imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Structure :	Silicon Monolithic Integrated Circuit
Product :	Audio sound controller

Type :

BD3882FV

Feature : 1. Dual built-in recording and playing preamplifiers for cassette tapes Less external components allows a compact size of the set.

 The shock sound at power-ON/OFF is absorbed by both power sources. The reference voltage of signal systems is designed to be a ground level so that low offset voltage and low noise are achieved.

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit	
Dewer Sumply Veltere	VDD	5	V	
Power Supply Voltage	VEE	-5	v	
Power Dissipation	Pd	900※	mW	
Operating Temperature	Topr	$-20 \sim +75$	C°	
Storage Temperature	Tastg	$-55 \sim +125$	S	

 $Over Ta = 25^{\circ}C$, derating at the rate of 9.0mW/ $^{\circ}C$.

When installed on the standard board (Size: $70 \times 70 \times 1.6$ mm).

Operating Voltage Range

Symbol	Limit	Unit
VDD	3.5 ~ 4.75	V
VEE	-4.75 ~ -3.5	V

(It must function normally at Ta = $25^{\circ}C$)

Application example

Note that ROHM cannot provide adequate confirmation of patents.

The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Electrical characteristics

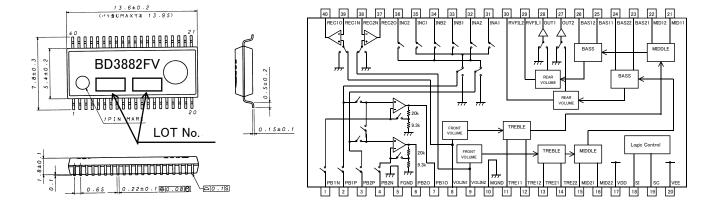
 $(Ta = 25^{\circ}C, VDD = 4.5V, VEE = -4.5V, f = 1kHz, Vin = 50mVrms, Rg = 600\Omega, RL = 10k\Omega, Input Selector = Ach, Front Volume=0dB, Rear Volume=0dB, Bass=0dB, Middle=0dB, Treble=0dB, unless otherwise noted.)$

	ont Volume=0dB, Rear Volume=0dB, Ba	33 OUD, MIU						
	Parameter	Symbol	Min.	Limit	Max	Unit	Conditions	
			IVIIII.	Typ.	Max.			
	VDD Circuit Current	IQVDD	_	4.5	10.0	mA	Vin = 0Vrms	
	VEE Circuit Current	IQVEE	-10.0	-4.5	-			
	Ach Maximum Input Voltage	Vaim					THD(Vout) =1%, BPF = 400~30kH;	
	Bch Maximum Input Voltage	Vbim	0.6	0.8	-	Vrms	Front Volume = $-6dB$	
	Cch Maximum Input Voltage	Vcim					Rear Volume = −18dB	
AL	Maximum Input Voltage TP	Vimtp	0.6	0.8	-	Vrms	THD(Vout)=1%, BPF = $400 \sim 30$ kHz GAIN = 10dB, Front Volume = -6 dB Rear Volume = -18 dB	
GENERAL	Maximum Output Voltage	Vom	2.2	2.5	-	Vrms	THD = 1%, BPF = 400~30kHz	
GEI	Voltage Gain	Gv	26	28	30	dB	Gv = 20log(Vout/Vin)	
	Channel Balance	CB	-1.5	0	1.5	dB	CB = Gv1-Gv2	
	Total Harmonic Distortion Ratio	THD	-	0.01	0.1	%	BPF = 400-30KHz	
	Output Noise Voltage *	Vno	-	22	60	μ Vrms	BPF = IHF-A, Rg = 0Ω	
	Residual Noise Voltage *	Vmno	-	3	8	μ Vrms	Volume=-∞, BPF = IHF-A, Rg=0Ω	
					-	-	CT = 20log(Vin/Vout)	
	Cross-talk between Channels *	СТ	70	85	-	dB	BPF = IHF-A, Rg = 0Ω	
	Output Impedance	Rout	_	_	50	Ω		
	Voltage Gain A	Gva						
	Voltage Gain B	Gvb	8	10	12	dB		
	Voltage Gain C	Gvc				42		
	Cross-talk between Selectors A1ch→B1ch *	CTab1						
⊢	Cross−talk between Selectors A2ch→B2ch *	CTab2	-					
INPUT	Cross-talk between Selectors B1ch→C1ch *	CTbc1						
Ξ	Cross-talk between Selectors B2ch→C2ch *	CTbc2	- 1	-110	-70	dB	Rg = 0Ω, BPF = IHF−A Vin=500mVrms	
	Cross-talk between Selectors C1ch→A1ch *		-					
		CTca1						
	Cross-talk between Selectors C2ch→A2ch *	CTca2			50	0		
	Selector Output Impedance	Rsout	8	- 10	50 12	Ω dB	1ch mono	
KARA OKE	Karaoke Voltage Gain 1ch mono Karaoke Voltage Gain 2ch mono	Gk1 Gk2	8 8	10 10	12	dB	2ch mono	
₹ O	Karaoke Voltage Gain 1ch + 2ch	Gk12	8	10	12	dB	1ch+2ch	
ñ	Voltage Gain RC	Gvrc	38	40	42	dB	f=10kHz	
g Eq	Maximum Output Voltage RC	Vomrc	2.2	2.5	-	Vrms	THD=1%, BPF=400~30kHz	
ECODING	·		-		3.0		$R_g = 0\Omega$, BPF = IHF-A	
REC	Input conversion Noise Voltage RC Slew Rate RC	Vnorc	2	1.5	- 3.0	μ Vrms		
		Vtr		4		V/μS	6 10111	
, щ	Voltage Gain TP	Gvtp	44	46	48	dB	f=10kHz	
PLAY BACK E	Maximum Output Voltage TP	Vomtp	2.2	2.5	-	Vrms	THD=1%, BPF=400~30kHz	
В	Input conversion Noise Voltage TP	Vnotp	-	1.1	2.0	μ Vrms	$Rg=2.2k\Omega$, BPF=IHF-A, Gv=20dB	
ЛE	Volume Maximum Input Voltage	Vimv	1.5	1.9	_	Vrms	THD(Vout)=1%, BPF=400~30kHz Front Volume ATT=-6dB Rear Volume ATT=-18dB	
LUN	Volume Input Impedance	Rvin	14	20	26	KΩ		
20	Volume Control Range	Vr 0.1	-79	-76	-73	dB	BPF = IHF-A	
FRONT VOLUME	Volume Control Step 1 Sv1 - 2 - dB 0dB to -36dB							
L RC	Volume Control Step 2 Volume Setting Error F	Sv2 Evf	- 2	4	- 2	dB dB	-36dB to -76dB 0dB to -76dB	
-			-2				Volume = -∞, BPF = IHF-A	
~ 世	Volume Maximum Attenuation *	ATTm		-116	-90	dB	ATT=20log(Vout/Vin)-18dB	
REAR VOLUME	Volume Control Range	RVr	-20	-18	-16	dB	BPF=400~30kHz	
ч 2 2	Volume Setting Error R	Evrr	-2	0	2	dB	All steps	

	Parameter			Limit		Unit	Conditions	
			Min.	Typ.	Max.	Unit		
	Bass Boost Control Range	Gbbr	+11	+14	+17	dB	f = 55Hz, Vin = 10mVrms BASS = +14dB	
BASS	Bass Cut Control Range	Gbcr	-17	-14	-11	dB	f = 55Hz, Vin = 10mVrms BASS = -14dB	
ВА	Bass Control Step	Sbc	-	2	-	dB		
	Bass Setting Error (-12dB~12dB)	Ebs1	-2	0	2	dB	f = 55Hz Vin = 10mVrms	
	Bass Setting Error ±14dB	Ebs2	-3	0	3	dB	VIII – Tomvrins	
	Treble Boost Control Range	Gtbr	+11	+14	+17	dB	f = 10kHz, Vin = 10mVrms TREBLE = +14dB	
TREBLE	Treble Cut Control Range	Gtcr	-17	-14	-11	dB	f = 10kHz, Vin = 10mVrms TREBLE = −14dB	
TRE	Treble Control Step	Stc	-	2	-	dB		
	Treble Setting Error (-12dB~12dB)	Ets1	-2	f = 10 kHz		t = 10kHz Vin = 10mVrms		
	Treble Setting Error ($\pm 14dB$)	Ets2	-3	0	3	dB	VIII – Toiriviilis	
	Middle Boost Control Range	Gmbr	+11	+14	+17	dB	f = 1kHz, Vin = 10mVrms MIDDLE = +14dB	
MIDDLE	Middle Cut Control Range	Gmcr	-17	-14	-11	dB	f = 1kHz, Vin = 10mVrms MIDDLE = -14dB	
MID	Middle Control Step	Smc	-	2	-	dB		
	Middle Setting Error (-12dB~12dB)	Ems1	-2	0	2	dB	f = 1kHz Vin = 10mVrms	
	Middle Setting Error (± 14 dB)	Ems2	-3	0	3	dB		

% The operational amplifier for PB should be used with the gain of 10dB or above.

%The input voltage over 1.9Vrms(Typ.) causes a distortion on the output wave at around the setting of Front Volume=0dB. Therefore, using at 1.9Vrms or less is recommended.


%For measurement, VP-9690A (Average value wave detection, Effective value display) IHF-A filter by Matsushita Communication Industrial is used.

%Phase relation between Input/Output signal terminals is Equiphase.

 $\$ Not designed for radiation resistance.

Outline dimension Marking dimension

Block Diagram

Unit: Resistance = Ω

SSOP-B40 (Unit:mm)

Pin number Pin name

Pin number	Pin name	Pin number	Pin name	Pin number	Pin name	Pin number	Pin name	Pin number	Pin name
1	PB1N	9	VOLIN2	17	VDD	25	BAS11	33	INB1
2	PB1P	10	MGND	18	SI	26	BAS12	34	INB2
3	PB2P	11	TRE11	19	SC	27	OUT2	35	INC1
4	PB2N	12	TRE12	20	VEE	28	OUT1	36	INC2
5	FGND	13	TRE21	21	MID11	29	RVFIL1	37	REC2O
6	PB2O	14	TRE22	22	MID12	30	RVFIL2	38	REC2N
7	PB10	15	MID21	23	BAS21	31	INA1	39	REC1N
8	VOLIN1	16	MID22	24	BAS22	32	INA2	40	REC10

Cautions on use

1. About operating voltage range and operating temperature range

Within the Operating Voltage Range and the Operating Temperature Range, while basic circuit functional operations are supposed to be guaranteed, the standard values of the electrical characteristics are guaranteed only when used under the specific conditions defined within these ranges. Thus, the users must verify those conditions before setting constants, elements, voltages, and temperatures. Note that the conditions of power dissipation are also affected with temperatures.

2. About power on reset

A built-in circuit for performing initialization inside the IC at power-ON is provided. In the case of the set design, however, to be on the safe side, it is recommended that data shall be sent to all the addresses as initial data at power-ON and, until this sending operation is completed, the mute shall be applied.

Function	Initial Condition
Input Selector	MUTE
REC Output	REC MUTE
Karaoke	Stereo
Front Volume	−∞dB
Rear Volume	-18dB
Treble Gain	0dB
Middle Gain	0dB
Bass Gain	0dB

3. About 2-wire serial control

As the terminals of SI and SC are designed for inputting high-frequency digital signals, the wiring and layout patterns should be routed not to cause interference with the analog-signal-related lines.

4. About power ON/OFF

Shock sound absorbing measures at power ON/OFF are implemented on 5pin, 6pin, 16pin, 18pin, 25pin, and 28pin for BD3881FV, as well as on 6pin, 7pin, 27pin, 28pin, 37pin, and 40pin for BD3882FV. When booting up power supplies, the VEE side should be booted a little bit earlier than the other side. If the VDD side is booted up first, an excessive current may pass VDD through VEE. When booting off the power supply, the VDD side should be booted off a little bit earlier than the other side. Note that, at this time, voltage change passing through the GND level may produce an abnormally large current.

5. About function switching

On switching between the Front Volume, Rear Volume, Bass, Middle, Treble, Karaoke, and REC Mute functions, the action has been taken to absorb such switching shock sound. For the other function switching operations, a combined use of MUTE is recommendable.

	g or reproduction of this document, in part or in whole, is permitted without the ROHM Co.,Ltd.
The conter	nt specified herein is subject to change for improvement without notice.
"Products"	nt specified herein is for the purpose of introducing ROHM's products (hereinafte). If you wish to use any such Product, please be sure to refer to the specifications be obtained from ROHM upon request.
illustrate th	of application circuits, circuit constants and any other information contained herein the standard usage and operations of the Products. The peripheral conditions mus to account when designing circuits for mass production.
However,	was taken in ensuring the accuracy of the information specified in this document should you incur any damage arising from any inaccuracy or misprint of such n, ROHM shall bear no responsibility for such damage.
examples implicitly, a other parti	cal information specified herein is intended only to show the typical functions of and of application circuits for the Products. ROHM does not grant you, explicitly of any license to use or exercise intellectual property or other rights held by ROHM and es. ROHM shall bear no responsibility whatsoever for any dispute arising from the in technical information.
equipment	cts specified in this document are intended to be used with general-use electroni- or devices (such as audio visual equipment, office-automation equipment, commu evices, electronic appliances and amusement devices).
The Produ	cts specified in this document are not designed to be radiation tolerant.
	IM always makes efforts to enhance the quality and reliability of its Products, a ay fail or malfunction for a variety of reasons.
against the failure of a shall bear	sure to implement in your equipment using the Products safety measures to guard a possibility of physical injury, fire or any other damage caused in the event of the ny Product, such as derating, redundancy, fire control and fail-safe designs. ROHM no responsibility whatsoever for your use of any Product outside of the prescribed of in accordance with the instruction manual.
system wh may result instrument controller of the Proc	cts are not designed or manufactured to be used with any equipment, device o ich requires an extremely high level of reliability the failure or malfunction of which in a direct threat to human life or create a risk of human injury (such as a medica , transportation equipment, aerospace machinery, nuclear-reactor controller, fuel- or other safety device). ROHM shall bear no responsibility in any way for use of an ducts for the above special purposes. If a Product is intended to be used for an al purpose, please contact a ROHM sales representative before purchasing.
be controll	nd to export or ship overseas any Product or technology specified herein that ma ed under the Foreign Exchange and the Foreign Trade Law, you will be required to rense or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/