: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Sound Processor with Built-in 2-band Equalizer
 BD37513FS

General Description

BD37513FS is a sound processor with built-in 2-band equalizer for car audio. The functions are 4ch stereo input selector, input-gain control, main volume, loudness, and 4ch fader volume. Moreover, its "Advanced switch circuit", which is an original ROHM technology, can reduce various switching noise (ex. No-signal, low frequency like 20 Hz \& large signal inputs). "Advanced switch" makes control of microcomputer easier, supporting the construction of a high quality car audio system.

Features

- Reduce switching noise of input gain control, mute, main volume, fader volume, bass, treble, loudness by using advanced switch circuit.
- Built-in 1 differential input selector and 3 single-ended input selectors
- Built-in ground isolation amplifier inputs, ideal for external stereo input.
- Built-in input gain controller reduces switching noise for volume of a portable audio input.
- Decrease the number of external components due to built-in 2-band equalizer filter and loudness filter. Also, it is possible to control Gv using $I^{2} \mathrm{C}$ BUS control.
- It is possible to adjust the gain of the bass and treble up to $\pm 20 \mathrm{~dB}$ with 1 dB step gain adjustment.
- Energy-saving design resulting in low current consumption, by utilizing the Bi-CMOS process. It has the advantage in quality over scaling down the power heat control of the internal regulators.
- Input terminals and output terminals are organized and separately laid out to keep the signal flow in one direction which results in simpler and smaller PCB layout.
- It is possible to control the $I^{2} \mathrm{C}$ BUS by $3.3 \mathrm{~V} / 5 \mathrm{~V}$.

Key Specifications

- Power Supply Voltage Range:
- Circuit Current (No Signal):
- Total Harmonic Distortion 1:
- Maximum Input Voltage:
- Cross-talk Between Selectors:
- Volume Control Range:
- Output Noise Voltage 1:
- Residual Output Noise Voltage:
- Operating Temperature Range:
7.0 V to 9.5 V

38mA(Typ)
0.001\%(Typ)
2.3Vrms(Typ)
-100 dB (Typ)
+15 dB to -79 dB
$3.8 \mu \mathrm{Vrms}(\mathrm{Typ})$
$1.8 \mu \mathrm{Vrms}(\mathrm{Typ})$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Package $\quad W$ (Typ) $\times \mathrm{D}($ Typ $) \times \mathrm{H}($ Max $)$

Applications

It is optimal for use in car audio systems. It can also be used for audio equipment of mini Compo, micro Compo, TV, etc.

Typical Application Circuit

Pin Configuration

Pin Descriptions

Pin No.	Pin Name	Description	Pin No.	Pin Name	Description
1	FIL	VCC/2 terminal	11	MUTE	External compulsory mute terminal
2	A1	A input terminal of 1ch	12	TEST1	Test Pin
3	A2	A input terminal of 2ch	13	OUTR2	Rear output terminal of 2ch
4	B1	B input terminal of 1ch	14	OUTR1	Rear output terminal of 1ch
5	B2	B input terminal of 2ch	15	OUTF2	Front output terminal of 2ch
6	C1	C input terminal of 1ch	16	OUTF1	Front output terminal of 1ch
7	C2	C input terminal of 2ch	17	VCC	Power supply terminal
8	DP1	D positive input terminal of 1ch	18	SCL	I 2 C Communication clock terminal
9	DN	D negative input terminal	19	SDA	I 2 C Communication data terminal
10	DP2	D positive input terminal of 2ch	20	GND	GND terminal

Block Diagram

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V_{cc}	10.0	V
Input Voltage	V_{IN}	$\mathrm{V}_{\mathrm{cc}+}+0.3$ to GND-0.3	V
Power Dissipation	Pd	$0.94^{\text {(Note) }}$	W
Storage Temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

(Note) This value derates by $7.5 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or more when ROHM standard board is used.
Thermal resistance $\theta \mathrm{ja}=133.3\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
ROHM Standard board
Size : $70 \times 70 \times 1.6\left(\mathrm{~mm}^{3}\right)$
Material : A FR4 grass epoxy board(3\% or less of copper foil area)
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Recommended Operating Conditions

Parameter	Symbol	Min	Typ	Max	Unit
Power Supply Voltage	V_{cc}	7.0	-	9.5	V
Temperature	Topr	-40	-	+85	V

Electrical Characteristics

(Unless specified otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=8.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{I}}=1 \mathrm{Vrms}, \mathrm{Rg}=600 \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, A input, Input gain 0 dB , Mute OFF, Volume 0dB, Tone control OdB, Loudness 0dB, Fader OdB)

$\begin{aligned} & \hline \text { 듬 } \\ & \text { O } \\ & \text { n } \end{aligned}$	Parameter	Symbol	Limit			Unit	Conditions
			Min	Typ	Max		
	Circuit Current	lQ	-	38	48	mA	No signal
	Voltage Gain	Gv	-1.5	0	+1.5	dB	$\mathrm{Gv}=20 \log \left(\mathrm{~V}_{\text {Out }} / \mathrm{V}_{\text {IN }}\right)$
	Channel Balance	CB	-1.5	0	+1.5	dB	$\mathrm{CB}=\mathrm{Gv}_{1}-\mathrm{Gv}_{2}$
	Total Harmonic Distortion 1 (FRONT,REAR)	THD+N1	-	0.001	0.05	\%	$\begin{aligned} & \text { Vout }=1 \text { Vrms } \\ & \mathrm{BW}=400 \mathrm{HZ}-30 \mathrm{KHz} \end{aligned}$
	Output Noise Voltage 1 (FRONT,REAR) *	$\mathrm{V}_{\mathrm{NO} 1}$	-	3.8	15	$\mu \mathrm{Vrms}$	$\begin{aligned} & \mathrm{Rg}=0 \Omega \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
	Residual Output Noise Voltage *	$\mathrm{V}_{\text {NOR }}$	-	1.8	10	$\mu \mathrm{Vrms}$	$\begin{aligned} & \text { Fader }=-\infty \mathrm{dB} \\ & \mathrm{Rg}=0 \Omega \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
	Cross-talk Between Channels *	CTC	-	-100	-90	dB	$\begin{aligned} & \mathrm{Rg}=0 \Omega \\ & \mathrm{CTC}=20 \log (\text { Vout } / \mathrm{VIN}) \\ & \mathrm{BW}=1 \mathrm{HF}-\mathrm{A} \end{aligned}$
	Ripple Rejection	RR	-	-70	-40	dB	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{RR}}=100 \mathrm{mVrms} \\ & \mathrm{RR}=20 \log \left(\mathrm{~V}_{\mathrm{CC}} \mathrm{IN} / \mathrm{V}_{\text {OUT }}\right) \end{aligned}$
	Input Impedance(A,B)	Rin_s	70	100	130	$\mathrm{k} \Omega$	
	Input Impedance (C,D)	Rin_D	175	250	325	$\mathrm{k} \Omega$	
	Maximum Input Voltage	Vıм	2.1	2.3	-	Vrms	$\begin{aligned} & \mathrm{V}_{\text {IM }} \text { at } \mathrm{THD}+\mathrm{N}(\mathrm{~V} \text { оut })=1 \% \\ & \mathrm{BW}=400 \mathrm{~Hz}-30 \mathrm{KHz} \end{aligned}$
	Cross-talk Between Selectors *	CTS	-	-100	-90	dB	$\begin{aligned} & \mathrm{Rg}=0 \Omega \\ & \mathrm{CTS}=20 \log \left(\text { Vout } / \mathrm{VIN}_{\mathrm{IN}}\right) \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
	Common Mode Rejection Ratio *	CMRR	50	65	-	dB	DP1 and DN input DP2 and DN input CMRR=20log($\left.\mathrm{V}_{\text {IN }} / \mathrm{V}_{\text {OUT }}\right)$ $\mathrm{BW}=\mathrm{IHF}-\mathrm{A}$
	Minimum Input Gain	Gin_min	-2	0	+2	dB	Input gain 0dB $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVrms}$ $\mathrm{G}_{\text {In }}=20 \log \left(\mathrm{~V}_{\text {out }} / \mathrm{V}_{\text {IN }}\right)$
	Maximum Input Gain	GIn_max	+18	+20	+22	dB	Input gain 20dB $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVrms}$ $\mathrm{G}_{\text {In }}=20 \log \left(\mathrm{~V}_{\text {out }} / \mathrm{VIIN}_{\text {I }}\right)$
	Gain Set Error	Gin_ERR	-2	0	+2	dB	$\mathrm{GAIN}=+1 \mathrm{~dB}$ to +20 dB

Electrical Characteristics - continued

(Unless specified otherwise, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=8.5 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{IN}}=1 \mathrm{Vrms}, \mathrm{Rg}=600 \Omega, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, A input, Input gain 0 dB , Mute OFF, Volume 0dB, Tone control 0 dB , Loudness 0 dB , Fader 0 dB)

	Parameter	Symbol	Limit			Unit	Conditions
			Min	Typ	Max		
$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{5}}$	Mute Attenuation *	Gmute	-	-105	-85	dB	$\begin{aligned} & \text { Mute ON } \\ & \text { GMute=20log }\left(V_{\text {out }} / \mathrm{VIN}\right) \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
$\begin{aligned} & \sum_{\sum}^{\omega} \\ & 0 \\ & \hline \end{aligned}$	Maximum Gain	Gv_max	+13	+15	+17	dB	Volume $=15 \mathrm{~dB}$ $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mVrms}$ $\mathrm{Gv}=20 \log \left(\mathrm{Vout}_{\text {oulin }}\right)$
	Maximum Attenuation *	Gv_min	-	-100	-85	dB	$\begin{aligned} & \text { Volume }=-\infty \mathrm{dB} \\ & \mathrm{Gv}=20 \log (\mathrm{Vout} / \mathrm{VIN}) \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
	Attenuation Set Error 1	Gv_ERR1	-2	0	+2	dB	GAIN \& ATT $=+15 \mathrm{~dB}$ to -15 dB
	Attenuation Set Error 2	Gv_ERR2	-3	0	+3	dB	ATT $=-16 \mathrm{~dB}$ to -47 dB
	Attenuation Set Error 3	Gv_ERR3	-4	0	+4	dB	ATT $=-48 \mathrm{~dB}$ to -79dB
$\underset{\underset{\sim}{\infty}}{\substack{\infty \\ \hline}}$	Maximum Boost Gain	Gb_bst	+18	+20	+22	dB	$\begin{aligned} & \text { Gain }=+20 \mathrm{~dB} \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mVrms} \\ & \mathrm{G}_{\mathrm{B}}=20 \log \left(\mathrm{~V}_{\text {out }} / \mathrm{V}_{\text {IN }}\right) \end{aligned}$
	Maximum Cut Gain	Gb_Cut	-22	-20	-18	dB	$\begin{aligned} & \text { Gain }=-20 \mathrm{~dB} \mathrm{f}=100 \mathrm{~Hz} \\ & \mathrm{~V}_{\text {IN }}=2 \mathrm{Vrms} \\ & \mathrm{G}_{\mathrm{B}}=20 \log (\mathrm{Vout} / \mathrm{VIN}) \end{aligned}$
	Gain Set Error	GB_ERR	-2	0	+2	dB	Gain $=+20 \mathrm{~dB}$ to $-20 \mathrm{~dB} \mathrm{f}=100 \mathrm{~Hz}$
$\begin{aligned} & \underset{\sim}{w} \\ & \underset{\sim}{\underset{r}{r}} \end{aligned}$	Maximum Boost Gain	$\mathrm{GT}_{\text {t bst }}$	+18	+20	+22	dB	$\begin{aligned} & \text { Gain }=+20 \mathrm{~dB} \mathrm{f}=10 \mathrm{kHz} \\ & \mathrm{~V}_{\mathrm{IN}}=100 \mathrm{mVrms} \\ & \mathrm{G}_{\mathrm{T}}=20 \log (\mathrm{Vout} / \mathrm{V} \text { IN }) \end{aligned}$
	Maximum Cut Gain	Gt_cut	-23	-20	-17	dB	$\begin{aligned} & \text { Gain }=-20 \mathrm{~dB} \mathrm{f}=10 \mathrm{kHz} \\ & V_{\text {IN }}=2 \mathrm{Vrms} \\ & \mathrm{G}_{\mathrm{T}}=20 \log \left(\mathrm{~V}_{\text {OUT }} / \mathrm{V}_{\mathrm{IN}}\right) \end{aligned}$
	Gain Set Error	$\mathrm{GT}_{\text {TERR }}$	-2	0	+2	dB	Gain $=+20 \mathrm{~dB}$ to $-20 \mathrm{~dB} \mathrm{f}=10 \mathrm{kHz}$
	Maximum Attenuation*	Gf_min	-	-100	-90	dB	$\begin{aligned} & \text { Fader }=-\infty \mathrm{dB} \\ & \mathrm{G}_{\mathrm{F}}=20 \log \left(\mathrm{~V}_{\text {out }} / \mathrm{VIN}^{\prime}\right) \\ & \mathrm{BW}=\mathrm{IHF}-\mathrm{A} \end{aligned}$
	Attenuation Set Error 1	$\mathrm{GF}_{\text {_ERR1 }}$	-2	0	+2	dB	ATT $=0 \mathrm{~dB}$ to -15 dB
	Attenuation Set Error 2	GF_ERR2	-3	0	+3	dB	ATT $=-16 \mathrm{~dB}$ to -47 dB
	Attenuation Set Error 3	GF_ERR3	-4	0	+4	dB	ATT $=-48 \mathrm{~dB}$ to -79 dB
	Output Impedance	Rout	-	-	50	Ω	VIn $=100 \mathrm{mVms}$
	Maximum Output Voltage	Vом	2	2.2	-	Vrms	$\begin{aligned} & \text { THD+N=1\% } \\ & \text { BW }=400 \mathrm{~Hz}-30 \mathrm{KHz} \end{aligned}$
$\begin{aligned} & \text { n } \\ & \stackrel{\sim}{2} \\ & 0 \\ & 0 \end{aligned}$	Maximum Gain	GL_max	+17	+20	+23	dB	Gain 20dB $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} \mathrm{ms}$ $\mathrm{GL}=20 \log \left(\mathrm{Vout}_{\mathrm{VIN}}\right)$
	Gain Set Error	GL_ERR	-2	0	+2	dB	GAIN $=+20 \mathrm{~dB}$ to +1 dB

VP-9690A (Average value detection, effective value display) filter by Matsushita Communication is used for * measurement.
Phase between input / output is same.

Typical Performance Curves

Figure 1. Quiescent Current vs Supply Voltage

Figure 3. Gain vs Frequency

Figure 2. Total Harmonic Distortion vs Output Voltage

Figure 4. Bass Gain vs Frequency

Figure 5 . Treble Gain vs Frequency

Figure 6. Output Noise vs Volume Gain

Figure 8. Output Noise vs Treble Gain

Typical Performance Curves - continued

Figure 9. CMRR vs Frequency

Figure 11. Advanced Switch 1

Figure 10. Output Voltage vs Rload

Figure 12. Advanced Switch 2

Timing Chart

Control Signal Specification

(1) Electrical Specifications and Timing for bus Lines and I/O Stage

Figure 13. $1^{2} \mathrm{C}$-bus Signal Timing Diagram
Table 1 Characteristics of the SDA and SCL bus lines for $\mathrm{I}^{2} \mathrm{C}$-bus devices

Parameter		Symbol	Fast-mode ${ }^{2} \mathrm{C}$-bus		Unit	
		Min	Max			
1	SCL clock frequency		fscl	0	400	kHz
2	Bus free time between a STOP and START condition	tbuf	1.3	-	$\mu \mathrm{S}$	
3	Hold time (repeated) START condition. After this period, the first clock pulse is generated	thd; STA	0.6	-	$\mu \mathrm{S}$	
4	LOW period of the SCL clock	tLow	1.3	-	$\mu \mathrm{S}$	
5	HIGH period of the SCL clock	tHIGH	0.6	-	$\mu \mathrm{S}$	
6	Set-up time for a repeated START condition	tsu;sTA	0.6	-	$\mu \mathrm{S}$	
7	Data hold time:	thd; DAT	$0.06{ }^{\text {(Note) }}$	-	$\mu \mathrm{S}$	
8	Data set-up time	tsu;DAT	120	-	ns	
9	Set-up time for STOP condition	tsu;sto	0.6	-	$\mu \mathrm{S}$	

All values referred to VIH Min and VIL Max Levels (see Table 2).
(Note) To avoid sending right after the fall-edge of SCL (VIH min of the SCL signal), the transmitting device should set a hold time of 300ns or more for the SDA signal.
For 7 (thi;DAT), 8 (tsu;DAT), make the setup in which the margin is fully in.
Table 2 Characteristics of the SDA and SCL I/O stages for $\mathrm{I}^{2} \mathrm{C}$-bus devices

SCL clock frequency : 250kHz
Figure 14. $I^{2} \mathrm{C}$ Data Transmission Command Timing Diagram
(2) $\underline{\underline{I^{2}} \mathrm{C} \text { BUS FORMAT }}$

MSB LSB		MSB		MSB		LSB	
S	Slave Address	A	Select Address	A	Data	A	P
1bit	8bit	1 bit$=$S	8bit	1 bit	8bit	1bit 1bit	
	S		= Start condition (Recognition of start bit)				
	Slave Address	$=$ Recognition of slave address. The first 7 bits correspond to the slave address. The least significant bit is " L " which corresponds to write mode.					
	A	= ACKNOWLEDGE bit (Recognition of acknowledgement)					
	Select Address	= Select address corresponding to volume, bass or treble.					
	Data	= Data on every volume and tone.					
	P	= Stop condition (Recognition of stop bit)					

(3) $\underline{\underline{1^{2} \mathrm{C}} \text { BUS Interface Protocol }}$
(a) Basic Format

S	Slave Address	A	Select Address	A	Data	A	P
MSB		LSB	MSB	LSB	MSB	LSB	

(b) Automatic Increment (Select Address increases (+1) according to the number of data.)

S	Slave Address	A	Select Address	A	Data1	A	Data2	A	\cdots	DataN	A	P
MSB			LSB	MSB	LSB	MSB	LSB	MSB	LSB		MSB	LSB

(Example) (1) Data1 shall be set as data of address specified by Select Address.
(2) Data2 shall be set as data of address specified by Select Address +1 .
(3) DataN shall be set as data of address specified by Select Address $+\mathrm{N}-1$.
(c) Configuration Unavailable for Transmission (In this case, only Select Address1 is set.)

(Note)lf any data is transmitted as Select Address 2 next to data, it is recognized as data, not as Select Address 2.
(4) Slave Address
MSB

LSB	LSB						
A6	A5	A4	A3	A2	A1	A0	R/W
1	0	0	0	0	0	0	0

(5) Select Address \& Data

Note

1. The Advanced Switch works in the latch part while changing from one function to another.
2. Upon continuous data transfer, the Select Address rolls over because of the automatic increment function, as shown below.

3. For the function of Input Selector etc, Advanced Switch is not used. Therefore, please apply mute on the set side when changing these settings.
4. When using mute function of this IC at the time of changing input selector, please switch mute ON/OFF while waiting for advanced-mute time.

Select address 01 (hex)

Time	MSB	Advanced switch time of Mute						LSB
	D7	D6	D5	D4	D3	D2	D1	D0
0.6 msec	Advanced Switch ON/OFF	0	Advanced switch time of Input gain/Volume Tone/Fader/Loudness		0	0	0	0
1.0 msec					0		1	
1.4 msec					1		0	
3.2 msec					1		1	

Time	MSB		Advanced switch time of Input gain/Volume/Tone/Fader/Loudness					LSB
	D7	D6	D5	D4	D3	D2	D1	D0
4.7 msec	Advanced Switch ON/OFF	0	0	0	0	0	Advanced switch Time of Mute	
7.1 msec			0	1				
11.2 msec			1	0				
14.4 msec			1	1				

Mode	MSB							
	D7	D6	D5	D4	D3	D2	D1	D0
OFF	0	0	Advanced switch time of Input gain/Volume Tone/Fader/Loudness	0	0	Advanced switch Time of Mute		
ON	1							

Select address 05(hex)

Mode	MSB		Input Selector					LSB
	D7	D6	D5	D4	D3	D2	D1	D0
Initial	0	0	0	0	0	0	0	0
A					0	0	0	1
B					0	0	1	0
C					0	0	1	1
D diff					0	1	1	1
Input SHORT					1	0	0	1
Prohibition								

Input SHORT : The input impedance of each input terminal is lowered from $100 \mathrm{k} \Omega$ (TYP) to $6 \mathrm{k} \Omega($ TYP).
(For quick charge of coupling capacitor)

Select address 06 (hex)

Mode	MSB		Mute ON/OFF					
	D7	D6	D5	D4	D3	D2	D1	D0
OFF	0	0	0	Input Gain				
ON	1	0						

Select address 20, 28, 29, 2A, 2B (hex)

Gain \& ATT	MSB	Vol. Fader Gain / Attenuation						$\begin{array}{\|c\|} \hline \text { LSB } \\ \hline \text { D0 } \end{array}$
	D7	D6	D5	D4	D3	D2	D1	
Prohibition	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	1
	:	:	:	:	:	:	:	:
	0	1	1	1	0	0	0	0
15dB	0	1	1	1	0	0	0	1
14 dB	0	1	1	1	0	0	1	0
13dB	0	1	1	1	0	0	1	1
:	:	:	:	:	:	:	:	:
-77dB	1	1	0	0	1	1	0	1
-78dB	1	1	0	0	1	1	1	0
-79dB	1	1	0	0	1	1	1	1
Prohibition	1	1	0	1	0	0	0	0
	:	:	:	:	:	:	:	:
	1	1	1	1	1	1	1	0
$-\infty \mathrm{dB}$	1	1	1	1	1	1	1	1

(Only OdB to $-\infty \mathrm{dB}$ are available at address $28,29,2 \mathrm{~A}, 2 \mathrm{~B}$.)

Select address 51, 57 (hex)

Mode	MSB							
	D7	D6	D5	D4 4	D3	D2	D1	D0
Boost	0	0	0	Bass/Treble Gain				
Cut	1	0						

Select address 75 (hex)

Mode	MSB	Loudness Hicut					LSB	
	D7	D6	D5	D4	D3	D2	D1	D0
Hicut1	0	0	0	Loudness Gain				
Hicut2		0	1					
Hicut3		1	0					
Hicut4		1	1					

Gain	MSB			Loudness Gain				LSB
	D7	D6	D5	D4	D3	D2	D1	D0
0dB	0	Loudness Hicut		0	0	0	0	0
1 dB				0	0	0	0	1
2 dB				0	0	0	1	0
3 dB				0	0	0	1	1
4 dB				0	0	1	0	0
5 dB				0	0	1	0	1
6dB				0	0	1	1	0
7 dB				0	0	1	1	1
8 dB				0	1	0	0	0
9 dB				0	1	0	0	1
10 dB				0	1	0	1	0
11 dB				0	1	0	1	1
12 dB				0	1	1	0	0
13dB				0	1	1	0	1
14 dB				0	1	1	1	0
15 dB				0	1	1	1	1
16 dB				1	0	0	0	0
17 dB				1	0	0	0	1
18 dB				1	0	0	1	0
19dB				1	0	0	1	1
20 dB				1	0	1	0	0
Prohibition				1	0	1	0	1
				:	:	:	:	:
				1	1	1	1	1

\square : Initial condition
(6) About Power ON Reset

Built-in IC initialization is made during power on of the supply voltage. Please send initial data to all addresses at supply voltage on. And please turn on mute at the set side until this initial data is sent.

Parameter	Symbol	Limit			Unit	Conditions
		Min	Typ	Max		
Rise Time of VCC	TRISE	33	-	-	Vcc rise time from 0V to 5V	
VCC Voltage of Release Power ON Reset	VPOR	-	4.1	-	V	

(7) About External Compulsory Mute Terminal

It is possible to force mute externally by setting an input voltage to the MUTE terminal.

Mute Voltage Condition	Mode
GND to 1.0 V	MUTE ON
2.3 V to V cc	MUTE OFF

Establish the voltage of MUTE in the condition to be defined.

Application Information

1. Function and Specifications

Function	Specifications
Input selector	- Stereo 3 input - Differential 1 input
Input gain	$\cdot+20 \mathrm{~dB}$ to 0 dB (1 dB step) - Possible to use "Advanced switch" for prevention of switching noise.
Mute	- Possible to use "Advanced switch" for prevention of switching noise.
Volume	$\cdot+15 \mathrm{~dB}$ to -79 dB (1dB step) , $-\infty \mathrm{dB}$ - Possible to use "Advanced switch" for prevention of switching noise.
Bass	$\cdot+20 \mathrm{~dB}$ to -20 dB (1dB step) - Possible to use "Advanced switch" at changing gain - Q=1 - $\mathrm{fo}=100 \mathrm{~Hz}$
Treble	$\cdot+20 \mathrm{~dB}$ to -20 dB (1dB step) - Possible to use "Advanced switch" at changing gain - Q=1.25 $\cdot \mathrm{fo}=10 \mathrm{kHz}$
Fader	- 0dB to -79dB, - -dB - Possible to use "Advanced switch" for prevention of switching noise.
Loudness	- 20dB to 0dB (1dB step) - fo= 800 Hz - Possible to use "Advanced switch" for prevention of switching noise.

2. Volume / Fader Volume Attenuation Data

(dB)	D7	D6	D5	D4	D3	D2	D1	D0	(dB)	D7	D6	D5	D4	D3	D2	D1	D0
+15	0	1	1	1	0	0	0	1	-33	1	0	1	0	0	0	0	1
+14	0	1	1	1	0	0	1	0	-34	1	0	1	0	0	0	1	0
+13	0	1	1	1	0	0	1	1	-35	1	0	1	0	0	0	1	1
+12	0	1	1	1	0	1	0	0	-36	1	0	1	0	0	1	0	0
+11	0	1	1	1	0	1	0	1	-37	1	0	1	0	0	1	0	1
+10	0	1	1	1	0	1	1	0	-38	1	0	1	0	0	1	1	0
+9	0	1	1	1	0	1	1	1	-39	1	0	1	0	0	1	1	1
+8	0	1	1	1	1	0	0	0	-40	1	0	1	0	1	0	0	0
+7	0	1	1	1	1	0	0	1	-41	1	0	1	0	1	0	0	1
+6	0	1	1	1	1	0	1	0	-42	1	0	1	0	1	0	1	0
+5	0	1	1	1	1	0	1	1	-43	1	0	1	0	1	0	1	1
+4	0	1	1	1	1	1	0	0	-44	1	0	1	0	1	1	0	0
+3	0	1	1	1	1	1	0	1	-45	1	0	1	0	1	1	0	1
+2	0	1	1	1	1	1	1	0	-46	1	0	1	0	1	1	1	0
+1	0	1	1	1	1	1	1	1	-47	1	0	1	0	1	1	1	1
0	1	0	0	0	0	0	0	0	-48	1	0	1	1	0	0	0	0
-1	1	0	0	0	0	0	0	1	-49	1	0	1	1	0	0	0	1
-2	1	0	0	0	0	0	1	0	-50	1	0	1	1	0	0	1	0
-3	1	0	0	0	0	0	1	1	-51	1	0	1	1	0	0	1	1
-4	1	0	0	0	0	1	0	0	-52	1	0	1	1	0	1	0	0
-5	1	0	0	0	0	1	0	1	-53	1	0	1	1	0	1	0	1
-6	1	0	0	0	0	1	1	0	-54	1	0	1	1	0	1	1	0
-7	1	0	0	0	0	1	1	1	-55	1	0	1	1	0	1	1	1
-8	1	0	0	0	1	0	0	0	-56	1	0	1	1	1	0	0	0
-9	1	0	0	0	1	0	0	1	-57	1	0	1	1	1	0	0	1
-10	1	0	0	0	1	0	1	0	-58	1	0	1	1	1	0	1	0
-11	1	0	0	0	1	0	1	1	-59	1	0	1	1	1	0	1	1
-12	1	0	0	0	1	1	0	0	-60	1	0	1	1	1	1	0	0
-13	1	0	0	0	1	1	0	1	-61	1	0	1	1	1	1	0	1
-14	1	0	0	0	1	1	1	0	-62	1	0	1	1	1	1	1	0
-15	1	0	0	0	1	1	1	1	-63	1	0	1	1	1	1	1	1
-16	1	0	0	1	0	0	0	0	-64	1	1	0	0	0	0	0	0
-17	1	0	0	1	0	0	0	1	-65	1	1	0	0	0	0	0	1
-18	1	0	0	1	0	0	1	0	-66	1	1	0	0	0	0	1	0
-19	1	0	0	1	0	0	1	1	-67	1	1	0	0	0	0	1	1
-20	1	0	0	1	0	1	0	0	-68	1	1	0	0	0	1	0	0
-21	1	0	0	1	0	1	0	1	-69	1	1	0	0	0	1	0	1
-22	1	0	0	1	0	1	1	0	-70	1	1	0	0	0	1	1	0
-23	1	0	0	1	0	1	1	1	-71	1	1	0	0	0	1	1	1
-24	1	0	0	1	1	0	0	0	-72	1	1	0	0	1	0	0	0
-25	1	0	0	1	1	0	0	1	-73	1	1	0	0	1	0	0	1
-26	1	0	0	1	1	0	1	0	-74	1	1	0	0	1	0	1	0
-27	1	0	0	1	1	0	1	1	-75	1	1	0	0	1	0	1	1
-28	1	0	0	1	1	1	0	0	-76	1	1	0	0	1	1	0	0
-29	1	0	0	1	1	1	0	1	-77	1	1	0	0	1	1	0	1
-30	1	0	0	1	1	1	1	0	-78	1	1	0	0	1	1	1	0
-31	1	0	0	1	1	1	1	1	-79	1	1	0	0	1	1	1	1
-32	1	0	1	0	0	0	0	0	-	1	1	1	1	1	1	1	1

For Fader Volume, only 0 dB to $-\infty \mathrm{dB}$ are available.

3. Application Circuit

Unit
$\mathrm{R}:[\Omega]$
C : [F]

Notes on Wiring

(1) Please connect the decoupling capacitor of the power supply in the shortest possible distance to GND.
(2) GND lines should be one-point connected.
(3) Wiring pattern of Digital should be away from that of Analog unit and cross-talk should not be acceptable.
(4) SCL and SDA lines of $I^{2} C$ BUS should not be parallel if possible.

The lines should be shielded, if they are adjacent to each other.
(5) Analog input lines should not be parallel if possible. The lines should be shielded, if they are adjacent to each other.
(6) About TEST pin (Pin 12), please leave it as OPEN.

Power Dissipation

About the thermal design of the IC
Characteristics of an IC have a great deal to do with the temperature at which it is used, and exceeding absolute maximum ratings may degrade and destroy the device. Careful consideration must be given to the heat of the IC from the two standpoints of immediate damage and long-term reliability of operation.

Figure 15. Temperature Derating Curve
(Note) Values are actual measurements and are not guaranteed.
Power dissipation values vary according to the board on which the IC is mounted

I/O Equivalent Circuits

Terminal No.	Terminal Name	Terminal voltage	Equivalent Circuit	Terminal Description
$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 2 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 2 \end{aligned}$	4.25		A terminal for signal input. The input impedance is $100 \mathrm{k} \Omega$ (typ).
$\begin{aligned} & 6 \\ & 7 \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 2 \end{aligned}$	4.25		A terminal for signal input. The input impedance is $250 \mathrm{k} \Omega$ (typ).
$\begin{gathered} 8 \\ 9 \\ 10 \end{gathered}$	$\begin{gathered} \text { DP1 } \\ \text { DN } \\ \text { DP2 } \end{gathered}$	4.25		Input terminal available to Single/Differential mode. The input impedance is $250 \mathrm{k} \Omega$ (typ).
11	MUTE	-		A terminal for external compulsory mute. If terminal voltage is High level, the mute is OFF. And if the terminal voltage is Low level, the mute is ON .
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	OUTR2 OUTR1 OUTF2 OUTF1	4.25		A terminal for fader and Subwoofer output.

[^0]
I/O Equivalent Circuit - continued

Terminal No.	Terminal Name	Terminal voltage	Equivalent Circuit	Terminal Description
17	VCC	8.5		Power supply terminal.
18	SCL	-		A terminal for clock input of $I^{2} C$ BUS communication.
19	SDA	-		A terminal for data input of $I^{2} \mathrm{C}$ BUS communication.
20	GND	0		Ground terminal.
1	FIL	4.25		1/2 VCC terminal. Voltage for reference bias of analog signal system. The simple precharge circuit and simple discharge circuit for an external capacitor are built in.
12	TEST	-		TEST terminal

[^1]
Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.
2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.
3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.
4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration

Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.
6. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.
7. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.
8. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
9. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
10. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

11. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

Operational Notes - continued

12. Regarding the Input Pin of the IC

This monolithic IC contains $\mathrm{P}+$ isolation and P substrate layers between adjacent elements in order to keep them isolated. $\mathrm{P}-\mathrm{N}$ junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below):
When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode.
When GND > Pin B, the P-N junction operates as a parasitic transistor.
Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided.

Figure 16. Example of monolithic IC structure
13. About a Signal Input Part
(a) About Input Coupling Capacitor Constant Value

In the input signal terminal, please decide the constant value of the input coupling capacitor $\mathrm{C}(\mathrm{F})$ that would be sufficient to form an RC characterized HPF with input impedance $\operatorname{RiN}(\Omega)$ inside the IC.

(b) About the Input Selector SHORT

SHORT mode is the command which makes switch $\mathrm{S}_{\mathrm{sH}}=\mathrm{ON}$ of input selector part so that the input impedance Rin of all terminals becomes small. Switch Ssh is OFF when SHORT command is not selected.
The constant time brought about by the small resistance inside and the capacitor outside the LSI becomes small when this command is used. The charge time of the capacitor becomes short. Since SHORT mode turns ON the switch of Ssh and makes it low impedance, please use it at no signal condition.
14. About Mute Terminal(Pin 11) when power supply is OFF

There should be no applied voltage across the Mute terminal (Pin 11) when power-supply is OFF.
A resistor (about $2.2 \mathrm{k} \Omega$) should be connected in series to Mute terminal in case a voltage is supplied to Mute terminal. (Please refer Application Circuit Diagram.)
15. About TEST Pin

TEST Pin, should be OPEN.
Pin 12 are TEST Pins.

Ordering Information

Marking Diagram

SSOP-A2O(TOP VIEW)

Physical Dimension, Tape and Reel Information

0. 15 ± 0.1
(UNIT : mm)
PKG: SSOP-A20
Drawing No. : EX132-5001
<Tape and Reel information>

Tape	Embossed carrier tape
Quantity	2000 pcs
Direction of feed	E2 $\left(\begin{array}{l}\text { The direction is the 1pin of product is at the upper left when you hold } \\ \text { reel on the left hand and you pull out the tape on the right hand }\end{array}\right.$

[^0]: Values in the pin explanation and input/output equivalent circuit are reference values only and are not guaranteed.

[^1]: Values in the pin explanation and input/output equivalent circuit are reference values only and are not guaranteed.

