imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Parallel Interface Type Lens Drivers for Stepping Motor BD6360GUL

Description

The BD6360GUL motor driver provides 2 Full-ON Drive H-bridge channel.

It is offered in an ultra small functional lens system for use in an auto focus or zoom system using a stepping motor.

And It integrates a power supply and wave-shaping circuit for the photo-interrupter necessary in order to determine the location of the motor.

Features

BD6360GUL

- 1) Ultra-small chip size package : $2.1mm \times 2.1mm \times 0.55mm$
- 2) Low ON-Resistance Power CMOS output : on high and low sides in total typ. 1.00Ω
- 3) ESD resistance (Human Body Model) : 8kV
- 4) Built-in voltage-regulator circuit for photo-interrupter and comparator circuits with hysteresis for photo-interrupter output waveform
- 5) Input mode selection function (1.8V can be put into each control input terminal)
- 6) Built-in UVLO (Under Voltage Lockout Protection) function
- 7) Built-in TSD (Thermal Shut Down) circuit
- 8) Standby current consumption: 0µA Typ.

Parameter	Symbol	Limit	Unit
Power supply voltage	VCC	-0.3~+6.5	V
Control input voltage	VIN	-0.3~VCC+0.3	V
Power dissipation	Pd	730 ^{%1}	mW
Operating temperature range	Topr	-25~+85	°C
Junction temperature	Tjmax	+150	°C
Storage temperature	Tstg	-55~+150	°C
H-bridge output current	lout	-500~+500 ^{%2}	mA/ch

●Absolute Maximum Ratings (Ta=+25°C)

*1 Reduced by 5.84mW/°C over 25°C, when mounted on a glass epoxy board (50mm × 58mm × 1.75mm; 8 layers)

^{**2} Must not exceed Pd, ASO, or Tjmax of 150°C.

Operating Conditions

Parameter	Symbol	Limit	Unit
Power supply voltage	VCC	+2.3~+5.5	V
Control input voltage	VIN	0~VCC	V
H-bridge output current	lout	-400~+400 ^{**3}	mA/ch

^{**3} Must not exceed Pd or ASO.

BD6360GUL Electrical Characteristics (Unless otherwise specified Ta=25°C, VCC=3.0V)

_		Limit				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Overall						
Circuit current during standby operation	ICCST	-	0	5	μA	PS=0V
Circuit current	ICC	-	1.1	1.8	mA	PS=3V with no signal, and no load
Control input (VIN=IN1A, IN	1B, IN2A, IN2	2B, SEL, PS)				
High level input voltage	VINH	1.5	-	VCC	V	
Low level input voltage	VINL	0	-	0.5	V	
High level input current	IINH	15	30	60	μA	VINH=3V, pull down resistance typ.100k Ω
Low level input current	IINL	-1	0	-	μA	VINL=0V
UVLO						
UVLO voltage	VUVLO	1.6	-	2.2	V	
Photo-interrupter (PI) compa	arator					
Input bias current	IBIPI	-3	0	3	μA	
Output low level voltage	VLOPI	0	-	0.5	V	lo=+1mA
Output igh level voltage	VHIPI	VCC-0.5	-	VCC	V	lo=-1mA
Threshold voltage	VTHPI	1.2	1.3	1.4	V	Lo→Hi threshold voltage
Hysteresis voltage	VHYSPI	200	300	400	mV	Hi→Lo threshold voltage VTHPI-VHYSPI
Photo-interrupter (PI) regula	tor					
ON-Resistance	RONSW	-	-	10	Ω	Io=-30mA
OFF current	ILSW	-1.0	0	-	μA	BIAS=0V
Full-ON Drive block (ch1 and	d ch2)					
Output ON-Resistance	RON	-	1.00	1.25	Ω	Io=+400mA on high and low sides in total
Output AC characteristic						
Turn-on time	-	-	-	2.0	μs	$lo=\pm400mA$
Turn-off time	toff	-	0.08	0.5	μs	lo=±400mA
Rise time	tr	0.1	0.15	1.0	μs	lo=±400mA
Fall time	tf	-	0.03	0.2	μs	lo=±400mA

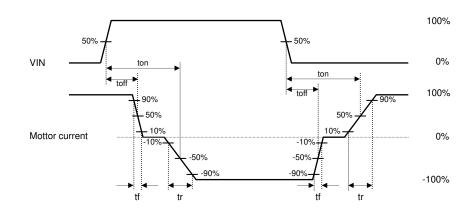


Fig.1 BD6360GUL I/O Switching Waveform

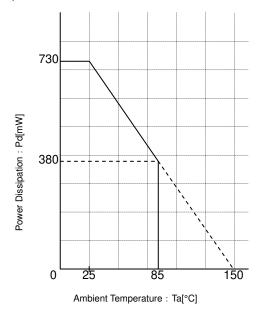


Fig.2 BD6360GUL Power Dissipation Reduction

•Electrical Characteristic Diagrams

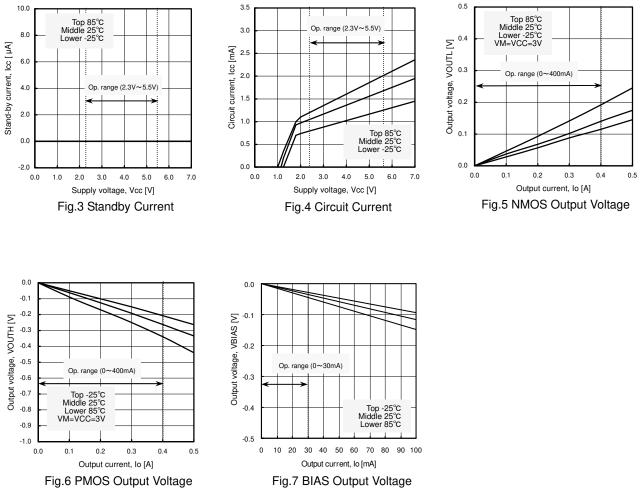


Fig.7 BIAS Output Voltage

1)BD6360GUL Block Diagram, Application Circuit Diagram, Pin Arrangement and Pin Function Table

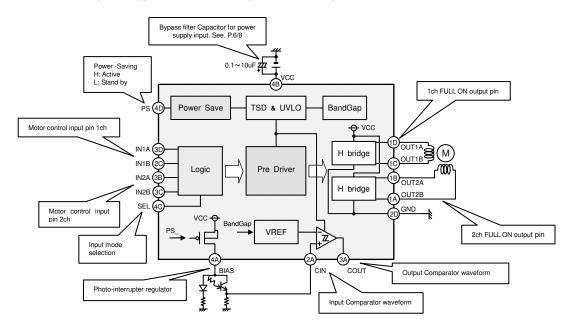


Fig.8 BD6360GUL Application Circuit Diagram

	1	2	3	4	
A	OUT2B	CIN	COUT	BIAS	
В	OUT2A	INDEX POST	IN2A	VCC	
С	OUT1B	IN1B	IN2B	SEL	
D	OUT1A	GND	IN1A	PS	

Fig.9 BD6360GUL Pin Arrangement (Top View)

BD6360GUL Pin Function Table

No.	Pin name	Function
1A	OUT2B	H-bridge output pin ch2 B
2A	CIN	Comparator circuits with output waveform input pin
ЗA	COUT	Comparator circuits with output waveform output pin
4A	BIAS	Voltage-regulator for photo-interrupter
1B	OUT2A	H-bridge output pin ch2 A
2B		
ЗB	IN2A	Control input pin ch2 A
4B	VCC	Power supply pin
1C	OUT1B	H-bridge output pin ch1 B
2C	IN1B	Control input pin ch1 B
ЗC	IN2B	Control input pin ch2 B
4C	SEL	Input mode selection pin ch1
1D	OUT1A	H-bridge output pin ch1 A
2D	GND	Ground pin
3D	IN1A	Control input pin ch1 A
4D	PS	Power-saving pin

●I/O Truth Table

BD6360GUL I/O Truth Table (x=1or2)

mode	INPUT			OUTPUT		Output mode	
	PS	SEL	INxA	INxB	OUTxA	OUTxB	Output mode
EN/IN H IN/IN			L	Х	Z	Z	Standby
		L	Н	L	Н	L	Forward rotation
			Н	Н	L	Н	Reverse rotation
	Н	L	L	Z	Z	Standby	
		L	Н	L	Н	Reverse rotation	
		Н	L	Н	L	Forward rotation	
				н	Н	L	L
-	L	Х	Х	Х	Z	Z	Standby

At forward rotation, current flows from OUTxA to OUTxB. At reverse rotation, current flows form OUTxB to OUTxA. L: Low, H: High, X: Don't care, Z: Hi impedance

Function Explanation

1) Power save function

When the L voltage is applied the PS pin, the IC's inside circuit stop, and when 0V applied, the circuit current became $0\mu A(Typ.)$, especially.

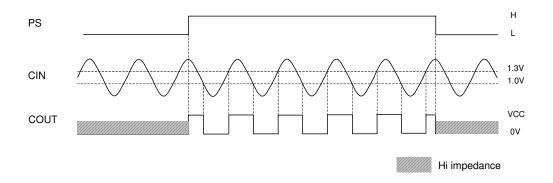
When the IC drive, Serial input while the PS pin applied H voltage. (See the electrical characteristics; P.2/8)

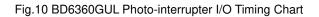
2) Control Input Pin

IN1A, IN1B, IN2A, IN2B, SEL pins

The IN1A, IN1B, IN2A, IN2B are used to program and control the motor drive modes.

And, when the L voltage is applied to the SEL pin, the I/O logic can be set to EN(Enable)/IN mode, when the H voltage is applied to the one, the I/O logic can be set to IN/IN mode. (See the electrical characteristics; P2/8, and the I/O Truth Table; P5/8)


 3) H-bridge on the output stage
 Specify maximum current applied to the H-bridge within the operating range, in consideration of power dissipation. (See the Operating Conditions; P.1/8)


Photo-interrupter regulator Pay attention to the ON resistance with regard to the power source of the Photo interrupter. (See the electrical characteristics; P.2/8)

5) The wave-shaping circuit convert

The wave-shaping circuit convert the distorted output signals from the photo-interrupter into clean rectangular waves, then outputs them to the DSP.

A hysteresis function is included that blocks output signal chatter caused by input signal noise.

●I/O Circuit Diagram

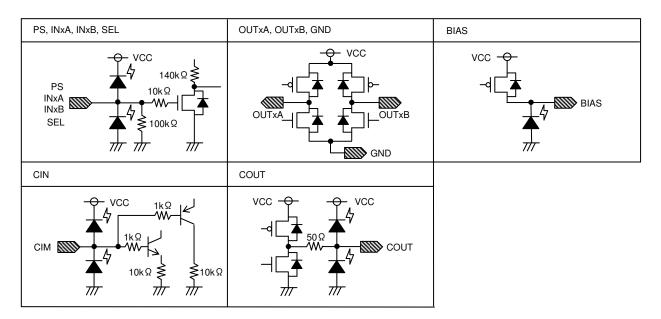


Fig.11 BD6360GUL I/O Circuit Diagram (Resistance values are typical ones)

Operation Notes

1) Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage (VCC) or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.

- Storage temperature range (Tstg)
 As long as the IC is kept within this range, there should be no problems in the IC's performance. Conversely, extreme temperature changes may result in poor IC performance, even if the changes are within the above range.
- 3) Power supply and wiring

Be sure to connect the power terminals outside the IC. Do not leave them open. Because a return current is generated by a counter electromotive force of the motor, take necessary measures such as putting a Capacitor between the power source and the ground as a passageway for the regenerative current. Be sure to connect a Capacitor of proper capacitance $(0.1\mu\text{F to }10\mu\text{F})$ between the power source and the ground at the foot of the IC, and ensure that there is no problem in properties of electrolytic Capacitors such as decrease in capacitance at low temperatures. When the connected power source does not have enough current absorbing capability, there is a possibility that the voltage of the power source line increases by the regenerative current an exceeds the absolute maximum rating of this product and the peripheral circuits.

Therefore, be sure to take physical safety measures suc h as putting a zener diode for a voltage clamp between the power source an the ground.

For this IC with a part consists of the CMOS block, it is possible that rush current may flow instantaneously due to the unstable internal logic. Therefore, give special consideration to power coupling capacitance, width of power and ground wirings, and routing of wiring.

4) Ground terminal and wiring

The potential at GND terminals should be made the lowest under any operating conditions. Ensure that there are no terminals where the potentials are below the potential at GND terminals, including the transient phenomena. Use short and thick power source and ground wirings to ensure low impedance.

5) Thermal design

Use a proper thermal design that allows for a sufficient margin of the power dissipation (Pd) at actual operating conditions.

6) Pin short and wrong direction assembly of the device.

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are shorted together or are shorted to other circuit's power lines.

- Avoiding strong magnetic field Malfunction may occur if the IC is used around a strong magnetic field.
- 8) ASO

Ensure that the output transistors of the motor driver are not driven under excess conditions of the absolute maximum ratings and ASO.

9) TSD (Thermal Shut Down) circuit

If the junction temperature (Tjmax) reaches 175°C, the TSD circuit will operate, and the coil output circuit of the motor will open. There is a temperature hysterics of approximately 25°C. The TSD circuit is designed only to shut off the IC in order to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. The performance of the IC's characteristics is not guaranteed and it is recommended that the device is replaced after the TSD is activated.

10) Testing an application board

When testing the IC on an application board, connecting a Capacitor to a pin with low impedance subjects the IC to stress. Always discharge Capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC.

11) Regarding the input pin of the IC

This monolithic IC contains P^+ isolation and P substrate layers between adjacent elements to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:

When GND > Pin A, the P-N junction operates as a parasitic diode.

When GND > Pin B, the P-N junction operates as a parasitic diode and transistor.

Parasitic elements can occur inevitably in the structure of the IC. The operation of parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic elements operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.

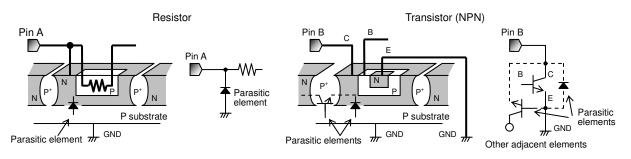
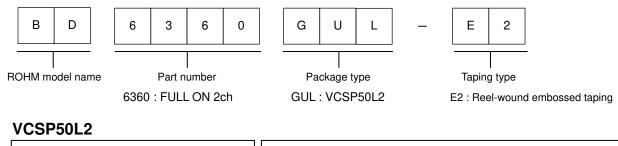
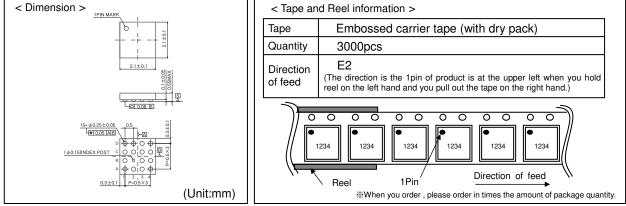




Fig.12 Example of Simple IC Architecture

Selecting a Model Name when Ordering

The contents described herein are correct as of April, 2008

The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO. LTD.

Any part of this application note must not be duplicated or copied without our permission.

Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.

Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.

• Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.

The products described herein utilize silicon as the main material.
 The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

Contact us for further information about the products.

ROHM CO., LTD.

21, Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL: +81-75-311-2121 FAX: +81-75-315-0172 URL http: // www. rohm. com

LSI Business Promotion Dept.

Published by

Contact	us for further info	rmation about t
San Diego	TEL: +1-858-625-3630	FAX: +1-858-625-3670
Atlanta	TEL: +1-770-754-5972	FAX: +1-770-754-0691
Boston	TEL: +1-978-371-0382	FAX: +1-928-438-7164
Chicago	TEL: +1-847-368-1006	FAX: +1-847-368-1008
Dallas	TEL: +1-469-287-5366	FAX: +1-469-362-7973
Denver	TEL: +1-303-708-0908	FAX: +1-303-708-0858
Detroit	TEL: +1-248-348-9920	FAX: +1-248-348-9942
Nashville	TEL: +1-615-620-6700	FAX: +1-615-620-6702
Mexico	TEL: +52-33-3123-2001	FAX: +52-33-3123-2002
Düsseldorf	TEL: +49-2154-9210	FAX: +49-2154-921400
Munich	TEL: +49-8161-48310	FAX: +49-8161-483120
Stuttgart	TEL: +49-711-72723710	FAX: +49-711-72723720
France	TEL: +33-1-5697-3060	FAX: +33-1-5697-3080
United Kingdom	TEL: +44-1-908-306700	FAX: +44-1-908-235788
Denmark	TEL: +45-3694-4739	FAX: +45-3694-4789
Barcelona	TEL: +34-9375-24320	FAX: +34-9375-24410
Hungary	TEL: +36-1-4719338	FAX: +36-1-4719339
Poland	TEL: +48-22-5757213	FAX: +48-22-5757001
Russia	TEL: +7-95-980-6755	FAX: +7-95-937-8290
Seoul	TEL: +82-2-8182-700	FAX: +82-2-8182-715
Masan	TEL: +82-55-240-6234	FAX: +82-55-240-6236
Dalian	TEL: +86-411-8230-8549	FAX: +86-411-8230-8537
Beijing	TEL: +86-10-8525-2483	FAX: +86-10-8525-2489
Tianjin	TEL: +86-22-23029181	FAX: +86-22-23029183

Shanghai Hangzhou Nanjing Ningbo Qingdao Suzhou Wuxi Wuxi Shenzhen Dongguan Fuzhou Guangzhou Huizhou Xiamen Zhuhai Hong Kong Taipei Kaohsiung Singapore Philippines Thailand Kuala Lumpu Penang Kyoto Yokohama

TEL: +86-21-6279-2727	FAX: +86-21-6247-2066
TEL: +86-571-87658072	FAX: +86-571-87658071
TEL: +86-25-8689-0015	FAX: +86-25-8689-0393
TEL: +86-574-87654201	FAX: +86-574-87654208
TEL: +86-532-5779-312	FAX:+86-532-5779-653
TEL: +86-512-6807-1300	FAX: +86-512-6807-2300
TEL: +86-510-82702693	FAX: +86-510-82702992
TEL: +86-755-8307-3008	FAX: +86-755-8307-3003
TEL: +86-769-8393-3320	FAX: +86-769-8398-4140
TEL: +86-591-8801-8698	FAX: +86-591-8801-8690
TEL: +86-20-8364-9796	FAX: +86-20-8364-9707
TEL: +86-752-205-1054	FAX: +86-752-205-1059
TEL: +86-592-238-5705	FAX: +86-592-239-8380
TEL: +86-756-3232-480	FAX: +86-756-3232-460
TEL: +852-2-740-6262	FAX: +852-2-375-8971
TEL: +886-2-2500-6956	FAX: +886-2-2503-2869
TEL: +886-7-237-0881	FAX: +886-7-238-7332
TEL: +65-6332-2322	FAX: +65-6332-5662
TEL: +63-2-807-6872	FAX: +63-2-809-1422
TEL: +66-2-254-4890	FAX: +66-2-256-6334
TEL: +60-3-7958-8355	FAX: +60-3-7958-8377
TEL: +60-4-2286453	FAX: +60-4-2286452
TEL: +81-75-365-1218	FAX: +81-75-365-1228
TEL: +81-45-476-2290	FAX: +81-45-476-2295

Catalog No.08T102A '08.4 ROHM ©