\ 39 \\ 40 \end{gathered}$	TEST	0		TEST terminals

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply terminals.

2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.
3. VEE Voltage

Ensure that no pins are at a voltage below that of the VEE pin at any time, even during transient condition.
4. Ground Wiring Pattern

GND pins which are digital ground(17pin) and analog ground(4,5,11,12,13,27,28,29,30,31,32,33,34pin) are not connected inside LSI. These ground pins traces should be routed separately but connected to a single ground at the reference point of the application board. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration

Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.

6. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.
7. Rush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.
8. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
9. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to IC pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
10. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.
11. Unused Input Terminals

Because the input impedance of the terminal becomes $47 \mathrm{k} \Omega$ when the signal input terminal makes a terminal open, the plunge noise from outside sometimes becomes a problem. Please connect the no using input pin to GND. And please open the no using output pin.

Operational Notes - continued 1

12. Regarding the Input Pin of the IC

This monolithic IC contains $\mathrm{P}+$ isolation and P substrate layers between adjacent elements in order to keep them isolated. $\mathrm{P}-\mathrm{N}$ junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):

When Vee >Pin A and Vee > Pin B, the P-N junction operates as a parasitic diode.
When Vee > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the Vee voltage to an input pin (and thus to the P substrate) should be avoided.

Figure 15. Example of monolithic IC structure

13. Ceramic Capacitor

When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.

14. About power ON/OFF

1. At power ON/OFF, a pop sound will be generated and, therefore, use MUTE on the set.
2. When turning on power supplies, Vee and Vcc should be powered on simultaneously or Vee first; then followed by Vcc. If the Vcc side is started up first, an excessive current may pass Vcc through Vee.
3. About function switching

When switching Input Selector, Mode selector or Input Gain, use MUTE on Volume.
16. Volume gain switching

In case of the boost of the volume when changing to the high gain which exceeds +20 dB especially, the switching pop noise sometimes becomes big. In this case, we recommend changing every 1 dB step without changing a gain at once. Also, the pop noise sometimes can reduce by making micro-step volume switching time long, too.

[^0]: Notes on wiring
 (1) GND shall be wired from reference point and thicken.
 (2) Wiring pattern of CL and DA shall be away from that of analog unit and cross-talk shall not be acceptable.
 (3) Lines of CL and DA of shall not be parallel if possible. The lines shall be shielded, if they are adjacent to each other.
 (4) Please pay attention the wiring pattern of the input terminal of the input selector to the cross talk. Recommend that wiring period is shielded.
 (5) Please connect the decoupling capacitor of a power supply in the shortest distance as much as possible to VCC and GND, VEE.
 (6) 1pin have to connect to 20-pin(VEE), if you don't connect like as this note, IC may occurred "latch-up or ESD damaged".

