

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

STRUCTURE PROCUCTS

Silicon Monolithic Integrated Circuit Video-Audio Interface for LCD TV

TYPE

BD7620KS2

ABSOLUTE MAXIMUM RATING (T $a = 2.5 \,^{\circ}$ C)

Item	Symbol	Rating	Unit
Power Supply Voltage 1	٧	6. 0	٧
Power Supply Voltage 2	٧	-8.0	٧
Power Dissipation	Pd	%1 1500	mW
Operating Temperature Range	Topr	$-25 \sim +75$	င
Storage Temperature Range	Tstg	$-55 \sim +150$	C

※ 1 When absolute temperature exceeds Ta=25℃, rated value is reduced by12mW/°C

OPERATING RANGE

Item	Symbol	Limit	Unit
Supply Voltage 1	DVVCC, AVCC	4.75 ~ 5.25	٧
Supply Voltage 2	DVGND, AGND	$-6.5 \sim -7.5$	٧

^{*} This product is not designed for protection against radioactive rays.

FUNCTION

- Built-in 6 input Video switch, 3-input Y switch and 3-input C switch
- Input terminal (3ch) of the S1/S2 standard suitability
- Optional 75 Ω driver output using external Tr
- Built-in path selector outside LPF
- Attaching HiZ control of video output (YVOUT2)
- Built-in gain adjuster of Video/Audio (0dB/6dB)
- I2C-BUS controlled

(Protection diode is included on both sides of VCC, GND to the SCL, SDA terminal.)

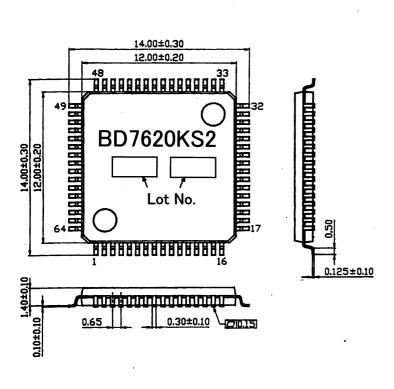
- Optional Slave address modification (90H/92H)
- Internal MUTE function
- Built-in 7-input Audio selector (Lch, Rch)
- Internal changeable circuit (Audio input and output)
- Internal reversible circuit (Audio Lch⇔Rch)
- Internal 2 outputs for external control port (open collector)

Application example

The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics.

When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for the external components including static and transitional characteristics as well as dispersion of the IC. Note that ROHM cannot provide adequate confirmation of patents.

The product described in this specification is designed to be used with ordinary electronic equipment or devices (such as audio-visual equipment, office-automation equipment, communications devices, electrical appliances, and electronic toys). Should you intend to use this product with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.


ROHM assumes no responsibility for use of any circuits described herein, no license under any patent or other right, and makes no representations that the circuits are free from patent infringement.

DVVCC • AVCC should use the same power source.

^{*} Improper operation will result if the input and/or output terminal is connected either to the supply Lines or the surface connection terminal and also when insufficient power is supplied to the IC.

[※] I²C BUS is compatible Version2.0 (first mode 400kbit/s) .

Fig—1 PACKAGE (SQFP—T64)

Fig-2 BLOCK DIAGRAM

PIN ASSINGNMENT

• •	IN ACCITACION ENT								
	PIN NO.	PIN NAME	PIN NO.	PIN NAME	PIN NO.	PIN NAME	PIN NO.	PIN NAME	
	1	V1	17	V3	33	LOUT1	49	COUT2B	
	2	L1	18	L3	34	YOUT1A	50	COUT2A	
	3	Y1	19	Y3	35	YOUT1B	51	ROUT2	
-	4	R1	20	R3	36	ROUT1	52	YOUT2B	
	5	C1	21	C3	37	COUT1A	53	YOUT2A	
	6	S1S2DET1	22	S1S2DET3	38	COUT1B	54	LOUT2	
	7	CSDET1	23	CSDET3	39	DVBIAS	55	YVOUT2	
	8	AVCC	24	AGND	40	SDA	56	DVGND	
	9	V2	25	L4	41	SCL	57	EXTSWCTL	
	10	L2	26	V4	42	ADR	58	L5	
	11	Y2	27	R4	43	DVVCC	59	V5	
	12	R2	28	VREF	44	TEST	60	R5	
	13	C2	29	AMP6OUT	45	L6	61	CTLPORT	
	14	S1S2DET2	30	OUTBUF IN	46	VREF2	62	LTV	
	15	CSDET2	31	YVOUT1A	47	R6	63	VTV	
	16	ABIAS	32	YVOUT1B	48	DCOUT	64	RTV	

(UNIT :mm)

ELECTRICAL CHARACTERISTICS (Ta=25°C, DVVCC, AVCC=5.0V, DVGND, AGND=-7.0V unless otherwise specified)

ECTRICAL CHARACTERISTICS (Ta=25°C,	DVVCC, AVC	C=5.0V, DVG	ND, AGND=-7	.ov unless of	nerwise speci	nied)
ltem .	Symbol	MIN.	Limit TYP.	MAX.	Unit	Conditions
<all circuits=""></all>		101114.		WIAA.		
VCC Circuit Current	lvcc	38	63	88	mA	No Signal
VEE Circuit Current	Ivee	-88	-63	-38	mA	No Signal
<video part=""></video>						
Y/V OUT1 0dB Voltage Gain	G ₀₃₂	-0.7	-0.2	0.3	dB	Vin=1.0Vpp , f=100kHz
Y/V OUT1 6dB Voltage Gain	G ₆₃₂	5.5	6.0	6.5	dB	Vin=1.0Vpp , f=100kHz
Y/V OUT2 0dB Voltage Gain Y/V OUT2 6dB Voltage Gain	G ₀₅₅	-0.7 5.5	-0.2	0.3	dB	Vin=1.0Vpp , f=100kHz
Y OUT1 0dB Voltage Gain	G ₆₅₅	-0.7	6.0 -0.2	6.5 0.3	dB dB	Vin=1.0Vpp , f=100kHz Vin=1.0Vpp , f=100kHz
Y OUT1 6dB Voltage Gain	G ₆₃₅	5.5	6.0	6.5	dB	Vin=1.0Vpp , i=100kHz
Y OUT2 0dB Voltage Gain	G ₀₅₂	-0.7	-0.2	0.3	dB	Vin=1.0Vpp , f=100kHz
Y OUT2 6dB Voltage Gain	G ₆₅₂	5.5	6.0	6.5	dB	Vin=1.0Vpp , f=100kHz
C OUT1 0dB Voltage Gain	G ₀₃₈	-0.7	-0.2	0.3	dB	Vin=1.0Vpp , f=100kHz
C OUT1 6dB Voltage Gain	G ₆₃₈	5.5	6.0	6.5	dB	Vin=1.0Vpp , f=100kHz
C OUT2 0dB Voltage Gain	G ₀₄₉	-0.7	-0.2	0.3	dB	Vin=1.0Vpp , f=100kHz
C OUT2 6dB Voltage Gain	G ₆₄₉	5.5	6.0	6.5	dB	Vin=1.0Vpp , f=100kHz
Channel Differential Gain Y/V OUT1 0dB Maximum Output Level	G _D V ₀₀₃₂	-0.5 2.6	0.0 2.8	0.5	dB Vp-p	Vin=1.0Vpp , f=100kHz Vin: THD=1.0% f=10kHz
Y/V OUT1 6dB Maximum Output Level	V ₀₆₃₂	2.6	2.8	_	Vp-p	Vin: THD=1.0% f=10kHz
Y/V OUT2 0dB Maximum Output Level	V ₀₀₅₅	2.5	2.7		Vp-p	Vin: THD=1.0% f=10kHz
Y/V OUT2 6dB Maximum Output Level	V _{O855}	2.5	2.7		Vp-p	Vin: THD=1.0% f=10kHz
Y OUT1 0dB Maximum Output Level	V ₀₀₃₅	2.6	2.8	=	Vp-p	Vin: THD=1.0% f=10kHz
Y OUT1 6dB Maximum Output Level	V ₀₆₃₅	2.6	2.8		Vp-p	Vin: THD=1.0% f=10kHz
Y OUT2 0dB Maximum Output Level	V ₀₀₅₂	2.6	2.8		Vp-p	Vin: THD=1.0% f=10kHz
Y OUT2 6dB Maximum Output Level C OUT1 0dB Maximum Output Level	V _{O652}	2.6 2.8	2.8		Vp-p	Vin: THD=1.0% f=10kHz Vin: THD=1.0% f=10kHz
C OUT1 0dB Maximum Output Level C OUT1 6dB Maximum Output Level	V _{O638}	2.8	3.0		Vp-p Vp-p	Vin: THD=1.0% f=10kHz
C OUT2 0dB Maximum Output Level	V ₀₆₃₈	2.8	3.0		Vp-p	Vin: THD=1.0% f=10kHz
C OUT2 6dB Maximum Output Level	V _{O649}	2.8	3.0	_	Vp-p	Vin: THD=1.0% f=10kHz
Y/V OUT1 0dB Frequency Characteristic	F ₀₃₂	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
Y/V OUT1 6dB Frequency Characteristic	F ₆₃₂	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
Y/V OUT2 0dB Frequency Characteristic	F ₀₅₅	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
Y/V OUT2 6dB Frequency Characteristic	F ₆₅₅	-2.0 -2.0	0	2.0	dB dB	Vin=1.0Vpp , f=7M/100kHz Vin=1.0Vpp , f=7M/100kHz
Y OUT1 0dB Frequency Characteristic Y OUT1 6dB Frequency Characteristic	F ₀₃₅	-2.0	0	2.0	dB	Vin=1.0Vpp , i=7M/100kHz
Y OUT2 0dB Frequency Characteristic	F ₀₅₂	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
Y OUT2 6dB Frequency Characteristic	F ₆₅₂	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
C OUT1 0dB Frequency Characteristic	F ₀₃₈	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
C OUT1 6dB Frequency Characteristic	F ₆₃₈	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
C OUT2 0dB Frequency Characteristic	F ₀₄₉	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
C OUT2 6dB Frequency Characteristic	F ₆₄₉	-2.0	0	2.0	dB	Vin=1.0Vpp , f=7M/100kHz
Y/V OUT1 MUTE Attenuation	Мтэ2	==	-60	-55	dB	Vin=1.0Vpp , f=4.43MHz
Y/V OUT2 MUTE Attenuation Y OUT1 MUTE Attenuation	M _{T55}		-60 -60	-55 -55	dB dB	Vin=1.0Vpp , f=4.43MHz
Y OUT2 MUTE Attenuation	M _{T52}		-60	-55	dB	Vin=1.0Vpp , f=4.43MHz 0dB
C OUT1 MUTE Attenuation	Мтза	_	-60	-55	dB	Vin=1.0Vpp , f=4.43MHz 0dB
C OUT2 MUTE Attenuation	M _{T49}	=	-60	-55	dB	Vin=1.0Vpp , f=4.43MHz OdB
Y/V OUT Channel Crosstalk	C _{TYVO}		-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
Y OUT Channel Crosstalk	Стуо		-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
C OUT Channel Crosstalk	C _{TCO}		-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
Y/V, V, C OUT Channel Crosstalk VSW1V Switch Crosstalk	C _{TYVCO} C _{T32}	<u> </u>	-60 -60	-55 -55	dB dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB Vin=1.0Vpp,f=4.43MHz,AMP0dB
VSW2V Switch Crosstalk	C _{T55}	—— <u> </u>	-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
VSW1Y Switch Crosstalk	C _{T35}	===	-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
VSW2Y Switch Crosstalk	C _{T52}	_	-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
VSW1C Switch Crosstalk	C _{T38}		-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
VSW2C Switch Crosstalk	C _{T49}		-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
YVSW1 Switch Crosstalk	Стзауу		-60	-55	dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB
YVSW2 Switch Crosstalk LPFSW Switch Crosstalk	C _{T55YV}		-60 -60	-55 -55	dB dB	Vin=1.0Vpp,f=4.43MHz,AMP0dB Vin=1.0Vpp,f=4.43MHz,AMP0dB
LPFSW Switch Crosstalk <audio part=""></audio>	C _{T32BF}		-00	-55	ub ub	VIII=1.0Vpp,(=4.45Mi12,AMI100B
L OUT1 Frequency Characteristic	F ₃₃	-3.0	0.0	3.0	dB	Vin=1.0Vpp , f=50kHz/1k
R OUT1 Frequency Characteristic	F ₃₆	-3.0	0.0	3.0	dB	Vin=1.0Vpp , f=50kHz/1k
L OUT2 Frequency Characteristic	F ₅₄	-3.0	0.0	3.0	dB	Vin=1.0Vpp , f=50kHz/1k
R OUT2 Frequency Characteristic	F ₅₁	-3.0	0.0	3.0	dB	Vin=1.0Vpp , f=50kHz/1k
L OUT1 0dB Voltage Gain	G ₀₃₃	-1.0	0	1.0	dB	Vin=1.0Vpp , f=1kHz
L OUT1 6dB Voltage Gain	G ₆₃₃	5.0	6.0	7.0	dB	Vin=1.0Vpp , f=1kHz
R OUT1 0dB Voltage Gain R OUT1 6dB Voltage Gain	G ₀₃₆ G ₆₃₆	-1.0 5.0	6.0	7.0	dB dB	Vin=1.0Vpp , f=1kHz Vin=1.0Vpp , f=1kHz
L OUT2 OdB Voltage Gain	G ₆₃₆	-1.0	0.0	1.0	dB	Vin=1.0Vpp , i=1kHz
L OUT2 6dB Voltage Gain	G ₆₅₄	5.0	6.0	7.0	dB	Vin=1.0Vpp , f=1kHz
R OUT2 OdB Voltage Gain	G ₀₅₁	-1.0	0	1.0	dB	Vin=1.0Vpp , f=1kHz
R OUT2 6dB Voltage Gain	G ₆₅₁	5.0	6.0	7.0	dB	Vin=1.0Vpp , f=1kHz
L OUT1 Total Harmonic Distortion	T _{HD033}		0.003	0.1	%	Vin=2.2Vpp,f=1kHz,0dB
R OUT1 Total Harmonic Distortion	T _{HD036}		0.003	0.1	%	Vin=2.2Vpp,f=1kHz, 0dB
L OUT2 Total Harmonic Distortion R OUT2 Total Harmonic Distortion	THD054		0.003	0.1	%	Vin=2.2Vpp,f=1kHz, 0dB
L OUT1 Input D Range	T _{HD051} T _{HDR33}	2.8	3.0	- 0.1	Vrms	f=1kHz, 0dB,Maximum value of Distortion<0.3%
R OUT1 Input D Range	T _{HDR36}	2.8	3.0		Vrms	f=1kHz, 0dB, Maximum value of Distortion<0.3%
L OUT2 Input D Range	T _{HDR54}	2.8	3.0		Vrms	f=1kHz, 0dB, Maximum value of Distortion<0.3%
R OUT2 Input D Range	T _{HDR51}	2.8	3.0		Vrms	f=1kHz, 0dB, Maximum value of Distortion<0.3%
L-R OUT1 Channel Crosstalk	C _{TLR01}	=	-90	-80	dB	Vin=1.0Vpp , f=1kHz, 0dB
L-R OUT2 Channel Crosstalk	C _{TLR02}	-	-90	-80	dB	Vin=1.0Vpp , f=1kHz, 0dB
R.R.Ratio	P _{SR}	- 20	-65 —	-45 30	dB mV	※ 2 Offset voltage between in and output
DC Offset Remain Noise	V _{OS}	-30 0	20	100	mV μ Vrms	Offset voltage between in and output
<adr></adr>	 "	 	 	 	٠,,,,,,	
Input Voltage H	V ₈₋₁₄₂	2.0		Vcc	V	
Input Voltage L	V _{IL42}	0.0	-	1.0	V	
Input Impedance	Z _{H2}	65	100	135	kΩ	Pull down resistance

ltem	Symbol	Number Limit			Unit	0 - 12
	Symbol	MIN.	TYP.	MAX.	Onit	Conditions
<scl, sda=""></scl,>				l		
Input Voltage H	VIHIC	2.0		Vcc	V	
Input Voltage L	VILIIC	0.0	_	1.0	V	
Input Bias Current	I _{BIIC}	0	-1	-10	mA	
<i2c-bus control=""></i2c-bus>						
S1/S2 DET Detection Level H	V _{DSSH}	3.4	_	Vcc	V	
S1/S2 DET Detection Level M	V _{DSSM}	1.3	1.9	2.5	V	
S1/S2 DET Detection Level L	V _{DSSL}	0.0	_	0.7	V	
C/S DET Detection Level H	V _{DCSH}	3.5	_	VCC	V	
C/S DET Detection Level L	V _{DCSL}	0		2.5	V	
C/S DET Input Impedance	Zics	100	150	200	ΚΩ	Pull up resistance
<dc out=""></dc>						
Output Voltage H	V _{048H}	4.0	4.5	4.9	V	· · · · · · · · · · · · · · · · · · ·
Output Voltage M	V _{O48M}	1.8	2.1	2.4	V	
Output Voltage L	V _{O48L}	0	0.1	0.5	V	
Output Impedance	Z ₀₄₈	0.5	0.9	1.3	kΩ	Pull down resistance

^{%1} 400Hz HPF+30kHz LPF ON

X2 Vin=0.3Vpp,f=100Hz, 30kHz LPF ON

Cautions on use

- (1) Numbers and data in entries are representative design values and are not guaranteed values of the items.
- (2) Although we are confident in recommending the sample application circuits, carefully their characteristics further when using them. When modifying externally attached component constants before use, determine them so that they have sufficient margins by taking into account variations in externally attached components and the Rohm LSI, not only for static characteristics but also including transient characteristics.
- (3) Absolute maximum ratings

If applied voltage, operating temperature range, or other absolute maximum ratings are exceeded, the LSI may be damaged. Do not apply voltages or temperatures that exceeded the absolute maximum ratings. If you think of a case in which absolute maximum ratings are exceeded, enforce fuses or other physical safety measures and investigate how not to apply the conditions under which absolute maximum rations are exceeded to the LSI.

(4) DVGND, AGND pins (-7V)

Make the DVGND, AGND pin voltage such that it is lowest voltage even when operating below it. Actually confirm that the voltage of each pin does not become a lower voltage than the DVGND, AGND pin, including transient phenomena.

GND pin (0V) is the DVBIAS, ABIAS pin.

(5) Thermal design

Perform thermal design in which there are adequate margins by taking into account the allowable power dissipation in actual states of use. Within the limits of operating temperature (-25°C \sim +75°C), although basic circuit functional operation is guaranteed. Please take into consideration enough for a hindsight. In the case of a set design, please circulation of the air of IC circumference secured according to installation a fan and PCB layout, and please sufficient measure against heat dissipation.

(6) Shorts between pins and misinstallation

When mounting the LSI on a board, pay adequate attention to orientation and placement discrepancies of the LSI. If it is misinstalled and the power is turned on, the LSI may be damaged. It also may be damaged if it is shorted by a foreign substance coming between pins of the LSI or between a pin and a power supply or a pin and a GND.

(7) Operation in strong magnetic fields

Adequately evaluate use in a strong magnetic field, since there is a possibility of malfunction.

(8) Supply voltage of operation

Although basic circuit function is guaranteed within the limits of supply voltage(1: 4.75V~5.25V,

2: -6.5V~-7.5V) of operation. Please be sure element and each parameter, when this device use.

- (9) Please lay out outside parts nearest IC, and set lines from output amplifier short.
- (10) Please lay out the coupling capacitor nearest IC and each pin.
- (11) VCC for this IC should use the same power source. And impedance should connect as well as possible for each VCC pin, for each GND pin.

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any
 means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard
 use and operation. Please pay careful attention to the peripheral conditions when designing circuits
 and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

Thank you for your accessing to ROHM product informations.

More detail product informations and catalogs are available,
please contact your nearest sales office.

Please contact our sales offices for details ;

```
U.S.A / San Diego
                        TEL: +1(858)625-3630
                                                  FAX: +1(858)625-3670
       Atlanta
                        TEL: +1(770)754-5972
                                                  FAX: +1(770)754-0691
       Dallas
                        TEL: +1(972)312-8818
                                                  FAX: +1(972)312-0330
Germany / Dusseldorf
                        TEL: +49(2154)9210
                                                  FAX: +49(2154)921400
United Kingdom / London TEL: +44(1)908-282-666
                                                 FAX: +44(1)908-282-528
France / Paris
                        TEL: +33(0)1 56 97 30 60 FAX: +33(0) 1 56 97 30 80
China / Hong Kong
                                                  FAX: +852(2)375-8971
                        TEL: +852(2)740-6262
       Shanghai
                        TEL: +86(21)6279-2727
                                                  FAX: +86(21)6247-2066
       Dilian
                        TEL: +86(411)8230-8549
                                                 FAX: +86(411)8230-8537
       Beijing
                        TEL: +86(10)8525-2483
                                                  FAX: +86(10)8525-2489
Taiwan / Taipei
                        TEL: +866(2)2500-6956
                                                  FAX: +866(2)2503-2869
Korea / Seoul
                        TEL: +82(2)8182-700
                                                  FAX: +82(2)8182-715
Singapore
                        TEL: +65-6332-2322
                                                  FAX: +65-6332-5662
Malaysia / Kuala Lumpur
                        TEL: +60(3)7958-8355
                                                  FAX: +60(3)7958-8377
Philippines / Manila
                        TEL: +63(2)807-6872
                                                  FAX: +63(2)809-1422
Thailand / Bangkok
                        TEL: +66(2)254-4890
                                                  FAX: +66(2)256-6334
```

Japan / (Internal Sales)

Tokyo 2-1-1, Yaesu, Chuo-ku, Tokyo 104-0082

TEL: +81(3)5203-0321 FAX: +81(3)5203-0300

Yokohama 2-4-8, Shin Yokohama, Kohoku-ku, Yokohama, Kanagawa 222-8575

TEL: +81(45)476-2131 FAX: +81(45)476-2128

Nagoya Dainagayo Building 9F 3-28-12, Meieki, Nakamura-ku, Nagoya, Aichi 450-0002

TEL:+81(52)581-8521 FAX:+81(52)561-2173

Kyoto 579-32 Higashi Shiokouji-cho, Karasuma Nishi-iru, Shiokoujidori, Shimogyo-ku,

Kyoto 600-8216

TEL: +81(75)311-2121 FAX: +81(75)314-6559

(Contact address for overseas customers in Japan)

Yokohama TEL: +81(45)476-9270 FAX: +81(045)476-9271