: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

4-Channel White LED Driver with Integrated FET for up to 40 LEDs

BD65D00MUV

- General Description

This IC is white LED driver IC with PWM step-up DC/DC converter that can boost max 41V and current driver that can drive max 100 mA . The wide and precision brightness can be controlled by external PWM pulse. This IC has very accurate current drivers, and it has few current errors between each strings. So, it will be helpful to reduce brightness spots on the LCD panel. Small package is suited for saving space.
It can respond to the application according to the application to be abele to switch to external/internal NchFET boosting.

- Features

■ High efficiency PWM step-up DC/DC converter (fsw=typ $1.25 \mathrm{MHz}, 0.60 \mathrm{MHz}$ to 1.6 MHz)

- High accuracy \& good matching current drivers 4ch (MAX100mA/ch)
- Integrated 50 V power Nch MOSFET
- Soft Start function
- Drive up to 10 LEDs in series, 4 strings in parallel
- Various safety functions
- Over-voltage protection
- External SBD open detect / Output Short protection
- Over current limit
- CH Terminal open / GND short protect
- CH over voltage protect / LED short protect
- Thermal shutdown
- UVLO
- ISET short protection
- Key Specifications
- Operating power supply voltage range:

6 V to 27 V
■ LED maximum current: $100 \mathrm{~mA} / \mathrm{ch}$

- Quiescent Current:
$1.6 \mu \mathrm{~A}$ (typ.)
- Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Package

W(typ.) x D(typ.) $\times \mathrm{H}($ Max. $)$

VQFN028V5050
$5.00 \mathrm{~mm} \times 5.00 \mathrm{~mm} \times 1.00 \mathrm{~mm}$

Figure 1.

- Applications

All LCD equipments, Backlight of Notebook PC, Amusement, net book, monitor, TV, Portable DVD player, light source etc.

- Typical Application Circuit (4 parallel)

Figure 2. Typical Application Circuit

- Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Ratings	Unit	Conditions
Terminal voltage 1	VMAX1	7	V	VDC, ISET, ABC, COMP, FSET, TEST, FAULT, PREOUT, TRIN, SENSP
Terminal voltage 2	VMAX2	45	V	CH1 to CH4, LX, OVP
Terminal voltage 3	VMAX3	30.5	V	VIN, ENABLE
Terminal voltage 4	VMAX4	15	V	PWM
Power dissipation 1	Pd1	$380^{* 1}$	mW	
Power dissipation 2	Pd2	$880^{* 2}$	mW	
Power dissipation 3	Pd3	$3264{ }^{* 3}$	mW	
Operating temperature range	Topr	-40 to +85	${ }^{\circ}{ }^{\circ} \mathrm{C}$	
Storage temperature range	Tstg	-55 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$	

${ }^{*} 1 \quad$ Reduced $3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ With $\mathrm{Ta}>25^{\circ} \mathrm{C}$ when not mounted on a heat radiation Board.
*2 1 layer (ROHM Standard board) has been mounted. Copper foil area $0 \mathrm{~mm}^{2}$, When it's used by more than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, it's reduced by $7.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*3 4 layer (JEDEC Compliant board) has been mounted. Copper foil area 1.4layer $20.2 \mathrm{~mm}^{2}$, Copper foil area 2 to 3layers $5505 \mathrm{~mm}^{2}$,
When it's used by more than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, it's reduced by $26.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
*Power dissipation is calculated by formula : (Storage temperature max - $\left.25^{\circ} \mathrm{C}\right) / \theta \mathrm{ja}\left(\mathrm{ex} . \mathrm{Pd} 1=3.0 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\right.$)

- Recommended Operating Ratings ($\mathrm{Ta}=-40^{\circ} \mathrm{Cto}+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
Power supply voltage	VINL	6.0	12.0	27.0	V	Coil power supply
	VIN	4.5	5	27.0	V	IC power supply

- Electrical Characteristics
(Unless otherwise specified, $\mathrm{VIN}=12 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
[General]						
Quiescent Current	19	-	1.6	4.4	$\mu \mathrm{A}$	ENABLE=0V
Current Consumption	Idd	-	3.6	5.4	mA	OVP $=0 \mathrm{~V}, \mathrm{ISET}=39 \mathrm{k} \Omega$
Max. Output Voltage	MOV	-	-	41	V	
Under Voltage Lock Out	UVLO	-	3.7	4.1	V	VIN falling edge
[ENABLE Terminal]						
Low Level Input Voltage	EnL	0.0	-	0.8	V	
High Level Input Voltage 1	EnH	2.0	-	VIN	V	
ENABLE Pull down resistor	EnR	100	300	500	k Ω	ENABLE $=3 \mathrm{~V}$
Output Current	ENIout	-	0	2	$\mu \mathrm{A}$	ENABLE=0V
[PWM Terminal]						
Low Level Input Voltage	PWML	0.0	-	0.8	V	
High Level Input Voltage 2	PWMH	1.3	-	14.5	V	
PWM Pull down resistor	PWMR	100	300	500	k Ω	PWM $=3 \mathrm{~V}$
Output Current	PWMlout	-	0	2	$\mu \mathrm{A}$	PWM=0V
[FAULT]						
Nch RON	FFCR	-	-	3	k Ω	ENABLE=PWM=3V, OVP=2V
[Regulator]						
VDC Voltage	VREG	4.2	5.0	6.0	V	No load, VIN > 6V

- Electrical Characteristics - continued

(Unless otherwise specified, $\mathrm{VIN}=12 \mathrm{~V}, \mathrm{Ta}=+25^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits			Unit	Conditions
		Min.	Typ.	Max.		
[Switching Regulator]						
LED Control voltage	VLED	0.64	0.80	0.96	V	
Switching frequency accuracy	Fsw	1.00	1.25	1.50	MHz	FSET=56k Ω
Duty cycle limit	Duty	91.0	95.0	99.0	\%	$\mathrm{CH1} 1-4=0.3 \mathrm{~V}, \mathrm{FSET}=56 \mathrm{k} \Omega$
LX Nch FET RON	RON	-	0.3	0.5	Ω	$\mathrm{ILX}=80 \mathrm{~mA}$
[Protection]						
Over Current Limit	Ocp	1.5	2.5	-	A	*1
Over voltage limit Input	OVP	1.16	1.20	1.24	V	Detect voltage of OVP pin
Output Short Protect	OVPfault	0.02	0.05	0.08	V	Detect voltage of OVP pin
OVP leak current	OVIL	-	0.1	1.0	$\mu \mathrm{A}$	
CH Terminal Over Voltage Protect accuracy	VSC	-15	0	+15	\%	$\mathrm{VSC}=8 \mathrm{~V}$
[Current driver]						
LED maximum current	ILMAX	-	-	100	mA	This is current driver's characteristics. This IC may not output current according to application.
LED current accuracy	ILACCU	-	-	± 5.0	\%	ILED $=60 \mathrm{~mA}$ (39k)
LED current matching	ILMAT	-	-	3.0	\%	(Max LED current - Min LED current)/ Ideal current (60 mA) ILED=60mA
LED current limiter	ILOCP	-	0	0.1	mA	Current limit value at ISET Resistance $1 \mathrm{k} \Omega$ setting
ISET voltage	Iset	-	0.733	-	V	
LED current accuracy2	ILACCU2	-	± 3.0	-	\%	ILED $=60 \mathrm{~mA}, \mathrm{ABC}=0.733 \mathrm{~V}$

*1 This parameter is tested with DC measurement.

- Block Diagram

Pin number 22pin
Figure 3. Block Diagram

- Pin Descriptions

PIN No.	PIN Name	10	Function	Terminal diagram
1	VDC	Out	Regulator output / Internal power-supply	C
2	TEST	In	TEST signal (Pull down 100k (within IC)	E
3	FSET	In	Resistor connection for frequency setting	A
4	ABC	In	PIN for Analog Brightness Control	C
5	GND	-	GND for Switching Regulator	B
6	COMP	Out	ERRAMP output	A
7	ISET	In	Resistor connection for LED current setting	A
8	CH4	In	Current driver sink for CH 4	C
9	NC	-	-	-
10	CH3	In	Current driver sink for CH3	C
11	NC	-	-	-
12	CH2	In	Current driver sink for CH 2	C
13	NC	-	-	-
14	CH1	In	Current driver sink for CH 1	C
15	NC	-	-	-
16	GND	-	GND for Current Driver	B
17	FAULT	Out	Fault signal	C
18	PREOUT	Out	Signal output pin for internal switching Tr	A
19	TRIN	In	Gate terminal for switching Tr	A
20	SENSP	In	Source terminal for external switching Tr	A
21	PGND	-	PGND for switching Tr	D
22	LX	Out	Switching Tr drive termin	F
23	LX		Swiching Tr drive termina	
24	NC	-	-	-
25	OVP	In	Detect input for SBD open and OVP	C
26	PWM	In	Input pin for current driver power ON/OFF	E
27	ENABLE	In	Pin for power ON/OFF or Power control	E
28	VIN	In	Battery input	G
-	Thermal PAD	-	Heat radiation PAD of back side Connect to GND	

- Pin ESD Type

Figure 4. Pin ESD Type

- Typical Performance Curves

Figure 5. Quiescent Current

Figure 7. VDC Voltage

Figure 6. Current Consumption

Figure 8. Under Voltage Lock Out

- Typical Performance Curves

Figure 9. Fault RON

Figure 11. Max Duty

Figure 10. Switching Frequency

Figure 12. LX NcH RON

- Typical Performance Curves - continued

Figure 13. Over Current Limit

Figure 15. Output Short Protect

Figure 14. Over Voltage Protect

Figure 16. OVP Leak Current

- Typical Performance Curves - continued

Figure 17. CH Terminal OVP

Figure 19. ISET Voltage

Figure 18. LED Current vs. CH Voltage

Figure 20. LED Current Matching

- Typical Performance Curves - continued

Figure 21. LED Open Time vs. Temp

Figure 23. Thermal Shut Down

Figure 22. LED Short Time vs. Temp

Figure 24. Efficiency 10LEDx4CH ILED $=60 \mathrm{~mA}$

- Typical Performance Curves - continued

Figure 25. LED Current vs. PWM Duty PWM Freq= 200 Hz FSET=56k Ω

Figure 26. LED Current vs. PWM Duty PWM Freq=30kHz FSET=56k Ω

- Application Example

Figure 27, Figure 28 and Figure 29 are Application examples. Recommended schematics and Layout are shown in page 29, 31.

Figure 27. BD65D00 Application example (4 parallel)

Figure 28. BD65D00 Application example (3 parallel)

Figure 29. BD65D00 Application example (2 parallel)

- Functional Descriptions

1) PWM current mode DC/DC converter

This detects the lowest voltage inside CH 1,2,3,4 pin voltage during power on. PWM duty is decided to be 0.8 V and output voltage is kept invariably. As for the input soft the PWM comparator as the feature of the PWM current mode, one is overlapped with error components from the error amplifier, and the other is overlapped with a current sense signal that controls the inductor current into Slope waveform to prevent sub harmonic oscillation. This output controls internal Nch Tr via the RS latch. In the period where internal Nch Tr gate is ON, energy is accumulated in the external inductor, and in the period where internal Nch Tr gate is OFF, energy is transferred to the output capacitor via external SBD.
This IC has many safety functions, and their detection signals stop switching operation at once.

2) Pulse skip control

This IC regulates the output voltage using an improved pulse-skip. In "pulse-skip" mode the error amplifier disables "switching" of the power stages when it detects low output voltage and high input voltage. The oscillator halts and the controller skip switching cycles. The error amplifier reactivates the oscillator and starts switching of the power stages again when this IC detects low input voltage.
At light loads a conventional "pulse-skip" regulation mode is used. The "pulse-skip" regulation minimizes the operating current because this IC does not switch continuously and hence the losses of the switching are reduced. When the error amplifier disables "switching", the load is also isolated from the input. This improved "pulse-skip" control is also referred to as active-cycle control.

Figure 30. Pulse-skip
3) Soft start

This IC has soft start function.
The soft start function prevents large coil current.
Rush current at turning on is prevented by the soft start function.
The soft start of this IC controls over-current setting hence peak is controlled. Therefore, before switching phenomenon (not pulse-skip phenomenon) occurs, soft start (the phenomenon where-in current flows to the coil) will not start (stop).
Pulse-skip can release soft-start if the switching ON/OFF time is set.
After changing ENABLE pin, PWM pin from ' L ' \rightarrow ' H ', regulator (VDC) voltage increases. Soft start is effective within the period 4.3 ms when UVLO is detected and when it exceeds VDC=3.9V (typ.). Once soft start is finished, even if you change PWM from 'L' \rightarrow 'H', soft start does not work.

Figure 31. Soft start
4) FAULT

When the error condition occurs, boost operating is stopped by the protection function avoiding error condition. " L " is outputted from FAULT pin when an error occurs. After power-on, until soft start is released, around 4.3 ms (typ.), protection functions do not operate (except TSD).
When ENABLE pin is changed to 'L', even if output of Fault pin latches, it will still reset to the initial status.
(In pulse-skip state, while the switching is stopped, the mask time of the FAULT pin becomes longer since the soft start is also stopped.) When using 3 parallel connection of LED in less than 4.3 ms (typ.), the FAULT pin will output "L" if the process of the unused pin is not yet finished. Evaluate sufficiently the start up time when the connected capacitor between COMP pin \& GND starts up smoothly.

Object of protect function is as shown below.

- Over-voltage protection (OVP)
- Thermal shut down (OTP)
- Over current protect (OCP)
- Output short protect
- LED Short (Latch)
- LED Open (Latch)

Figure 32. FAULT operating description

- Protection

PROTECTION TABLE

CASE	FAILURE MODE	DETECTION MODE	CH 1 pin	CH2 to 4 Pin	VOUT Adjustment	FAULT Terminal
1	LED Short (LED CH1 is Short)	CH 1 > VSC	LED current stop and DC/DC feedback doesn't return	Normal Burning DC/DC feedbacks at CH2 to CH 4	Adjust VF of LED at CH 2 to CH 4 at the biggest line	'H' \rightarrow ' ${ }^{\prime}$ ' (Latch)
2	LED OPEN (LED CH1 is Open)	$\begin{aligned} & \mathrm{CH} 1<0.2 \mathrm{~V} \text { (typ.) } \\ & \text { and } \\ & \text { OVP }>1.2 \mathrm{~V} \text { (typ.) } \end{aligned}$	LED current stop and DC/DC feedback doesn't return	Normal Burning DC/DC feedbacks at CH 2 to CH 4	Adjust VF of LED at CH 2 to CH 4 at the biggest line	'H' \rightarrow ' L ' (Latch)
3	VOUT/LX GND SHORT	$\begin{aligned} & \text { OVP < } \\ & 50 \mathrm{mV} \text { (typ.) } \end{aligned}$	FAULT change from ' H ' to ' L ', and switching is stopped. When OVP $>50 \mathrm{mV}$, FAULT return ' H '		-	'H' \rightarrow ' ${ }^{\prime}$ '
4	Output LED stack voltage too high	OVP > 1.2V(typ.)	FAULT change from ' H ' to ' L ', and switching is stopped. OVP $<1.2 \mathrm{~V}$, FAULT returns to ' H ' (does not return when it occurs at the same time with LED open)		-	' H ' \rightarrow ' ${ }^{\prime}$ '
5	LX current too high	$\begin{aligned} & \text { OCP > } 2.5 \mathrm{~A} \\ & \text { or } \\ & \text { OTP > } \\ & 175^{\circ} \mathrm{C} \text { (typ.) } \end{aligned}$	FAULT change from 'H ' to ' L ', and switching is stopped. Fault pin does not returns to 'H ' because IC shutdowns and when ENABLE is from ' H ' to L until ' H '.		-	' H ' \rightarrow ' ${ }^{\prime}$ '

- Over voltage protection (OVP)

When LED is separated it will result to output open and over step-up. When the built-in (external) Tr and OVP pin exceed the absolute maximum rating, the built-in (external) Tr and IC will break down. Thus, OVP pin when more than the detect voltage will turn into over voltage protection status turning off switching and stopping DC/DC.

After over voltage protection, as shown in Figure 33, the IC changes from activation into non-activation, and the output voltage goes down slowly. And when the Feedback of CH 1 isn't returned, feedback takes place in CH 2 .

Figure 33. OVP operating description

The value shown in electrical characteristics is used here.

Over voltage limit	$\min 1.16 \mathrm{~V}$	$\operatorname{typ} 1.20 \mathrm{~V}$	$\max 1.24 \mathrm{~V}$
LED control voltage	$\min 0.64 \mathrm{~V}$	$\operatorname{typ} 0.80 \mathrm{~V}$	$\max 0.96 \mathrm{~V}$
LED terminal over voltage protect	$\min 6.80 \mathrm{~V}$	$\operatorname{typ} 8.00 \mathrm{~V}$	$\max 9.20 \mathrm{~V}$

1. Calculate the condition of the total value of LED VF.

Example) In the case of serial 8 LEDs with $\mathrm{VF}=2.9 \mathrm{~V}$ (min), 3.2V (typ.), 3.5V (max) $=>3.5 \mathrm{~V} \times 8=28 \mathrm{~V}$
2. Then calculate the biggest value of output with the following formula.

The biggest value of output = the biggest value calculated in \#1 + the biggest value of LED terminal voltage. (0.96 V)
Example) The biggest value of output $=28 \mathrm{~V}+0.96 \mathrm{~V}=28.96 \mathrm{~V}$
3. Set the smallest value of over voltage larger than the biggest value of output.

If over voltage is closer to the total value of VF, it could be occurred to detect over voltage by ripple, noise, and so on. It is recommended that some margins should be left on the difference between over voltage and the total value of VF.
This time around 6% margin is placed.
Example) Output largest value $=28.96 \mathrm{~V}$, the smallest value of over voltage $=28.96 \mathrm{~V} \times 1.06=30.70 \mathrm{~V}$
Ic over voltage limit $\min =1.16 \mathrm{~V}, \operatorname{typ}=1.20 \mathrm{~V}, \max =1.24 \mathrm{~V}$

$$
\operatorname{typ}=30.70 \mathrm{~V} \times(1.20 \mathrm{~V} / 1.16 \mathrm{~V})=31.76 \mathrm{~V}
$$

$$
\max =31.76 \mathrm{~V} \times(1.26 \mathrm{~V} / 1.20 \mathrm{~V})=33.35 \mathrm{~V}
$$

4. Below shows how to adjust setting resistor value.

Please fix resistor high between OVP terminal and output and then set over voltage after changing resistor between OVP terminal and GND. If this resistor value is decreased, output voltage will also decrease while PWM is turned OFF, hence ripple of output voltage becomes larger and the sound/noise of output capacitor also increases.

Example) Selecting OVP resistor (R1 and R2).

- OVP resistor selection

(Example. 1) VF=3.5V max, serial $=7$ LED
$\mathrm{OVP}=1.2 \mathrm{~V}, \mathrm{R} 1=2.2 \mathrm{M} \Omega, \mathrm{R} 2=95.3 \mathrm{k} \Omega$
VOUT $=1.2 \times(2.2 \mathrm{M} \Omega+95.3 \mathrm{k} \Omega) / 95.3 \mathrm{k} \Omega=28.90 \mathrm{~V}$
(Example. 2) $\mathrm{VF}=3.5 \mathrm{~V}$ max, serial $=8 \mathrm{LED}$
$\mathrm{OVP}=1.2 \mathrm{~V}, \mathrm{R} 1=2.2 \mathrm{M} \Omega, \mathrm{R} 2=82 \mathrm{k} \Omega$
$\mathrm{VOUT}=1.2 \times(2.2 \mathrm{M} \Omega+82 \mathrm{k} \Omega) / 82 \mathrm{k} \Omega=33.40 \mathrm{~V}$
(Example. 3) $\mathrm{VF}=3.5 \mathrm{~V}$ max, serial $=9 \mathrm{LED}$
$\mathrm{OVP}=1.2 \mathrm{~V}, \mathrm{R} 1=2.2 \mathrm{M} \Omega, \mathrm{R} 2=73.2 \mathrm{k} \Omega$
VOUT $=1.2 \times(2.2 \mathrm{M} \Omega+73.2 \mathrm{k} \Omega) / 73.2 \mathrm{k} \Omega=37.27 \mathrm{~V}$

(Example. 4) VF=3.5V max, serial $=10$ LED
$\mathrm{OVP}=1.2 \mathrm{~V}, \mathrm{R} 1=2.2 \mathrm{M} \Omega, \mathrm{R} 2=68 \mathrm{k} \Omega$
$\mathrm{VOUT}=1.2 \times(2.2 \mathrm{M} \Omega+68 \mathrm{k} \Omega) / 68 \mathrm{k} \Omega=40.02 \mathrm{~V}$

- Over Current Protection

Over current flows in current detect resistor that is connected between internal switching Tr source and PGND. When it increases beyond detect voltage, over current protect operates. Over current protect prevents it becoming more than detect voltage by reducing on Duty of switching Tr without stopping boosting operation.
Since the over current detector of this IC detects peak current, more than setting value of over current doesn't flow. If both $\mathrm{PWM}=\mathrm{H}$ (boosting condition) and over current situation keep going during continuous 2 ms , the IC shuts down. By making ENABLE 'H'->'L'->'H', the IC activates again. The IC might shut down if boosting operation starts with slow speed of power supply activation and also low voltage. Please operate after setting input voltage that is required for application.

- External SBD open detect / Output Short protection

If in case external SBD and DC/DC output (VOUT) connection is open, or VOUT is shorted in GND, there is a risk that coil and the internal Tr might break down. Therefore, at such an error as OVP becoming 50 mV (typ.) or below, turns off the output Tr , and prevents the coil and the IC from being destructed.

And the IC changes from activation into non-activation, current does not flow to the coil (0 mA).

- Thermal shut down

This IC has thermal shut down function.
The thermal shut down works at $175^{\circ} \mathrm{C}$ (typ.) or higher, and the IC changes from activation into non-activation.

- Operating of the Application Deficiency

1) When 1 LED or 1 string OPEN during the operation

The LED string which became OPEN isn't lighting (e.g. CH1), but other LED strings are lighting.
As shown in Figure 34, when the strings in CH 1 are open, CH 1 pin become 0 V . The lowest voltage is below 0.8 V thus the output will boost up to over voltage protection voltage. When over voltage protect is detected, open process starts. Once OPEN, since the pin which is the object of the feedback is excluded, VOUT returns to normal voltage.

Figure 34. LED open protect
2) When LED short-circuited in multiple

All LED strings are lighted unless CH 1 to 4 terminal voltage is more than 8 V (typ.).
When it was more than 8 V only the strings which short-circuited are turned off, LED current strings of other lines continue to turn on normally. Short line (CH 1) current is changed from 60 mA to 0.05 mA (typ.), so CH 1 terminal don't heat.

Figure 35. LED short protect
3) When Schottky diode remove

IC breakdown is prevented by stopping boost operation thru Schottky diode protection function (OVP pin $<50 \mathrm{mV}$).

- Control Signal Input Timing

Timing sequence1
Figure 36. shows the Power ON sequence. ENABLE and PWM signal from ' L ' to ' H ' after charging current (VIN ON). Power OFF sequence, on the other hand, is turning OFF power supply (VIN) after ENABLE and PWM Signal turns from H to L .

LED IC Timing Sequence for PWM Control Turn-on

Figure 36. Timing sequence1

*other signals are inputted after signals are turned on.

LED IC Timing Sequence for PWM Control Turn-off

*other signals are inputted after signals are turned off.

Timing sequence?
Figure 37. shows the Power ON sequence. Power Supply charge (VIN ON), ENABLE signals from L to H, then PWM signal from L to H. Power OFF sequence, on the other hand, is turning OFF power supply (VIN) and ENABLE, PWM signal from H to L .

Figure 37. Timing sequence2

LED IC Timing Sequence for PWM Control Turn-on

*other signals are inputted after signals are turned on.

LED IC Timing Sequence for PWM Control Turn-off

*other signals are inputted after signals are turned off.

Timing sequence 3
Figure 38.shows Power ON sequence. Power supply charge (VIN ON), PWM from L to H, then afterwards ENABLE signal from L to H. Power OFF sequence is power supply (VIN) OFF, PWM signal from H to L then ENABLE signal from H to L.

Figure 38. Timing sequence3

LED IC Timing Sequence for PWM Control Turn-on

*other signals are inputted after signals are turned on.

LED IC Timing Sequence for PWM Control Tn

*other signals are inputted after signals are turned off.

VIN wake up speed

Figure 39. Control Signal timing

In case there is PWM OFF status ($\mathrm{min}: 10 \mathrm{~ms}$) during operation, ENABLE is reset (' H ' to ' L ') as shown in Figure 40. If PWM stops and VOUT voltage is dropped, this IC will be in current limiter state when PWM starts (no soft start). If soft start is not necessary, there is no need also to reset.

Figure 40. PWM stop and ENABLE turn "off"

- How to Activate

Pay attention to the following when activating.

- Regulator (VDC) is operated after ENABLE=H. Inner circuit is operated after releasing UVLO. When boosting after releasing UVLO, soft start function is operated. Soft start circuit needs t_{15} (more than $5 \mu \mathrm{~s}$) such as Figure 41. Soft start is operated during Tsoft time. Set PWM width "H" until soft start finishes.

Figure 41. Soft Start
Example: Time until soft start finishes at PWM frequency 25 kHz and $\mathrm{PWM}=\mathrm{H}$ time is $6 \mu \mathrm{~s}$ By soft start time typ 4.3 ms
tsoft $=6 \mu \mathrm{~s}-5 \mu \mathrm{~s}=1 \mu \mathrm{~s}$
Soft start time $/$ tsoft $/$ PWM frequency $=4300 \mu \mathrm{~s} / 1 \mu \mathrm{~s} / 25 \mathrm{kHz}=172 \mathrm{~ms}$
At dimming with PWM terminal (after soft start finishes)

Figure 42. Timing Input (after soft start)

	Name	Unit	Min.	Typ.	Max.
t 1	Power Supply Rise Time	$\mu \mathrm{s}$	100	-	-
t 2	Power Supply - ENABLE Rise Time	$\mu \mathrm{s}$	0	-	-
t 3	ENABLE Rise Time	$\mu \mathrm{s}$	0	-	100
t 4	ENABLE Fall Time	$\mu \mathrm{s}$	0	-	100
t 5	ENABLE Low Width	$\mu \mathrm{s}$	50	-	-
t 6	Power Supply - PWM Time	$\mu \mathrm{s}$	0	-	-
t 7	PWM Rise Time	$\mu \mathrm{s}$	0	-	100
t 8	PWM High Width	$\mu \mathrm{s}$	5	-	-
t 9	PWM Fall Time	$\mu \mathrm{s}$	0	-	100
t 10	PWM Low Width	$\mu \mathrm{s}$	5	-	-
t 11	PWM Cycle	$\mu \mathrm{s}$	40	5000	10000
t 12	ENABLE(H)->PWM(H) Time	$\mu \mathrm{s}$	0	-	-
t 13	ENABLE(L)->PWM(L) Time	$\mu \mathrm{s}$	0	-	-
t 14	PWM(L)->ENABLE(L) Time	$\mu \mathrm{s}$	0	-	-
t 15	Soft Start Set Up Time	$\mu \mathrm{s}$	5	-	-
H	Operation Voltage	V	4.2	12	27
L	No Operation Voltage	V	-	-	4.2

- How to Select the Number of LED Strings of the Current Driver

In order to reduce the number of strings of current driver, open unnecessary CH 1 to 4 pins for them not to be selected.
When using 2 strings, open the unnecessary 2 strings.
During VOUT wake up in an open state, VOUT boost up until OVP voltage. Once IC detect OVP, VOUT don't boost up until OVP from next start up. If ENABLE set to 'L,' IC resets CH4 status as shown Figure 43. Also during VOUT wake up, CH 4 (open terminal) and CH 1 are selected as shown Figure 44.

Figure 43. Select the number of CH 1 strings

ENABLE \qquad

Figure 44. Select the number of CH 4 strings (wake up)

- Start Control (ENABLE) and LED Current Driver Selection (PWM)

This IC can control the IC system by ENABLE, and IC can power off compulsory by setting 0.8 V or below. Also, It powers on ENABLE is at more than 2.0 V .
After it's selected to $E N A B L E=H$, When it is selected at $P W M=H$, LED current decided with ISET resistance flow. Next, When it is selected at PWM=L, LED current stop to flow.

ENABLE	PWM	IC	LED current
0	0	Off	OFF
1	0	On	OFF
0	1	Off	OFF
1	1	On	Current decided with ISET

- LED Current Setting Range

Normal Current setting is done thru resistor (RISET) connected to voltage of ISET.
Setting of each LED current is given as shown below.
RISET = 2340/LLEDmax

Also, Normal current setting range is 30 mA to 100 mA . LED current becomes a leak current MAX $2 \mu \mathrm{~A}$ at OFF setting.
ISET Normal current setting example

RISET	LED current
$24 \mathrm{k} \Omega$ (E24)	97.5 mA
$30 \mathrm{k} \Omega$ (E24)	78.0 mA
$39 \mathrm{k} \Omega$ (E24)	60.0 mA
$43 \mathrm{k} \Omega$ (E24)	54.4 mA
$68 \mathrm{k} \Omega$ (E24)	34.4 mA

- Frequency Setting Range

Switching frequency can be set by connecting the resistor to FSET pin.
Also, Frequency setting range is 0.60 MHz to 1.60 MHz .
The below diagrams are the reference data that shows what happens when FSET terminal is connected to resister.

FSET frequency setting example

RFSET	Frequency
$130 \mathrm{k} \Omega(E 96)$	0.57 MHz
$56 \mathrm{k} \Omega$ (E24)	1.25 MHz
$43 \mathrm{k} \Omega$ (E24)	1.59 MHz

Max Duty example

Frequency	Max Duty[\%]		
	Min	Typ	Max
600 MHz	-	96.0	-
1.25 MHz	91.0	95.0	99.0
1.6 MHz	-	92.0	-

Min Duty example
Min Duty example

Frequency	Min Duty[\%]		
	Min	Typ	Max
1.25 MHz	-	20	-

- PWM Dimming

Current driver PWM control is controlled by providing PWM signal to PWM port, as it is shown Figure 45.
The current set up with ISET is chosen as the H section of PWM and the current is off as the L section. Therefore, the average LED current is increasing in proportion to duty cycle of PWM signal. This method that it lets internal circuit and DC/DC to work, because it becomes to switch the driver, the current tolerance is a few when the PWM brightness is adjusted, it makes it possible to brightness control until $5 \mu \mathrm{~s}(\mathrm{Min} 0.1 \%$ at 200 Hz). And, don't use for the brightness control, because effect of ISET changeover is big under $1 \mu \mathrm{~s}$ ON time and under $1 \mu \mathrm{~s}$ OFF time. Typical PWM frequency is 100 Hz to 25 kHz .

Figure 45. PWM sequence

- Analog Dimming

This IC controls LED current thru an analog input (ABC terminal). LED current is determined thru the resistor connected to ISET. Normal state is ABC voltage $=$ typ 0.733 V .
Decrease LED current to decrease ABC voltage and increase LED current to increase ABC voltage.

In order to get the MAX value of LED current, follow the setting range of LED current found in page 18.
Be careful that the setting LED current Max value is ABC voltage $=0.733 \mathrm{~V}$ (typ.).
ABC input range is $0.05 \mathrm{~V} \sim 0.9 \mathrm{~V}$.
This dimming is effected by ISET tolerance.

When analog dimming is not used, connect capacitor to ABC terminal. LED current increases until charging of the capacitor at the ABC terminal is finished.
The resistor between 1.2 V and ABC terminal is $120.9 \mathrm{k} \Omega$.
Take into consideration the charge time before deciding the capacitor value.
Figure 46. Analog dimming application

Figure 47. PWM dimming application

Figure 48. ILED vs. ABC voltage

- Coil Selection

The $\mathrm{DC} / \mathrm{DC}$ is designed by more than $4.7 \mu \mathrm{H}$. When " L " value sets to a lower value, it is possibility that the specific sub-harmonic oscillation of current mode DC / DC will be happened. Do not let "L" value to $3.3 \mu \mathrm{H}$ or below.
When " L " value increases, the phase margin of DC / DC becomes zero. Please enlarge the output capacitor value when you increase "L" value. Make the resistor component smaller in order to increase the efficiency of DCR Inductor. Please estimate Peak Current of Coil as shown in the examples below.

Peak Current calculation

<Estimate of the current value which is needed for the normal operation>
As over current detector of this IC is detected the peak current, it have to estimate peak current to flow to the coil by operating condition.

In case of,	- Supply voltage of coil $=$ VIn - Switching frequency = fsw (Min=1.0M - Output voltage = VOUT - Average current of coil = lave - Cycle of Switching = T - ON time of switching transistor = Ton	- Inductance value of coil = L , Typ $=1.25 \mathrm{MHz}, \operatorname{Max}=1.5 \mathrm{MHz}$) - Total LED current = ILED - Peak current of coil = lpeak - Efficiency = eff (Please set up having margin) - ON Duty = D

The relation is shown below:
$C C M$: Ipeak $=(\mathrm{V} \ln / \mathrm{L}) \times(1 / \mathrm{fsw}) \times(1-(\mathrm{V}$ In $/ \mathrm{VOUT})), \mathrm{DCM}$: Ipeak $=(\mathrm{V} \ln / \mathrm{L}) \times$ Ton
lave $=($ VOUT \times IOUT $/$ VIn $) /$ eff
Ton $=(\text { lave } \times(1-\mathrm{V} \text { In } / \text { VOUT }) \times(1 / f s w) \times(\mathrm{L} / \mathrm{V} \text { In }) \times 2)^{1 / 2}$
Each current is calculated.
As peak current varies according to whether there is the direct current superposed, the next is decided.
CCM: $(1-\mathrm{V}$ In $/ \mathrm{VOUT}) \times(1 / \mathrm{fsw})<$ Ton \rightarrow peak current $=$ Ipeak $/ 2+$ lave
DCM: $\quad(1-\mathrm{V}$ In $/ \mathrm{VOUT}) \times(1 / \mathrm{fsw})>$ Ton \rightarrow peak current $=\mathrm{V} \mathrm{In} / \mathrm{L} \times$ Ton
(Example 1)
In case of, $\mathrm{VIn}=12 \mathrm{~V}, \mathrm{~L}=10 \mu \mathrm{H}, \mathrm{fsw}=1.25 \mathrm{MHz}$, VOUT $=32 \mathrm{~V}$, $\mathrm{ILED}=240 \mathrm{~mA}$, Efficiency $=88 \%$
lave $=(32 \times 240 \mathrm{~m} / 12) / 88 \%=0.7273 \mathrm{~A}$
Ton $=(0.7273 \times(1-12 / 32) \times(1 / 1.25 \mathrm{M}) \times(10 \mu / 12) \times 2)^{1 / 2}=0.78 \mu \mathrm{~s}$
($1-\mathrm{V}$ In $/$ VOUT $) \times(1 / \mathrm{fsw})=0.5 \mu \mathrm{~s}<\operatorname{Ton}(0.78 \mu \mathrm{~s}) \quad$ CCM
Ipeak $=(12 / 10 \mu) \times(1 / 1.25 \mathrm{M}) \times(1-(12 / 32))=0.6 \mathrm{~A}$
Peak current $=0.6 \mathrm{~A} / 2+0.727 \mathrm{~A}=1.027 \mathrm{~A}$
(Example 2)
In case of, $\mathrm{VIn}=24.0 \mathrm{~V}, \mathrm{~L}=10 \mu \mathrm{H}, \mathrm{fsw}=1.25 \mathrm{MHz}, \mathrm{VOUT}=32 \mathrm{~V}$, $\mathrm{ILED}=120 \mathrm{~mA}$, Efficiency $=88 \%$
lave $=(32 \times 120 \mathrm{~m} / 24.0) / 88 \%=0.1818 \mathrm{~A}$
Ton $=(0.1818 \times(1-24 / 32) \times(1 / 1.25 \mathrm{M}) \times(10 \mu / 24) \times 2)^{1 / 2}=0.17 \mu \mathrm{~s}$
($1-\mathrm{V}$ In $/ \mathrm{VOUT}) \times(1 / \mathrm{fsw})=0.20 \mu \mathrm{~s}>\operatorname{Ton}(0.17 \mu \mathrm{~s}) \quad \mathrm{DCM}$
Ipeak $=$ VIn $/ \mathrm{L} \times$ Ton $=24 / 10 \mu \times 0.17 \mu \mathrm{~s}=0.42 \mathrm{~A}$
Peak current $=0.42 \mathrm{~A}$

DCM/CCM calculation

Discontinuous Condition Mode (DCM) and Continuous Condition Mode (CCM) are calculated as following.

$$
\begin{array}{ll}
\text { CCM: } & \mathrm{L}>\text { VOUT } \times \mathrm{D} \times(1-\mathrm{D})^{2} \times \mathrm{T} /(2 \times \mathrm{ILED}) \\
\mathrm{DCM}: & \mathrm{L}<\mathrm{VOUT} \times \mathrm{D} \times(1-\mathrm{D})^{2} \times \mathrm{T} /(2 \times \mathrm{ILED}) \\
& \\
& \mathrm{D}=1-\mathrm{VIn} / \mathrm{VOUT}
\end{array}
$$

(Example 1)
In case of, V In $=7.0 \mathrm{~V}, \mathrm{~L}=10 \mu \mathrm{H}$, fsw $=1.2 \mathrm{MHz}, \mathrm{VOUT}=32 \mathrm{~V}$, ILED $=240 \mathrm{~mA}$
VOUT $\times \mathrm{D} \times(1-\mathrm{D})^{2} \times \mathrm{T} /(2 \times \mathrm{ILED})=32 \times(1-7 / 32) \times(7 / 32)^{2} \times 1 /\left(1.2 \times 10^{6}\right) /(2 \times 0.24)=4.69 \mu<\mathrm{L}(10 \mu \mathrm{H})$ \rightarrow CCM
(Example 2)
In case of, V In $=12.0 \mathrm{~V}, \mathrm{~L}=10 \mu \mathrm{H}, \mathrm{fsw}=1.2 \mathrm{MHz}, \mathrm{VOUT}=32 \mathrm{~V}$, $\mathrm{ILED}=60 \mathrm{~mA}$
$\operatorname{VOUT} \times \mathrm{D} \times(1-\mathrm{D})^{2} \times \mathrm{T} /(2 \times \mathrm{ILED})=32 \times(1-12 / 32) \times(12 / 32)^{2} \times 1 /\left(1.2 \times 10^{6}\right) /(2 \times 0.12)=15 \mu>\mathrm{L}(10 \mu \mathrm{H})$ \rightarrow DCM

