# mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





# **4ch White LED Driver with Buck-Boost** (40 LED Maximum)

# BD81A24MUV-M / BD81A24EFV-M

#### **General Description**

BD81A24MUV-M/EFV-M is a white LED driver with the capability of withstanding high input voltage (35V Max). This driver has 4ch constant-current drivers integrated in 1-chip, where each channel can draw up to 120mA (Max), which is also suitable for high illumination LED drive. Furthermore, a buck-boost current mode DC/DC controller is also integrated to achieve stable operation during power voltage fluctuation. Light modulation (10,000:1 @100Hz dimming function) is possible by PWM input.

#### Features

- Integrated Buck-Boost Current Mode DC/DC Controller
- Integrated 4ch Current Driver for LED Drive
- 10,000: 1 PWM Dimming @100Hz
- External Switching Frequency Synchronization
- Built-In Protection Function (UVLO, OVP, OCP, SCP)
- LED Abnormality Detection Function (Open/Short)
- Integrated V<sub>OUT</sub> Discharge Function (Buck-Boost or Buck Structure Limitation)
- AEC-Q100 Qualified (Note 1)

(Note 1) Grade1

#### Application

For Display audio, CID, Cluster, HUD Small and Medium type LCD Panels for Automotive use.

# **Typical Application Circuit**

#### **Key Specifications**

- Operating Input Voltage Range 4.5 to 35 V ±3.0%@50mA
- Output LED Current Accuracy
- DC/DC Oscillation Frequency 200 to 2200kHz
- **Operating Temperature Range**
- LED Maximum Output Current

-40 to +125°C

1.0µs

- 120mA/ch
- PWM Min Pulse Width

# Package(s) W(Typ) x D(Typ) x H(Max)

VQFN28SV5050 (BD81A24MUV-M)

 $W(Typ) \times D(Typ) \times H(Max)$ 5.0mm × 5.0mm ×1.0mm

HTSSOP-B28 (BD81A24EFV-M)

 $W(Typ) \times D(Typ) \times H(Max)$ 9.7mm × 6.4mm × 1.0mm







Figure 1. Buck-Boost Application Circuit

OProduct structure: Silicon monolithic integrated circuit OThis product has no designed protection against radioactive rays



#### HTSSOP-B28 (Top view)



Figure 2. Pin Configuration

#### **Pin Configuration**

| VQFN28 | HTSSOP | Terminal | Function                                     |
|--------|--------|----------|----------------------------------------------|
| SV5050 | -B28   | Name     | 1 01100011                                   |
| 1      | 11     | LEDEN1   | LED output pin enable terminal 1             |
| 2      | 12     | LEDEN2   | LED output pin enable terminal 2             |
| 3      | 13     | LED1     | LED output terminal 1                        |
| 4      | 14     | LED2     | LED output terminal 2                        |
| 5      | 15     | LED3     | LED output terminal 3                        |
| 6      | 16     | LED4     | LED output terminal 4                        |
| 7      | 17     | OVP      | Over-voltage detection terminal              |
| 8      | 18     | ISET     | LED output current setting terminal          |
| 9      | 19     | PGND     | LED output GND terminal                      |
| 10     | 20     | OUTL     | Low side FET drain terminal                  |
| 11     | 21     | DGND     | DC/DC output GND terminal                    |
| 12     | 22     | VDISC    | Output voltage discharge terminal            |
| 13     | 23     | SW       | High side FET source terminal                |
| 14     | 24     | OUTH     | High side FET gate terminal                  |
| 15     | 25     | BOOT     | High side FET driver power supply terminal   |
| 16     | 26     | VREG     | Internal constant voltage                    |
| 17     | 27     | EN       | Enable terminal                              |
| 18     | 28     | CS       | DC/DC current sense terminal                 |
| 19     | 1      | VCC      | Input power supply terminal                  |
| 20     | 2      | SS       | "Soft Start" Capacitor connection            |
| 21     | 3      | COMP     | ERR AMP output                               |
| 22     | 4      | RT       | Oscillation Frequency-setting resistor input |
| 23     | 5      | SYNC     | External synchronization input terminal      |
| 24     | 6      | SHDETEN  | Short detection enable signal                |
| 25     | 7      | GND      | Small signal GND terminal                    |
| 26     | 8      | PWM      | PWM light modulation input terminal          |
| 27     | 9      | FAIL1    | "Failure" signal output terminal             |
| 28     | 10     | FAIL2    | LED open/short detection output signal       |
| -      | -      | Thermal  | Back side thermal PAD                        |
|        |        | PAD      | (Please connect to GND)                      |

# **Block Diagram**



Figure 3. Internal Block Diagram

# **Description of Blocks**

#### 1. Voltage Reference (VREG)

5V (Typ) is generated from the V<sub>CC</sub> Input Voltage (when at EN=High). This voltage (VREG) is used as power supply of internal circuit and when fixing the pins outside of the IC at a high voltage, as well. The UVLO protection is integrated in VREG. The circuit starts to operate at V<sub>CC</sub>≥4.0V (Typ) and VREG=3.5V (Typ) and stops when at V<sub>CC</sub>≤3.5V (Typ) or VREG≤2.0V (Typ). For release/cancellation condition and detection condition, please refer to Table 2 on page 11. Connect a ceramic capacitor (CREG) to VREG terminal for phase compensation. CREG range is  $1.0\mu$ F to  $4.7\mu$ F and recommend value is  $2.2\mu$ F. If the CREG is not connected, the operation of circuit will be notably unstable.

#### 2. Constant Current Driver

| Table1. LED Control Logic |        |                     |     |     |     |  |  |  |  |
|---------------------------|--------|---------------------|-----|-----|-----|--|--|--|--|
| LEDEN1                    | LEDEN2 | LED1 LED2 LED3 LED4 |     |     |     |  |  |  |  |
| L                         | L      | ON                  | ON  | ON  | ON  |  |  |  |  |
| Н                         | L      | ON                  | ON  | ON  | OFF |  |  |  |  |
| L                         | Н      | ON                  | ON  | OFF | OFF |  |  |  |  |
| Н                         | Н      | ON                  | OFF | OFF | OFF |  |  |  |  |

If less than four constant-current drivers are used, please make the LED1 to 4 terminal 'open' while the output 'OFF' by LEDEN1 and LEDEN2 terminal. The truth table for these pins is shown above. If the unused constant-current driver output will be set open without the process of LEDEN1,2 terminals, the 'open detection' will be activated. The LEDEN1, 2 terminals is pulled down internally in the IC and it is low at 'open' condition. They should be connected to VREG terminal or fixed to logic HIGH when in use.

#### (1) Output Current Setting (RISET)



Figure 4. ILED vs RISET

The Output Current ILED can be obtained by the following equation:

# $ILED[mA] = (1.0V/RISET[k\Omega]) \times 5000$

RISET operating range is 41kohm to 250kohm. It cannot change the RISET value in the operation.

This IC has ISET-GND short protection that protect LED element from over current when ISET and GND is short. If the RISET value is under 4.7kohm, the IC detects ISET-GND short and LED current becomes off.

#### <Caution of LED current setting>

If the output current  $I_{LED}$  is set to >100mA/ch, the stability of LED current within specified operating temperature range will decrease. LED current supply value will depends on the amount of ripple in output voltage (VOUT). The figure below shows the temperature and the possible LED current maximum value settings, please adjust the ripple voltage in such a way that the LED current value setting will fall within the range as shown on the graph below. ( $\Delta$ VOUT: Output Ripple Voltage) Please refer P22, there is the detail information of VOUT ripple voltage.



Figure 5. Temperature (Ta) vs Output LED Current (ILED)



The current driver ON/OFF is controlled by PWM terminal. The duty ratio of PWM terminal becomes duty ratio of ILED. If don't use PWM dimming, please set the PWM terminal to HIGH. Output light intensity is greatest at 100% input

#### 3. Buck-Boost DC/DC Controller

(1) Number of LED in Series Connection

In this IC, the output voltage of the DC/DC converter (VOUT) is controlled by LED cathode voltage (LED1–4 terminal voltage) becomes 1.0V (Typ). When two or more LED are operating at the same time, the LED terminal voltage that connects the highest LED Vf row is held at 1.0V (Typ). Then the voltages of other LED terminal will increased only LED VF tolerance. Please decide LED VF tolerance by using the description as shown below:

LED series number x LED VF tolerance voltage < Short Detection Voltage 4.2V (Min) - LED Control Voltage 1.1V (Max)

#### (2) Over Voltage Protection (OVP)

The output of the DC/DC converter (VOUT) should be connected to the OVP pin via voltage divider. If OVP terminal voltage is over 2.0V (Typ), Over Voltage Protection (OVP) is active and stop the DCDC switching. In determining an appropriate trigger voltage for OVP function, consider the total number of LEDs in series and the Maximum variation in VF. When OVP terminal voltage drops to 1.94V (Typ) after OVP operation, the OVP will be released. If ROVP1 is GND side resistance, ROVP2 is output voltage side resistance and output voltage is VOUT, OVP will occur at below equation.

$$VOUT[V] \ge \{(ROVP1[k\Omega] + ROVP2[k\Omega])/ROVP1[k\Omega]\} \times 2.0[V]$$

OVP will engage when V<sub>OUT</sub> >32V if ROVP1=22k $\Omega$  and ROVP2=330k $\Omega$ .

(3) Buck-Boost DC/DC Converter Oscillation Frequency (FOSC)



Figure 8. RRT vs FOSC

DCDC oscillation frequency can be set via a resistor connected to the RT pin. This resistor determines the charge/discharge current to the internal capacitor, thereby changing the oscillation frequency. Please set the resistance of RRT using the above data and below equation.

$$Fosc[kHz] = (81 \times 10^2 / RRT[k\Omega]) \times a$$

Where:  $81 \times 10^2$  is the constant value in IC (+/-10%) α is the adjustment factor (RRT: α = 41kΩ: 1.01, 27kΩ: 1.00, 18kΩ: 0.99, 10 kΩ: 0.98, 4.7kΩ: 0.97, 3.9kΩ: 0.96)

A resistor in the range of 3.6 k $\Omega$  to 41 k $\Omega$  is recommended. Settings that deviate from the frequency range shown above may cause switching to stop, and proper operation cannot be guaranteed.

(4) External Synchronization Oscillation Frequency (FSYNC)

If the clock signal input to SYNC terminal, the internal oscillation frequency can be synchronized externally.

Do not switch from external to internal oscillation if the DC/DC converter is active. The clock input to SYNC terminal is valid only in rising edge. As for the external input frequency, the input of the internal oscillation frequency ± 20% decided in RT terminal resistance is recommended.

(5) Soft Start Function (SS)

The soft-start (SS) function can limits the start up current and output rise-time slowly if the capacitor connected to SS terminal. It is available for prevention of output voltage overshoot and inrush current. If you don't use soft-start function, please set SS terminal open. For the calculation of SS time, please refer to the formula on page 24.

(6) Max Duty

If this IC operates by DCDC switching Max Duty, it would not output expect voltage and LED current decrease or LED current OFF by SCP. Please set load condition and external parts for DCDC switching Duty does not reach Max Duty.

#### 4. Protect Function

| Table 2. The detect condition of each protect function and the operation | n during dotaction |
|--------------------------------------------------------------------------|--------------------|
| Table 2. The delect condition of each protect function and the operation |                    |
|                                                                          | J                  |

| Durate et Franction  | Detect C                                                                        | One and in a Davis a Data sting |                                                                    |
|----------------------|---------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------|
| Protect Function     | [Detection]                                                                     | [Release/ Cancellation]         | Operation During Detection                                         |
| UVLO                 | $V_{CC}$ <3.5V or VREG<2.0V                                                     | VCC >4.0V and VREG>3.5V         | All Blocks Shuts down<br>(Except for VREG)                         |
| TSD                  | Tj>175°C                                                                        | Tj<150°C                        | All Blocks Shuts down<br>(Except for VREG)                         |
| OVP                  | VOVP <sub>P</sub> >2.0V                                                         | V <sub>OVP</sub> <1.94V         | DCDC switching OFF                                                 |
| OCP                  | V <sub>CS</sub> ≤V <sub>CC</sub> -0.2V                                          | Vcs>Vcc-0.2V                    | DCDC switching OFF                                                 |
| SCP                  | One of the LED1-4<br>is under 0.3V<br>or<br>VOVP<0.57V<br>(100ms delay @300kHz) | EN Reset<br>or<br>UVLO Reset    | After SCP delay time,<br>all block Latch Off<br>(Except for VREG)  |
| LED Open Protection  | VLED<0.3V<br>and VOVP>2.0V                                                      | EN Reset<br>or<br>UVLO Reset    | Only the detected channel latches<br>OFF                           |
| LED Short Protection | VLED>4.5V<br>(100ms delay @300kHz)                                              | EN Reset<br>or<br>UVLO Reset    | After LED Short delay time,<br>only the detected channel latch OFF |





The operating status of the protection is propagated to FAIL1 and FAIL2 terminals (open-drain outputs). FAIL1 becomes low when OVP or OCP protection is detected, whereas FAIL2 becomes low when SCP, LED open or LED short is detected. If the FAIL terminal will not be used as flag output, please make the FAIL terminal open or connect it to GND. But if the FAIL terminal will be used as a flag output, it is recommended to pull-up the FAIL1, 2 terminals to VREG terminal. The recommended value of pull-up resistance is  $100k\Omega$ .

- (1) Under-Voltage Lock Out (UVLO) The UVLO shuts down all the circuits except VREG when VCC<3.5V (Typ) or VREG <2.0V (Typ). And UVLO is released by Vcc>4.0V (Typ) and VREG>3.5V (Typ).
- (2) Thermal Shut Down (TSD)

The TSD shuts down all the circuits except VREG when the Tj reaches 175°C (Typ), and releases when the Tj becomes below 150°C (Typ).

(3) Over-Voltage Protection (OVP)

The output voltage of DC/DC is detected from the OVP terminal voltage, and the over-voltage protection will activate if the OVP terminal voltage becomes greater than 2.0V (Typ). When OVP is activated, the switching operation of the DC/DC turns off. And OVP terminal becomes less than 1.94V (Typ), OVP is released and the switching operation of the DC/DC turns on.

(4) Over-Current Protection (OCP)

The OCP detects the coil current by monitoring the voltage of the high-side resistor, and activates when the CS voltage becomes less than  $V_{CC}$ -0.2V (Typ).

When the OCP is activated, the switching operation of the DC/DC turns off. And CS voltage becomes over than Vcc-0.2V (typ), OCP is released and the switching operation of the DC/DC turns on.

(5) Short Circuit Protection (SCP)

When the LED terminal voltage becomes less than 0.3V (Typ) or OVP terminal becomes less than 0.57V (typ), the built-in counter operation will start and the latch will activate at oscillation frequency in 32770 count. In case of fosc=300kHz, the count time is approximately 100ms. If the LED terminal voltage becomes over 0.3V or OVP terminal becomes over 1.0V (typ) before 32770 count, the counter resets and SCP is not detected.

(6) LED Open Detection

When the LED terminal voltage is below 0.3V (Typ) and OVP terminal voltage more than 2.0V (Typ) simultaneously, LED open is detected and latches off the open channel.

(7) LED Short Detection Circuit

If the LED terminal voltage becomes more than 4.5V (Typ), the built-in counter operation will start and the latch will activate at oscillation frequency in 32770 count. In case of fosc=300kHz, the count time is approximately 100ms. During PWM dimming, the LED Short Detect operation is carried out only when PWM=High. If the LED terminal voltage becomes less than 4.5V (Typ) before 32770 count, the counter resets and LED Short is not detected. When LED Short Detect function will not be used, SHDETEN terminal should be connected to VREG before starting. When LED Short Detect function is used, the SHDETEN terminal should be connected to GND. In addition, it cannot change SHDETEN voltage (High or Low) during normal operation.

(8) PWM Low Latch Off Circuit

After the EN is ON, the low interval of PWM input is counted by built-in counter. The clock frequency of counter is the fosc Frequency, which is determined by RRT, and stops the operation of circuits except VREG at 32768 counts. In case of fosc=300kHz, the count time is approximately 100ms.

(9) Output Voltage Discharge Circuit (VDISC function)

When EN restart with Vout charge remaining, there is the possibility of LED flicker. Therefore restarting DC/DC must be operated after discharging Vout. If using only pull-down resistance as setting OVP for discharge, it takes a lot time for discharging Vout. Therefore this product has functionality of circuit for Vout discharge. Vout discharge function is available for Buck Boost or Buck application. It is need to connect Vout and VDISC terminal and use VDISC function. When VDISC terminal is connected to Vout, the output can be discharged when DCDC circuit becomes OFF (with EN changing high to low or detection of protect).

The discharge time Tdisc is expressed in the following equations.

$$Tdisc[s] = \frac{3 \times Vout[V] \times Cout[F]}{4 \times IDISC[A]}$$

Where:

Tdisc: DC/DC Output Discharge Time COUT: DC/DC Output Capacity Vout: DC/DC Output Voltage IDISC: Discharge current

Please confirm IDISC value that 25% of Vout voltage from following graph and input above equation. For example, when using Vout=20V, please use IDISC value of Vout=5V (approximately 76mA). It will take Tdisc time for Vout discharge. Please set EN=Low time over than Tdisc for prevent LED flicker. This Tdisc value is reference data. Please verifying by actual measurements.



Figure 10. Vout vs IDISC

#### Absolute Maximum Ratings (Ta=25°C)

| Parameter                                          | Symbol                                     | Rating            | Unit |
|----------------------------------------------------|--------------------------------------------|-------------------|------|
| Power Supply Voltage                               | Vcc                                        | 40                | V    |
| BOOT, OUTH Pin Voltage                             | Vвоот, Vоитн                               | 45                | V    |
| SW, CS, OUTL Pin Voltage                           | V <sub>SW</sub> , V <sub>CS</sub> , VOUTL  | 40                | V    |
| BOOT-SW Pin Voltage                                | VBOOT-SW                                   | 7                 | V    |
| LED1 to 4, VDISC Pin Voltage                       | VLED1,2,3,4, VVDISC                        | 40                | V    |
| PWM, SYNC, EN pin Voltage                          | VPWM, VSYNC, VEN                           | -0.3 to +7        | V    |
| VREG, OVP, FAIL1, FAIL2,<br>SS, RT pin Voltage     | VVREG, VOVP, VFAIL1, VFAIL2,<br>VSS, VRT   | -0.3 to +7 < VCC  | V    |
| LEDEN1, LEDEN2, ISET,<br>COMP, SHDETEN pin Voltage | Vleden1, Vleden2, Viset<br>Vcomp, Vshdeten | -0.3 to +7 < VREG | V    |
| Junction Temperature Range                         | Tj                                         | -40 to +150       | °C   |
| Storage Temperature Range                          | Tstg                                       | -55 to +150       | °C   |
| LED Maximum Output Current                         | ILED                                       | 120 (Note 1)      | mA   |

(Note 1) Current level per channel. Please set LED current that does not over Junction Temperature Range (Tj) maximum.

#### **Recommended Operating Ratings**

| Parameter                                                  |        | Rat | Linit   |     |
|------------------------------------------------------------|--------|-----|---------|-----|
| i didificici                                               | Symbol | Min | Min Max |     |
| Power Supply Voltage (Note 2)                              | Vcc    | 4.5 | 35      | V   |
| Operating Temp Range                                       | Topr   | -40 | +125    | °C  |
| DC/DC Oscillation Frequency Range                          | Fosc   | 200 | 2200    | kHz |
| External Synchronization Frequency Range (Note 3) (Note 4) | FSYNC  | 200 | 2200    | kHz |
| External Synchronization Pulse Duty Range                  | FSDUTY | 40  | 60      | %   |

(Note2) It is near Vcc terminal voltage. Please be careful the voltage drop by Vcc line impedance.
(Note3) If don't use an external synchronization frequency, please make the SYNC open or connect to GND.
(Note4) If using an external synchronization frequency, don't change to internal oscillation in the middle of process.

#### **Recommended Parts Ratings**

| Paramotor                                      |        | Rat   | Linit |      |  |
|------------------------------------------------|--------|-------|-------|------|--|
| Falance                                        | Symbol | Min   | Max   | Onit |  |
| VREG Capacitor                                 | CREG   | 1.0   | 4.7   | μF   |  |
| LED Current setting Resistance                 | RISET  | 41    | 250   | kΩ   |  |
| DC/DC Oscillation Frequency setting Resistance | RRT    | 3.6   | 41    | kΩ   |  |
| Soft Start setting Capacitor                   | CSS    | 0.047 | 0.47  | μF   |  |

# Thermal Resistance<sup>(Note 1)</sup>

| Barameter                                                      | Symbol      | Thermal Res            | Linit                    |      |
|----------------------------------------------------------------|-------------|------------------------|--------------------------|------|
| Farameter                                                      | Symbol      | 1s <sup>(Note 3)</sup> | 2s2p <sup>(Note 4)</sup> | Unit |
| VQFN28SV5050                                                   |             |                        |                          |      |
| Junction to Ambient                                            | θја         | 128.5                  | 31.5                     | °C/W |
| Junction to Top Characterization Parameter <sup>(Note 2)</sup> | $\Psi_{JT}$ | 12                     | 9                        | °C/W |
| HTSSOP-B28                                                     |             |                        |                          |      |
| Junction to Ambient                                            | θја         | 107.0                  | 25.1                     | °C/W |
| Junction to Top Characterization Parameter <sup>(Note 2)</sup> | $\Psi_{JT}$ | 6                      | 3                        | °C/W |

(Note 1)Based on JESD51-2A(Still-Air) (Note 2)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. 3)Using a PCB board based on JESD51-3 (Note

| (Note 5)03ing a r CD board based of  | JII JEODJ I-J. |                            |
|--------------------------------------|----------------|----------------------------|
| Layer Number of<br>Measurement Board | Material       | Board Size                 |
| Single                               | FR-4           | 114.3mm x 76.2mm x 1.57mmt |
| Тор                                  |                |                            |
| Copper Pattern                       | Thickness      |                            |
| Footprints and Traces                | 70µm           |                            |

(Note 4)Using a PCB board based on JESD51-5, 7.

| Layer Number of                                                         | Matorial          | Board Size                |  |               | Thermal | DTE 5)    |          |
|-------------------------------------------------------------------------|-------------------|---------------------------|--|---------------|---------|-----------|----------|
| Measurement Board                                                       | Material          | Board Size                |  |               | Pitch   | Γ         | Diameter |
| 4 Layers                                                                | FR-4              | 114.3mm x 76.2mm x 1.6mmt |  |               | 1.20mm  | Ф0.30mm   |          |
| Тор                                                                     | 2 Internal Layers |                           |  | Bottom        |         |           |          |
| Copper Pattern                                                          | Thickness         | Copper Pattern Thickness  |  | Copper Patter | 'n      | Thickness |          |
| Footprints and Traces                                                   | 70µm              | 74.2mm x 74.2mm 35µm      |  | 74.2mm x 74.2 | mm      | 70µm      |          |
| (Mate 5) This thermal via connecte with the conner action of all lowers |                   |                           |  |               |         |           |          |

(Note 5) This thermal via connects with the copper pattern of all layers..

# Electrical Characteristics (V<sub>cc</sub>=12V, Ta = -40°C to +125°C \*Unless otherwise specified)

| Parameter                  | Symbol            |          | Limit   |          | Unit | Conditions                               |
|----------------------------|-------------------|----------|---------|----------|------|------------------------------------------|
|                            | Cymbol            | Min      | Normal  | Max      | Onic |                                          |
| Circuit Current            | Icc               | -        | -       | 10       | mA   | PWM=Low, ISET=OPEN,C <sub>IN</sub> =10µF |
| Standby Current            | lsт               | -        | -       | 10       | μA   | EN=Low, VDISC=OPEN                       |
| [VREG]                     |                   |          |         |          |      |                                          |
| Reference Voltage          | V <sub>REG</sub>  | 4.5      | 5.0     | 5.5      | V    | IREG=-5mA, CREG=2.2µF                    |
| [ОИТН]                     |                   |          |         |          |      |                                          |
| OUTH High Side ON-Resistor | Ronhh             | 1.5      | 3.5     | 7.0      | Ω    | IOUTH=-10mA                              |
| OUTH Low Side ON-Resistor  | Ronhl             | 0.8      | 2.5     | 5.5      | Ω    | IOUTH=10mA                               |
| OCP Detection Voltage      | Volimit           | VCC-0.22 | VCC-0.2 | VCC-0.18 | V    |                                          |
| [OUTL]                     |                   |          |         |          |      |                                          |
| OUTL ON-Resistor           | Ronl              | 0.44     | 0.80    | 1.15     | Ω    | IOUTL=-10mA, Ta=25°C                     |
|                            |                   | 0.20     | 0.80    | 2.10     | Ω    | IOUTL=10mA, Ta=-40°C to 125°C            |
| [SW]                       |                   |          |         |          |      |                                          |
| SW Low Side<br>ON-Resistor | Ron_sw            | 4.0      | 10.0    | 25.0     | Ω    | ISW=10mA                                 |
| [Error AMP]                |                   |          |         |          |      |                                          |
| LED Control Voltage        | $V_{\text{LED}}$  | 0.9      | 1.0     | 1.1      | V    |                                          |
| COMP Sink Current          | ICOMPSINK         | 35       | 80      | 145      | μA   | VLED=2V, VCOMP=1V                        |
| COMP Source Current        | ICOMPSOURCE       | -145     | -80     | -35      | μA   | VLED=0.5V, VCOMP=1V                      |
| [Oscillator]               |                   |          |         |          |      |                                          |
| Oscillation Frequency 1    | fosc1             | 285      | 300     | 315      | kHz  | RT=27kΩ                                  |
| Oscillation Frequency 2    | fosc2             | 1800     | 2000    | 2200     | kHz  | RT=3.9kΩ                                 |
| [OVP]                      |                   |          |         |          |      |                                          |
| OVP Detection Voltage      | V <sub>OVP1</sub> | 1.9      | 2.0     | 2.1      | V    | VOVP=Sweep up                            |
| OVP Hysteresis Width       | Vovphys1          | 0.02     | 0.06    | 0.10     | V    | VOVP=Sweep down                          |

#### Electrical Characteristics (V<sub>cc</sub>=12V, Ta = -40°C to +125°C \*Unless otherwise specified)

| Parameter                                   | Symbol           | Limit |        |      | Linit | Conditions                                                   |  |
|---------------------------------------------|------------------|-------|--------|------|-------|--------------------------------------------------------------|--|
| Faidinetei                                  | Symbol           | Min   | Normal | Max  | Unit  | Conditions                                                   |  |
| [UVLO]                                      |                  |       |        |      |       |                                                              |  |
| UVLO Detection Voltage                      | Vuvlo            | 3.2   | 3.5    | 3.8  | V     | VCC: Sweep down                                              |  |
| UVLO Hysteresis Width                       | VUHYS            | 0.25  | 0.5    | 0.75 | V     | VCC: Sweep up, VREG>3.5V                                     |  |
| [LED Output]                                |                  |       |        |      |       |                                                              |  |
| LED Current Relative                        |                  | -3    | -      | +3   | %     | ILED=50mA, Ta=25°C<br>ΔILED1=(ILED/ILED_AVG-1)×100           |  |
| Dispersion                                  | ILEDI            | -5    | -      | +5   | %     | ILED=50mA, Ta=-40°C to 125°C<br>ΔILED1=(ILED/ILED_AVG-1)×100 |  |
| LED Current Absolute                        | 1.500            | -3    | -      | +3   | %     | ILED=50mA, Ta=25°C<br>ΔILED2=(ILED/50mA-1)×100               |  |
| Dispersion                                  | ILED2            | -5    | -      | +5   | %     | ILED=50mA, Ta=-40°C to 125°C<br>ΔILED2=(ILED/50mA-1)×100     |  |
| ISET Voltage                                | VISET            | 0.9   | 1.0    | 1.1  | V     | RISET=100kΩ                                                  |  |
| PWM Minimum Pulse Width                     | Тміл             | 1     | -      | -    | μs    | FPWM=100Hz to 20kHz,<br>ILED=20mA to 100mA                   |  |
| PWM Frequency                               | fрwм             | 0.1   | -      | 20   | kHz   |                                                              |  |
| [Protection Circuit]                        |                  |       |        |      |       |                                                              |  |
| LED Open Detection Voltage                  | VOPEN            | 0.2   | 0.3    | 0.4  | V     | VLED1,2,3,4= Sweep down                                      |  |
| LED Short Detection Voltage                 | VSHORT           | 4.2   | 4.5    | 4.8  | V     | VLED1,2,3,4= Sweep up                                        |  |
| LED Short Detection Latch<br>OFF Delay Time | tshort           | 70    | 100    | 130  | ms    | RRT=27kΩ                                                     |  |
| SCP Latch OFF Delay Time                    | <b>t</b> SCP     | 70    | 100    | 130  | ms    | RRT=27kΩ                                                     |  |
| PWM Latch OFF Delay Time                    | tрwм             | 70    | 100    | 130  | ms    | RRT=27kΩ                                                     |  |
| ISET-GND Short Protection impedance         | RISETPROT        | -     | -      | 4.7  | kΩ    |                                                              |  |
| [Logic Input]                               |                  |       |        |      |       |                                                              |  |
| Input High Voltage                          | VINH             | 2.1   | -      | VREG | V     | EN, SYNC, SHDETEN,<br>PWM, LEDEN1, LEDEN2                    |  |
| Input Low Voltage                           | V <sub>INL</sub> | GND   | -      | 0.8  | V     | EN, SYNC, SHDETEN,<br>PWM, LEDEN1, LEDEN2                    |  |
| Input Current                               | lin              | 15    | 50     | 100  | μA    | VIN=5V(EN,SYNC, SHDETEN<br>PWM, LEDEN1, LEDEN2,)             |  |
| [FAIL Output (Open Drain)]                  |                  |       |        |      |       |                                                              |  |
| FAIL Low Voltage                            | Vol              | -     | 0.1    | 0.2  | V     | IOL=0.1mA                                                    |  |

# **Typical Performance Curves**



Figure 11. Circuit Current vs Supply Voltage

Figure 12. VREG vs Temperature









# **Typical Performance Curves - continued**



Figure 15. LED Current vs LED Voltage

Figure 16. LED Current vs Temperature



# Timing Chart (Start up and Protection)



Figure 19. Startup and Protect function timing chart

- \*1 Vcc, EN, PWM, SYNC are input sequence free.
- \*2 The count time of 32770clk × 1/Fosc. In case of fosc=300kHz, the count time is approximately 100ms.
- \*3 Above timing chart is the case of pulling up FAIL1 and FAIL2 terminal to VREG.
  - 1. When VOVP less than 1.0V, regardless of PWM input, the DC/DC switching operation will be active (Pre-Boost function). And if VOVP reaches 1.0V, the Pre-Boost is finished.
  - 2. When VLED2 less than 0.3V and VOVP more than 2.0V, LED Open Protect is active and LED2 is turned OFF. Then FAIL2 becomes Low.
  - If The condition of VLED3 more than 4.5V passes 100ms (@fosc=300kHz), LED3 is turned OFF. Then FAIL2 becomes Low.
  - 4. When VLED4 short to GND, increase the Vout voltage. Then VOVP rises over 2.0V, FAIL1 becomes Low. If OVP occur, DCDC switching is OFF and decrease Vout voltage, then OVP repeats ON/OFF. And DCDC switching and LED current of each CH is OFF after approximately 100ms. (In case of fosc=300kHz).

# Timing Chart (Start up and Restart)





- \*1 EN Low term when EN restart needs more 2.0ms
- \*2 Please restart after Vout voltage discharged. Vout discharge function (P.8) or external discharge switch is available. If EN restart with Vout voltage remaining, there is possibility of LED flash.

# **Application Examples**

When using as Boost DC/DC converter



Figure 21. Boost application circuit

Note: When using as boost DC/DC converter, if the V<sub>OUT</sub> and LED terminal are shorted, the over-current from VIN cannot be prevented. To prevent overcurrent, carry out measure such as inserting fuse in between V<sub>CC</sub> and RCS.

When using as Buck DC/DC Converter



Figure 22. Buck application circuit

# PCB Application Circuit





- Please arrange RRT resistor closest to RT pin and do not attach capacitor.
- Please arrange RISET resistor closest to ISET pin and do not attach capacitor.
- Please attach the decoupling capacitor of CIN and CREG to IC pin as close as possible.
- · Because there is possibility that big current may flow into DGND and PGND, please make the impedance low.
- In pins of ISET, RT and COMP, please pay attention so that noise will not get in.
- Since PWM, OUTH, OUTL, SW, SYNC and LED 1-4 are switching, please pay attention so that it will not affect the surrounding pattern.
- There is a heat dissipation PAD at the back of package. Please solder the board for the heat dissipation PAD.
- Please set the gate resistor of step-down FET (M1) to 0Ω. If resistor is connected, M1 OFF timing is delayed in M1 parasitic capacity and gate resistor, and the penetrating current flows to the internal transistor of M1 and SW. OCP may be detected by penetrating current.
- To reduce noise, please consider the board layout in the shortest MIN impedance for Boost loop (D2→COUT→DGND→OUTL→D2) and Buck loop (VCC→RCS→M1→D1→DGND→GND→CIN→VCC).

#### PCB Board External Components List (Buck Boost application)

| serial No. | component name | component value | product name         | Manufacturer |
|------------|----------------|-----------------|----------------------|--------------|
| 1          | CIN1           | 10µF            | GCM32EC71H106KA01    | murata       |
| 2          | CIN2           | _               | _                    | -            |
| 3          | CIN3           | _               | _                    | -            |
| 4          | RCS1           | 100mΩ           | MCR100 Series        | Rohm         |
| 5          | RCS2           | 100mΩ           | MCR100 Series        | Rohm         |
| 6          | RCS3           | Short           | -                    | —            |
| 7          | CCS            | _               | _                    | -            |
| 8          | CSS            | 0.1µF           | GCM155R71H104KE37    | murata       |
| 9          | CPC1           | 0.01µF          | GCM155R71H104KE37    | murata       |
| 10         | RPC1           | 5.1kΩ           | MCR03 Series         | Rohm         |
| 11         | RRT1           | 27kΩ            | MCR03 Series         | Rohm         |
| 12         | RFL1           | 100kΩ           | MCR03 Series         | Rohm         |
| 13         | RFL2           | 100kΩ           | MCR03 Series         | Rohm         |
| 14         | CREG           | 2.2µF           | GCM188C71A225KE01    | murata       |
| 15         | CBOOT          | 0.1µF           | GCM155R71H104KE37    | murata       |
| 16         | RBOOT          | Short           | _                    | _            |
| 17         | L1             | 22µH            | SLF12565T-220M3R5-PF | TDK          |
| 18         | M1             | _               | RSS070N05            | Rohm         |
| 19         | _              | _               | _                    | _            |
| 20         | D1             | _               | RB050L-40            | Rohm         |
| 21         | D2             | —               | RB050L-40            | Rohm         |
| 22         | COUT1          | 10µF            | GCM32EC71H106KA01    | murata       |
| 23         | COUT2          | 10µF            | GCM32EC71H106KA01    | murata       |
| 24         | COUT3          | 10µF            | GCM32EC71H106KA01    | murata       |
| 25         | COUT4          | 10µF            | GCM32EC71H106KA01    | murata       |
| 26         | ROVP1          | 30kΩ            | MCR03 Series         | Rohm         |
| 27         | ROVP2          | 360kΩ           | MCR03 Series         | Rohm         |
| 28         | RISET1         | 100kΩ           | MCR03 Series         | Rohm         |
| 29         | -              | _               | _                    | _            |

(Note) Above components should be changed by load or conditions.

### Selection of Components Externally Connected

Follow the steps as shown below for selecting the external components.



1. Input Peak Current IL\_Max Computation





(1) Max Output Voltage (Vout\_Max) Computation

Consider the VF variation and number of LED connection in series for Vout\_Max derivation

$$Vout_Max = (V_F + \Delta V_F) \times N + 1.1V$$

(2) Max Output Current  $I_{OUT\_MAX}$  Computation  $Iout\_Max = ILED \times 1.05 \times M$ 

(3) Max Input Peak Current I<sub>L\_MAX</sub> Computation  $IL_Max = IL_AVG + 1 / 2\Delta IL$ 

(In case of Boost application)

$$IL_AVG = Vout_Max \times Iout_Max / (\eta \times VCC)$$

$$\Delta I_L = \frac{VCC}{L} \times \frac{1}{Fosc} \times \frac{Vout\_Max - VCC}{Vout\_Max}$$

(In case of Buck-Boost application)

 $IL\_AVG = (VCC + Vout\_Max) \times Iout\_Max / (\eta \times VCC)$ 

$$\Delta I_L = \frac{VCC}{L} \times \frac{1}{Fosc} \times \frac{Vout\_Max}{VCC+Vout\_Max}$$

(In case of Buck application)

$$IL\_AVG = Iout\_Max / \eta$$

$$\Delta I_L = \frac{Vout}{L} \times \frac{1}{Fosc} \times \frac{VCC - Vout\_Max}{VCC}$$

VCC[V]: Input Voltage Fosc [Hz]: Switching Frequency

Vout\_Max [V]: Max Output Voltage

ΔVF [V]: LED VF Voltage Variation

Iout\_Max [A]: Max Input Peak Current ILED [A]: Output Current per Channel

IL\_Max[A]: Max Input Peak Current IL\_AVG[A]: Max Input Average Current ΔIL[A]: Input Current Amplification

VF [V]: LED VF Voltage

N: LED series number

M: LED parallel number

η: Efficiency L [H]: Coil Value

The worst case for VIN is Minimum, so the Minimum value should be applied in the equation.

The current-mode Type of DC/DC convertor is adopted for BD81A24MUV-M/EFV-M, which is optimized with the use of therecommended L value in the design stage. This recommendation is based upon the efficiency as well as the stability. The L values outside this recommended range may cause irregular switching waveform and hence deteriorate stable operation. n (efficiency) becomes almost 80%.

2. Setting of Over-Current Protection (IOCP) Value

$$IOCP[A] = Vocp\_Min[V](= 0.18V) \div Rcs[\Omega] > IL\_Max[A]$$

RCS should be selected by above equation.

#### 3. Selection of the inductor

In order to achieve stable operation of the current mode DC/DC converter, we recommend selecting the L value in the range indicated below.

$$0.05[V/\mu s] < \frac{Vout[V] \times Rcs[\Omega]}{L[\mu H]} < 0.63 \times Fosc[MHz]$$

Since there is almost ±30% variation in the value of coil L, keep enough margin and set.

The smaller  $\frac{Vout[V] \times Rcs[\Omega]}{L[\mu H]}$  allows stability improvement but slows down the response time.

If the condition of VCC is under 5V, please satisfy below equation when selecting the coil.

$$L[\mu H] < \frac{12 \times VCC[V] \times VCC[V] \times \eta}{Vout[V] \times ILED[A] \times Fosc[MHz]}$$

The coil outside of above equations may cause Low LED brightness.

4. Selection of Coil L, Diode D1, D2, MOSFET M1, RCS and COUT

|           | Current Rating | Voltage Rating | Heat Loss                 |
|-----------|----------------|----------------|---------------------------|
| Coil L    | > IL_Max       |                |                           |
| Diode D1  | > IOCP         | > VCC_Max      |                           |
| Diode D2  | > IOCP         | > Vovp_Max     |                           |
| MOSFET M1 | > IOCP         | > VCC_Max      |                           |
| Rcs       |                | _              | > locp <sup>2</sup> × Rcs |
| Соит      |                | >Vovp_Max      | _                         |

Please consider external parts deviation and make the setting with enough margin.

In order to achieve fast switching, choose the MOSFET's with the smaller gate-capacitance.

#### 5. Selection of Output Capacitor

Select the output capacitor COUT based on the requirement of the ripple voltage Voutpp.

$$Voutpp[V] = \frac{20 \times ILED[A]}{Fosc[Hz] \times Cout[F] \times \eta} + \Delta I_L[A] \times R_{ESR}[\Omega]$$

Actually, VOUT ripple voltage is sensitive to PCB layout and external components characteristics. Therefore, when designing for mass-production, stability should be thoroughly investigated and confirmed in the actual physical design. Available Cout max value is 500µF.

6. Selection of Input Capacitor

We recommend an input capacitor greater than  $10\mu$ F with the small ESR ceramic capacitor. The input capacitor outside of our recommendation may cause large ripple voltage at the input and hence lead to malfunction.

7. Selection of BOOT – SW capacitor

When using the Buck Boost application or Buck application, please input BOOT - SW capacitor  $0.1 \mu F$ .

#### 8. Phase Characteristics adjustment



Figure 25. COMP terminal Application Circuit Diagram

About Application Stability Condition

The stability in LED voltage feedback system is achieved when the following conditions are met.

(1) The phase delay when gain is 1(0dB) is below  $150^{\circ}C$  (or simply, phase margin >30°C).

(2) The frequency (Unity Gain Frequency) when gain is 1(0dB) is <1/10 of switching frequency.

One way to assure stability based on phase margin adjustment is setting the Phase-lead fz close to switching frequency. In addition, the Phase-lag fp1 shall be decided based on COUT and Output impedance RL. Respective formula shall be as follows.

Phase-lead  $fz[Hz] = 1/(2\pi Rpc[\Omega]Cpc[F])$ Phase-lag  $fp1[Hz] = 1/(2\pi RL \ [\Omega]Cout[F])$ 

(Note) The output impedance calculated from RL = VOUT/IOUT

Good stability would be obtained when the fz is set between 1kHz to 10kHz.

It is important to keep in Mind that these are very loose guidelines, and adjustments may have to be made to ensure stability in the actual circuitry. It is also important to note that stability characteristics can change greatly depending on factors such as substrate layout and load conditions. Therefore, when designing for mass-production, stability should be thoroughly investigated and confirmed in the actual physical design.

9. Setting of Over Voltage Protection(OVP)

Over voltage protection (OVP) is set from the external resistance ROVP1 and ROVP2. The setting described below will be important in the either boost, buck, buck, buck-boost applications.



Figure 26. OVP Application Circuit

The OVP terminal detects the over voltage when at >2.0V (Typ) and stops the DC/DC switching. In addition, it detects the open condition when OVP terminal is at >2.0V (Typ) and LED1 to 4 pin voltage is at <0.3V (Typ), and the circuit is latched to OFF (Please refer to page 6, Protect Function). In preventing error in detection of OPEN, it is necessary that the resistor divide voltage of the maximum value of output voltage shall be less than the MIN value of OPEN detection voltage. Please set the ROVP1 and ROVP2 is such a way the formula shown below can be met.

 $Vout(Max)[V] \times \{ROVP1[\Omega] / (ROVP1[\Omega] + ROVP2[\Omega])\} < VOVPopen(Min)[V] \cdots (1)$ 

Vout: DC/DC Output Voltage

VOVPopen: OVP Pin Open Detection Voltage

Sample 1: When V<sub>F</sub>=3.2V±0.3V LED is used in 8series

```
Vout(Max)[V] = 1.1V(LED \ control \ voltage \ Max) + (3.2V + 0.3V) \times 8 = 29.1V
```

Open Detection OVP Pin Voltage VOVPopen (Min) = 1.9VIf ROVP1=20k $\Omega$ , please set by ROVP2 > 286.3k $\Omega$  from (1)

Sample 2: VF=3.2V±0.3V LED is used in 3series

 $Vout(Max)[V] = 1.1V(LED \ control \ voltage \ Max) + (3.2V + 0.3V) \times 3 = 11.6V$ 

Open Detection OVP Pin Voltage VOVPopen (Min) = 1.9VIf ROVP1=20k $\Omega$ , please set by ROVP2 > 102.21k $\Omega$  from (1).

10. Setting of Soft Start time

The soft start circuit minimizes the coil current at the input and overshoot at the output voltage during the start-up condition. A capacitance in the range of 0.047 to  $0.47\mu$ F is recommended. A capacitance of less than  $0.047\mu$ F may cause overshoot at the output voltage. However, a capacitance greater than  $0.47\mu$ F may cause massive reverse current through the parasitic elements when power supply is OFF and may damage the IC. Soft start time TSS (Tvp) is below.

 $TSS[s] = CSS[\mu F] \times 3.3[V] / 5[\mu A]$ 

CSS: The capacitance at SS terminal

11. Check the Start up time

If the PWM duty at start up is small, the start up time is longer. If you want to setup the Startup Time shorter, small CPC value is available, but it needs phase margin check. Below data is PWM duty vs Startup Time of representative two conditions.

Condition 1 (Boost, below figure left side)

Vcc = 12V, Vout = 30V (assumed LED 8 series), RRT =  $27k\Omega$  (Fosc = 300kHz), CPC= $0.01\mu$ F, RPC= $5.1k\Omega$ , CSS =  $0.1\mu$ F, ROVP1 =  $20k\Omega$ , ROVP2 =  $360k\Omega$ 



Figure 27. PWM Duty vs Startup Time (Boost)

Condition 2 (Buck Boost, below figure right side) Vcc = 12V, Vout = 20V (assumed LED 5 series), RRT =  $27k\Omega$  (Fosc = 300kHz), CPC= $0.01\mu$ F, RPC= $5.1k\Omega$ , CSS =  $0.1\mu$ F, ROVP1 =  $30k\Omega$ , ROVP2 =  $360k\Omega$ 



Figure 28. PWM Duty vs Startup Time (Buck Boost)

Above data is only reference data. Actual Startup Time depends on layout pattern, parts value and part characteristics, Please verify your design by the actual measurements.

#### 12. EN restart check

EN restart when Vout voltage is remain, it possible to detect SCP. Please set the condition according to applications.

When use the Buck Boost or Buck application.

Please connect Vout and VDISC terminal and set EN=Low time refer to the below equation.

$$Tdisc[s] = \frac{3 \times Vout[V] \times Cout[F]}{4 \times IDISC[A]} < EN \text{ Low Time } [s]$$

Regarding Tdisc details, please refer P.8.

When use the Boost application.

Please adjust CSS and Cpc value according to below. If Cpc value is changed, phase margin will changed, and if CSS value is changed, start up time is changed. Please verifying by actual measurements.

$$T1[s] = (\frac{0.4 + 2.7 \times n - VCC[V]}{0.4 + 2.7 \times n} \times \frac{1}{Fosc[kHz] \times RRT[kHz] \times 138\mu} + 1.56) \times Cpc[\mu F]/(0.46 \times Duty[\%])$$

$$T2[s] = CSS[\mu F] \times 0.61 + 29791/Fosc[kHz]$$

Please adjust CSS and Cpc value with T1[s] < T2[s]n: LED series number RRT [k $\Omega$ ]: RT resistance CSS [µF]: SS capacitor

VCC [V]: Power supply Cpc [µF]: COMP capacitor

Fosc [kHz]: DCDC Frequency Duty [%]: PWM Duty

Ex.) n=7, Vcc=7V, Fosc=300kHz, RRT=27k\Omega, Cpc=0.01 $\mu$ F, CSS=0.1 $\mu$ F, PWM Duty = 1%

$$T1[s] = \left(\frac{0.4 + 2.7 \times 7 - 7}{0.4 + 2.7 \times 7} \times \frac{1}{300 \times 27 \times 138\mu} + 1.56\right) \times 0.01/(0.46 \times 1) = 46.3ms$$
$$T2[s] = 0.1 \times 0.61 + \frac{29791}{300} = 99.4ms$$

T1[s] < T2[s] This condition is OK.

13. Verification of the operation by taking measurements

The overall characteristics may change based on load current, input voltage, output voltage, inductance, load capacitance, switching frequency, and PCB layout. We strongly recommend verifying your design by the actual measurements.