: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Isolated DC/DC controller IC

Built-in Secondary-side Driver with Synchronous Rectification Active Clamp PWM Controller

-General Description

BD8325FVT-M is a PWM controller intended for Active clamp, current-mode isolated switching regulator.
This controller provides control outputs for driving primary-side MOSFET, and outputs with adjustable delay, which can be used for driving synchronous rectifier MOSFET on the secondary-side.
Its maximum input voltage is 20 V . External startup regulator can be set at high voltage.

-Applications

■ High efficiency/ large current isolated DC/DC (VINmax=100V)

- Cellular base station
- Industrial power supplies
- Car application
- 10 W to 700 W SMPS

-Package

TSSOP-B30

W(Typ) x D(Typ) x H(Max)
$10.00 \mathrm{~mm} \times 7.60 \mathrm{~mm} \times 1.00 \mathrm{~mm}$

-Features

- Ideal for Active Clamp /Rest Forward/Flyback converter
- Current-mode Control with Dual Mode Over-Current Protection
- Synchronization to External Clock
- Programmable Dead-Time (Turn-On/Turn-Off) between MAIN and AUX MOSFET by External Resistor
- Have Control Outputs for Driving Primary Side MOSFET; Have Outputs with Adjustable Time for Driving Synchronous Rectifier MOSFET in Secondary Side (OUT2F, OUT2R pin)
- Programmable Oscillator Frequency and Maximum Duty Cycle by External Resistor
- Programmable Soft-Start Time by External Capacitor
- Programmable Slope Compensation by External Resistor
- A Variety of Protection First Over-Current Protection (Pulse-by-Pulse mode) Second Over-Current Protection (HICCUP mode) VCC_UVLO (Input Under-Voltage Protection) LINE_UVLO (Line Under-Voltage Protection)

-Typical Application Circuits

Fig. 1 Typical Application Circuit
OStructure : Silicon Monolithic Integrated Circuit OThis product has no designed protection against radioactive rays.

- Pin Configuration

(TOP VIEW)

Fig. 2 Pin Configuration (TOP VIEW)

-Pin Description

No	Symbol	Description	No	Symbol	Description
1	GND	GND pin	16	PGND	PWR GND
2	CS2	HICCUP mode OCP detecting pin	17	N.C	N.C
3	CS1	Current feedback \& pulse-by-pulse OCP detecting pin	18	OUT2R	Gate control pin for driving freewheel NMOS in secondary side
4	LINEUV	UVLO detecting pin	19	N.C	N.C
5	FB	Feedback voltage input pin	20	OUT2F	Gate control pin for driving forward NMOS in secondary side
6	VREF	5V regulator output pin	21	N.C	N.C
7	SS/SD	Soft-Start time set pin	22	OUT	Gate control pin for driving MAIN PWM NMOS in primary side
8	RSLP	Slope compensation ramp set pin	23	N.C	N.C
9	RDELON	OUT rise/fall timing set pin	24	AUX	Gate control pin for driving active-clamp PMOS in primary side
10	RDELOFF2	AUX fall timing set pin	25	N.C	N.C
11	RTON	Switching frequency and ON time set pin	26	VDD	Power pin of FET driver
12	RTOFF	Switching frequency and OFF time set pin	27	VCC	Power pin of IC controller block
13	RDELSLF	OUT2F rise/fall timing set pin	28	SYNC	Synchronization signal input pin
14	RDELOFF1	AUU rise timing set pin	29	SAWH	Triangular wave amplitude set pin
15	RDELSLR	OUT2R rise timing set pin	30	CLKOUT	CLK output pin

-Block Diagram

Fig. 3 Block Diagram

- Description of Blocks

(1)Internal Power Supply

This is a regulator for powering the internal circuits via VCC. There is no direct output pin from this block.

(2)LDO Block

This is the 5 V regulator that can provide the power supply for startup block. It should be bypassed by $0.1 \mathrm{uF} \sim 0.47 \mathrm{uF}$ for stability. The circuit is utilized for the pull-up power supply of FB pin and the power supply for SAWOSC, CLK and SS/SD block. UVLO function is built-in (4.5V Typ). Once UVLO signal is detected, OUT, AUX, OUT2F and OUT2R pins turn L, and the capacitor connected to SS/SD pin is also discharged instantaneously. The short current between VREF and GND is 12 mA (Typ).

(3)UVLO block

This is UVLO detection circuit of VCC, LINE and LDO.
The IC starts up and shuts down based on the sequence on timing chart.
When LINE UVLO signal is reset, 5uA current flows through LINEUV pin while when LINE UVLO is detected, the current is OuA. It is possible to adjust the HYS value through the external resistor. Moreover, VCC and VREF's UVLO comparators have built-in minimum of 2us noise filters for avoiding error detection.
(4)Timing Set Block

For simplicity of application, the adjustable function can be achieved through external resistor:

- switching timing of OUT, AUX, OUT2F and OUT2R pin
\rightarrow resistors connected from RDELON, RDELOFF1, RDELOFF2, RDELSLF, RDELSLR pin (1.6V typ) to ground - oscillator frequency and MAX Duty
\rightarrow resistors connected from RTON and RTOFF pin (1.6V typ) to ground
- slope compensation amplitude
\rightarrow resistor connected from RSLP pin (maximum value of sawtooth wave: 2.5 V (typ)) to ground There is a built-in open detection function such that when it is activated, the outputs are terminated. This is to avoid the pin opening caused by the incorrect mounting of external resistor.
(5) Synchronization CLK transmitter

When multiple ICs will be use, the synchronization function is implemented so that the frequency remains synchronous. The master IC provides CLKOUT signal to the slave IC through SYNC pin, and in turn, the slave IC and master IC's frequency can be synchronized. The transmitter includes the I/O part of CLK and SYNC pin. By means of extracting the frequency (at the rising edge) only, the MaxDuty can be set. There is H -side and L -side resistors connected to CLKOUT pin with a value of $0.6 \mathrm{k} \Omega$.
(6)SAWOSC block

The circuit is used for generating clock, duty and slope signal. In the stand-alone operation (external synchronization inactivated) the voltage of SAWH pin, which determines the amplitude of internal triangular wave, is 2.65 V (typ). During the external synchronization operation, the internal circuits control the SAWH voltage to synchronize with the external clock. LVP circuit is applied to SAWH pin, and the detection and reset voltage are 1.35 V (typ) and 2.6 V (typ). As soon as SAWH LVP signal is detected, OUT, AUX, OUT2F and OUT2R turn L and SS/SD is discharged instantaneously, and SAWH is pre-charged ($10 \mathrm{k} \Omega$).
(7)Feedback block

The voltage of SS/SD from block (11) is compared with FB voltage; the lower voltage enters the PWM signal generator.
(8)CS1, CS2 control block

This is the block intended for OCP detection.
When CS1 exceeds 0.48 V , OCP1 signal is produced and RESET flag of Latch circuit (12)) is activated. In addition, OUT=L, AUX=L, OUT2F=L, OUT2R=H and the power transfer from input to output is terminated momentarily. When the CLK enters into next cycle, the power transfer starts again. As the new cycle starts, the low-side NMOS switch connected to CS1 pin is ON when CLKOUT=H in order to make sure that the reset signal is removed. With the series of action, pulse-by-pulse mode OCP protection is observed as shown in the example application design.
When CS2 voltage exceeds 1.2 V (typ), OCP2 signal is detected, the IC enters into SOFT STOP mode and SS/SD pin starts to be discharged with 15 uA current. As CS2 voltage drops to 1.2 V (typ) and SS/SD $\leqq 0.5 \mathrm{~V}$, the IC returns to SOFT_START mode and starts up. Like CS1, the low side NMOS switch connected to CS2 is ON when CLKOUT=H. As shown in the example application design, if the output is shorted to ground, then the SOFT_START mode and SOFT_STOP mode alternate, the chip's HICCUP OCP protection operates.
(9)PWM signal generator

Through the comparator, CS1 related signal is compared with the lower voltage of SS/SD (7) and FB pin, and RESET signal for Latch circuit (12) is produced. To be precise, the CS1 level +0.5 V and the lower of SS/SD and FB level's $1 / 5$ are compared and the output pulse is entered into Latch circuit. In addition, when FB is lowered and SS/SD drops to 2.3 V (typ), Duty0 signal turns H and RESET signal continues outputting, switching is terminated and Duty is turned to 0\%. Once the switching restarts, Duty0 will not turn H unless the voltage drops to the hysteresis voltage, 2.225 V (typ).
(10RESET condition generator
According to the outputs from each protection circuit, the block controls the signal as shown below:
(1) SS/SD 15uA charge, 15uA discharge, instantaneous discharge
(2) PWM signal (OUT, AUX, OUT2F, OUT2R) OFF
(11)SS charge/discharge controller

According to whether the protection operation is detected, the operation is shown as (1) ~ (3)
(1) 15uA Charge (SOFT_START) condition: when VCC UVLO, VREF UVLO, LINE UVLO, TSD, CS2, SAWH LVP and external R-OPEN protections are not detected. SS/SD is clamped to VREF5V level.
(2) 15uA Discharge (SOFT_STOP) condition: when LINE, TSD and CS2 protections are detected. Once detected, the signal is latched. The IC will not restore to SOFT START mode unless SS/SD is 0.5 V .
(3) Instantaneous Discharge (discharge resistor $\mathrm{R}=0.5 \mathrm{k} \Omega$) condition: when VCC UVLO, VREF UVLO, SAWH LVP and R-OPEN protection are detected.
(12) PWM signal latch block

The reference pulse signal of each output pulse is generated by SR-Flipflop.
SET: internal clock signal
RESET: PWM output signal or OCP1 signal or CLKOUT signal (Max Duty)
(13)Turn-on delay/Turn-off delay time generator

According to the dead-times, which are set by the external resistor on OUT, AUX, OUT2F and OUT2R pin in block (4), dead-times are applied to PWM signal (12).

(14)PREDRIVER

The level of VREF5V is shifted to VDD level.

(15)POWMOS

This is the driver's output stage for driving external MOSFET. It is constituted by NMOS and PMOS and the power supply is VDD (absolute maximum rating is 20 V).

- Absolute Maximum Ratings

Parameter	Symbol	Limit	Unit
Input Voltage	Vvcc, Vvdd	20	V
OUT, AUX Voltage	$\mathrm{V}_{\text {out }} \mathrm{V}_{\text {Aux }}$	-0.3~20	V
OUT, AUX Output Peak Current	louth, Iauxh	2.5	A
	loutl $I_{\text {Auxi }}$	2.5	
OUT2F, OUT2R Voltage	$\mathrm{V}_{\text {OUt }} \mathrm{V}_{\text {Aux }}$	-0.3~20	V
OUT2F, OUT2R Output Peak Current	lout2Fh, lout2rh	1	A
	lout2fl, lout2RL	1	
Pin Voltage 1	$\mathrm{V}_{\text {pin1 }} * 1$	-0.3~7	V
Pin Voltage 2	$\mathrm{V}_{\text {pin2 }}{ }^{* 2}$	-0.3~20	V
Power Dissipation	Pd	1400 *	mW
Operating Temperature	Topr	-40 ~ 105	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-55 ~ 150	${ }^{\circ} \mathrm{C}$
Junction Temperature	Tjmax	150	${ }^{\circ} \mathrm{C}$

```
*1 Vpin1 applicable pin : RDELON, RDELOFF1, RDELOFF2, RDELSLF, RDELSLR, RTON, RTOFF, RSLP
    VREF, CLKOUT, SAWH, FB, SS/SD, CS1, CS2, SYNC, LINEUV.
*2 Vpin2 applicable pin : VCC, VDD, OUT, AUX, OUT2F, OUT2R
*3 ROHM standard board (see below)
    Derate by }11.2\textrm{mW}/\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ when operating over 25 ' C
```


-Operating Ratings

Parameter	Symbol	Min	Typ	Max	Unit
Input Voltage	$\mathrm{V}_{\text {VCC }}, \mathrm{V}_{\text {VDD }}$	8	-	18	V
Power supply bypass capacitor	$\mathrm{C}_{\text {VCC }}$	4.7	-	-	$\mu \mathrm{F}$
Oscillator frequency set resistor (f=250kHz, 66.6\% Duty)	$\mathrm{R}_{\text {TON }}$	36	120	750	$\mathrm{k} \Omega$
	$\mathrm{R}_{\text {TOFF }}$	36	120	750	$\mathrm{k} \Omega$
RSLP resistor	$\mathrm{R}_{\text {DEL }}$	20	120	750	$\mathrm{k} \Omega$
Frequency range	RsLP	43	62	150	$\mathrm{k} \Omega$
VREF phase compensation capacitor	Fosc	50	-	500	kHz
SAWH output capacitor	$\mathrm{C}_{\text {REF }}$	0.1	-	0.47	$\mu \mathrm{~F}$
LINEUV voltage	$\mathrm{C}_{\text {SINEU }}$	0.1	-	1.5	$\mu \mathrm{~F}$

-Electrical Characteristics

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
OVERALL						
ICC before start up	$\mathrm{V}_{\mathrm{cc}}<\mathrm{V}_{\text {UVLO }}, \mathrm{V}_{\text {cc }}=7.5 \mathrm{~V}$	Istartup	-	1	2	mA
ICC when normal	$\mathrm{V}_{\mathrm{VCC}}=12 \mathrm{v}, \mathrm{V}_{\mathrm{FB}}, \mathrm{V}_{\mathrm{CS} 1, \mathrm{Cs} 2}=0 \mathrm{~V}$	IDD	-	3	6	mA
	Outputs not switching					
VCC UVLO						
UVLO Reset voltage		Vuvlooff	8.1	8.5	8.9	V
UVLO Hysteresis		$\Delta \mathrm{V}_{\text {UVLO }}$	0.2	0.5	0.8	
LINE UVLO						
LINE UV threshold voltage		V Lineuv	1.176	1.200	1.224	V
LINE UV hysteresis current		Ilineuv	-5.5	-5	-4.5	$\mu \mathrm{A}$
SOFT_START/SOFT_STOP						
SS charge current		Issc	-16.8	-15	-13.2	$\mu \mathrm{A}$
SS discharge current		ISSD	13.2	15	16.8	
VREF output						
VREF voltage (1)	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {REF1 }}$	4.85	5.00	5.15	V
VREF voltage (2)	$\begin{gathered} 0 \mathrm{~A}<\mathrm{I}_{\mathrm{REF}}<5 \mathrm{~mA} \\ \text { over temperature } \end{gathered}$	$V_{\text {REF2 }}$	4.75	5.00	5.25	V
VREF short current	$\mathrm{VREF}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	Isc	-21	-12	-6	mA
Reference Voltage 1 for set pin	*1	$\mathrm{V}_{\text {REFR1 }}$	1.544	1.6	1.656	V
Reference Voltage 2 for set pin	*2	$\mathrm{V}_{\text {REFR2 }}$	1.2	1.6	2.0	V
INTERNAL SLOPE COMPENSATION(RSLP)						
RSLP pin max voltage	RSLP=RTON=RTOFF=120k	$\mathrm{V}_{\text {RSLPH }}$	2.25	2.5	2.75	V
OSCILATOR/PWM						
Oscillator frequency	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	Fosc	237	250	265	kHz
$(\mathrm{RTON}=\mathrm{RTOFF}=120 \mathrm{k}$)	$\begin{aligned} & -40^{\circ} \mathrm{C}<\mathrm{T}_{\jmath}<105^{\circ} \mathrm{C}, \\ & 8 \mathrm{~V}<\mathrm{VCC}<18 \mathrm{~V} \end{aligned}$	Fosc2	225	250	270	
PWM MAX Duty	RTON $=$ RTOFF $=120 \mathrm{k} \Omega$	Dmatch	63.1	66.6	70.1	\%
SYNC function						
SYNC input current	SYNC=5V	$\mathrm{I}_{\text {SYNC }}$	-	10	15	$\mu \mathrm{A}$
SYNC input High voltage		$\mathrm{V}_{\text {SYNCH }}$	3	-	5.5	V
SYNC input Low voltage		$\mathrm{V}_{\text {SYNCL }}$	-	-	0.5	V
CLKOUT output H-side ON Resistance	lout $= \pm 100 \mathrm{uA}$	$\mathrm{R}_{\text {cliouth }}$	-	0.6	2	k Ω
CLKOUT output L-side ON Resistance		R ${ }_{\text {CLKOUTL }}$	-	0.6	2	k Ω
SAWH output voltage	SYNC=0V	$V_{\text {SAWH }}$	2.45	2.65	2.85	V

*1 Correspond to RDELON, RDELOFF1, RDELOFF2, RDELSLF, RDELSLR.
*2 Correspond to RTON, RTOFF. LIMIT is wider than *1.

-Electrical Characteristics

Parameter	Test Condition	Symbol	Min	Typ	Max	Unit
CURRENT SENSE						
Duty0 Reset Threshold Voltage	FB sweep up	Vdutyoa	$\begin{gathered} 0.083 \\ * \\ \text { VREF } \end{gathered}$	$\begin{gathered} 0.092 \\ * \\ \text { VREF } \end{gathered}$	$\begin{gathered} 0.101 \\ * \\ \text { VREF } \end{gathered}$	V
Duty0 Detection Threshold Voltage	FB sweep down	Vdutyob	$\begin{gathered} 0.08 \\ * \\ \text { VREF } \\ \hline \end{gathered}$	$\begin{gathered} 0.089 \\ * \\ \text { VREF } \\ \hline \end{gathered}$	$\begin{gathered} 0.098 \\ * \\ \text { VREF } \end{gathered}$	V
CS1 Level Shift Voltage		VLvL	$\begin{gathered} 0.09 \\ * \\ \text { VREF } \\ \hline \end{gathered}$	$\begin{gathered} 0.1 \\ * \\ \text { VREF } \end{gathered}$	$\begin{gathered} 0.110 \\ * \\ \text { VREF } \end{gathered}$	V
Current Limit Voltage (1) Cycle-by-Cycle		Vcs1	$\begin{gathered} 0.087 \\ * \\ \text { VREF } \end{gathered}$	$\begin{gathered} 0.096 \\ * \\ \text { VREF } \end{gathered}$	$\begin{gathered} 0.105 \\ * \\ \text { VREF } \end{gathered}$	V
Current Limit Voltage (2) Hiccup mode		$\mathrm{V}_{\text {cs2 }}$	$\begin{gathered} 0.216 \\ * \\ \text { VREF } \end{gathered}$	$\begin{gathered} 0.24 \\ * \\ \text { VREF } \end{gathered}$	$\begin{gathered} 0.264 \\ * \\ \text { VREF } \end{gathered}$	V
OUTPUT (For driving Primary side FET, applied to OUT, AUX pin)						
H-side ON Resistance	$\mathrm{l}_{\text {OUT }}=-200 \mathrm{~mA}, \mathrm{VDD}=10 \mathrm{~V}$	$\mathrm{R}_{\text {MSOH }}$	-	1	1.5	
L-side ON Resistance	I $\mathrm{OUT}=+200 \mathrm{~mA}$, VDD $=10 \mathrm{~V}$	$\mathrm{R}_{\text {MSOL }}$	-	1	1.5	
OUTPUT (For driving secondary side FET, applied to OUT2F, OUT2R pin)						
H-side ON Resistance	I $\mathrm{OUT}=-100 \mathrm{~mA}, \mathrm{VDD}=10 \mathrm{~V}$	$\mathrm{R}_{\text {SROH }}$	-	1.6	2.90	O
L-side ON Resistance	lout $=+100 \mathrm{~mA}, \mathrm{VDD}=10 \mathrm{~V}$	$\mathrm{R}_{\text {SROL }}$	-	1.50	2.70	
OUTPUT Delay time						
Delay time 1 (OUT2R_off to OUT_on)	$\begin{aligned} & \hline \mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{G}}=3.6 \Omega \\ & \mathrm{R}_{\mathrm{DELON}}=120 \mathrm{k} \Omega \\ & \hline \end{aligned}$	Trdelon	87	175	263	ns
Delay time 2 (OUT2R_off to AUX_off)	$\begin{aligned} & \mathrm{C}_{\mathrm{LOAD}}=1000 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{G}}=3.6 \Omega \\ & \mathrm{R}_{\mathrm{DELOFF} 1}=120 \mathrm{k} \Omega \end{aligned}$	Trdeloff1	17	35	53	ns
Delay time 3 (OUT_off to AUX_on)	$\begin{aligned} & \mathrm{C}_{\mathrm{LOAD}}=1000 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{G}}=3.6 \Omega \\ & \mathrm{R}_{\mathrm{DELOFF} 2}=120 \mathrm{k} \Omega \\ & \hline \end{aligned}$	Trdeloff2	60	120	180	ns
Delay time 4 (OUT2R_off to OUT2F_on)	$\begin{aligned} & \mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{G}}=3.6 \Omega \\ & \mathrm{R}_{\mathrm{DELSLF}}=120 \mathrm{k} \Omega \end{aligned}$	$\mathrm{T}_{\text {RDELSLF }}$	60	120	180	ns
Delay time 5 (OUT_off to OUT2R_on)	$\begin{aligned} & \mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{G}}=3.6 \Omega \\ & \mathrm{R}_{\mathrm{DELSLR}}=120 \mathrm{k} \Omega \end{aligned}$	$\mathrm{T}_{\text {RDELSLR }}$	30	60	90	ns

-Typical Performance Characteristics (Reference data)

Fig. 4 Efficiency-Output Current

Fig.6 I_VREF - VREF

Fig. 5 I_VCC - VCC

Fig. 7 VREF - Temp

Fig. 8 Frequency - Temp

Fig. 10 TRTON - RTON

Fig. 9 Max Duty - Temp

Fig. 11 TRTON - Temp

Fig. 12 TRTOFF - RTOFF

Fig. 13 TRTOFF - RTOFF

Fig. 14 LINEUV Threshold - Temp

Fig. 15 I_LINEUV - VLINEUV

Fig. 16 CS1 (OCP) Threshold - Temp

Fig. 17 CS2 (OCP) Threshold - Temp

Fig. 19 OUT Duty - VFB

Fig. 18 I_SS/SD - Temp

Fig. 20 TRDELON - RTON

Fig. 22 TRDELOFF1 - RTOFF1

Fig. 21 TRDELON - Temp

Fig. 23 TRDELOFF1 - Temp

Fig. 24 TRDELOFF2 - RDELOFF2

Fig. 26 TRDELSLF - RDELSLF

Fig. 25 TRDELOFF2 - Temp

Fig. 27 TRDELSLF - RDELSLF

Fig. 28 TRDELSLR - RDELSLR

Fig. 29 TRDELSLR - RDELSLR

- Functional Details and Operation

1. The setting of startup regulator

The external startup regulator is necessary in case of power supply above 18 V . The output of startup regulator is assumed to be $10-12 \mathrm{~V}$ and the min value should be above 9 V .

The maximum consumed current is 4 mA .
2. Handling of N.C. pin

17, 19, 21, 23,25 pin are NC pins. As they include GND, please don't connect them to any node, just make them in floating state. Adjacent pin short protection is invalid.
3. Output signal for driving NchFET / PchFET

Regarding NchFET driving signal (OUT), active-clamp PchFET driving signal (AUX) in primary side and driving signal(OUT2F,OUT2R) in secondary side, the signals' output resistance is small and can be adjusted by external resistor so that the driving signal can be applied to multiple converter requirements. As expected, the spike noise becomes big when the external resistor is small. Please use appropriate resistor to adjust the slew rate.
4. Range of external resistor connected to adjustable pin

There are several adjustable pins connected by external resistor. The resistors (RDELON, RDELOFF1, RDELOFF2, RDELSLF, RDELSLR) can set the switching Frequency, Duty (RTON/RTOFF), Dead-time of primary and secondary side as well as the dead-time between primary side and secondary side (P.2,3). Set the above resistors in the range as shown in P.6. Take note that if the resistance is out of range, the IC may break or weaken because of open detection. The estimated formulas of switching Frequency and Max Duty are shown below:

$$
\begin{aligned}
& T R T O N \cong 22.22 \times 10^{-12} \cdot R T O N \\
& T R T O F F \cong 11.11 \times 10^{-12} \cdot R T O F F \\
& \text { fosc } \cong \frac{1}{T R T O N+T R T O F F} \\
& \text { MaxDuty } \cong \frac{T R T O N}{T R T O N+T R T O F F}
\end{aligned}
$$

5. Protection function

The protection functions of the IC are the following:

- VCC UVLO UVLO signal will reset when VCC $=8.5 \mathrm{~V}$ and will be detected when $\mathrm{VCC}=8 \mathrm{~V}$. There is a 2 us (min) noise filter.
- VREF UVLO Once VCCUVLO signal is removed, VREF(5V) starts up.

UVLO signal will reset when VREF=4.6V (typ) and will be detected when VREF=4.5V (typ). There is a 2us noise filter.

- LINE UVLO It is determined by the resistance voltage divider between LINE and GND. When UVLO signal has been reset, 5uA source current flows out. The current combined with external resistor determines the hysteresis. Once LINEUV signal is detected, the IC enters into SOFT_STOP mode and SS/SD pin starts to be discharged by $15 u A$ current. If LINEUV signal is reset and SS/SD $\leqq 0.5 \mathrm{~V}$, the IC starts up in SOFT START mode. The absolute maximum rating of LINEUV pin is 7 V and its' rating of operation is 5.5 V .
- SAWH_LVP When SAWH < 1.35V (typ), SAWH_LVP signal is detected. The switching operation is stopped and SS/SD pin is discharged instantaneously. The external capacitor connected to SAWH pin begins to be charged quickly (several hundred mA). If the SAWH becomes 2.6 V (typ), SAWH_LVP signal will reset and the quick discharge will stop, and SS/SD will start to be charged (soft start).
- TSD Protects the IC from thermal runaway caused by the excessive rise of temperature. TSD (Thermal Shutdown) protection is activated when the chip's internal temperature is $170^{\circ} \mathrm{C}$ and the IC restarts when the temperature drops to $150^{\circ} \mathrm{C}$. Like LINE UVLO, TSD will also make the IC into SOFT STOP mode. In consideration of the power dissipation during actual use, it is necessary to consider heat design with sufficient margin. Application design should never make use of the thermal shutdown circuit.
- CS1, CS2 The IC has two OCP protection modes, Pulse-by-Pulse and Hiccup. The Cycle-by-Cycle mode terminates the conduction cycle if CS1 voltage becomes 0.48 V (typ). The OFF latch is reset and conduction is ON when CLKOUT $=\mathrm{H} \rightarrow \mathrm{L}$ in the next cycle.
If the voltage on CS2 pin exceeds 1.2 V (typ), the IC enters Hiccup mode protection. While in the Hiccup mode, the IC enters into SOFT START mode as well as LINEUV. If the over load condition sustains, the IC will alternate between SOFT START mode and SOFT STOP mode. If Hiccup mode will not be used, CS2 pin should be shorted to GND pin.
- R_OPEN When the pins of RTON, RTOFF, RDELON, RDELOFF1, RDELOFF2, RDELSLF, RDELSLR, RSLP are OPEN, the protection is activated. OUT, AUX, OUT2F, OUT2R stop switching instantaneously (L level) and the capacitor connected to SS/SD pin is discharged instantaneously.

6. Operation of SS/SD pin, VREF.

When power on

When power off

When VCCUVLO signal is reset, VREF starts up and in turn, VREF UVLO and SAWH LVP signal will also reset. If LINE UVLO, OCP and TSD signals are not detected, the capacitor connected to SS/SD pin starts to be charged (15uA typ). The voltage of SS/SD pin is clamped by VREF.
When LINEUV signal is detected, the capacitor connected to SS/SD pin starts to be discharged (-15uA).
If VCC UVLO signal is detected, VREF is discharged naturally. Besides, the rise/fall time is determined by the formula $\mathrm{T}=\mathrm{CV} /$ /chg (ldischg)

7. SOFT STOP mode

In addition to the protection condition of \#6, when LINE UVLO, TSD or CS2 signal is detected, the IC enters SOFT STOP mode. During this mode, in consideration of external device and the heat caused by CS2 detection or TSD detection, OUT pin is OFF directly. However, AUX, OUT2F and OUT2R pins continue switching to avoid over-current and over-voltage to happen (refer to the timing chart). Moreover, SS/SD pin is discharged by $15 u$ A current, and the Duty of AUX, OUT2F, OUT2R gradually decrease as SS/SD voltage decreases. When SS/SD voltage drops to 2.215 V typ (Duty0 is detected), AUX, OUT2F and OUT2R will stop switching. If SS/SD voltage is discharged to 0.5 V and the other protections are not activated, then SS pin starts to be charged again and the output starts up in SOFT START mode automatically.

8. PWM operation

As shown in Fig.30, Slope signal is generated through CLKOUT signal, which is generated from RTON, RTOFF and SAWH voltage. The slope signal is buffered and outputted to RSLP pin. The current flowing through RSLP pin is proportional to SLOPE voltage, and in addition the current is amplified 5 times and outputted to CS1 pin. The slope current is overlapped with sensing current and converted to the voltage on external resistor RS for the stability of the peak current mode control loop. The voltage signal is shifted up by 0.5 V (CS1 Level Shift Voltage) and transmitted to INP input of PWM comparator. However, the other input INN voltage is one fifth of FB_SS_L, which is the lower voltage within FB and SS pin.

If two input signals are compared and the PWM latch block's reset signal is outputted, then the PWM pulse width can be determined. If INN node voltage is above 0.46 V (typ) during the sweep up of FB_SS_L, Duty0 turns H and PWM_Latch_R turns constant H (Duty=0\%). Moreover, Duty0 turns H if the INN node voltage drops to 0.445 V (typ) during the sweep down of FB_SS_L.

Fig. 30 -Simplified Diagram of the PWM Comparator Proximity Circuit
9. Synchronization function
(1) Outline

When multiple ICs will be used, the synchronization function is implemented so that the frequency for all ICs will be the same

The master IC provides CLKOUT signal to the slave IC through SYNC pin, and the slave IC and master IC's frequency now turn to be synchronized. The transmitter includes the I/O part of CLK and SYNC pin. By means of extracting the frequency (at the rising edge) only, the Max Duty can be set. There are H side and L side resistors connected to CLKOUT pin, and the value is $0.6 \mathrm{k} \Omega$. When multiples ICs will be used, the synchronization function is implemented so that the frequency remains synchronous. When the synchronization function operates, the master IC controls the slave ICs and sets their Max Duty (RTON, RTOFF) and slope compensation (RSLP). The function operates when the master IC's CLKOUT pin is connected to slave IC's SYNC pin.

Synchronization function operates when CLK signal exists on SYNC pin and returns to free running mode when CLK signal disappears. It is recommended to determine whether synchronization is needed before startup. Take note that connecting bigger capacitor to SAWH pin will reduce the jitter but prolong the settling time of synchronization. Moreover, the output may be unstable during capture course, pay attention to it when synchronization function switches or when operation of IC suddenly stops.

If the synchronization function is not needed, SYNC pin should be connected to GND and CLKOUT pin should be left open.

Fig. 31 Connection example of external synchronization
(2) Operation setting

Frequency setting : Please set the slave IC's typical frequency within $-3 \sim+0.5 \%$ of master IC's and the external resistor that programs the frequency should be the of $\pm 0.5 \%$ precision.
(example) master IC : RTON=RTOFF=120k Ω (fosc $=250 \mathrm{kHz}$, Max Duty $=66.6 \%$), and the Max Duty of slave IC is set at 62%
$245.5 \mathrm{kHz} \leq \frac{1}{\text { TRTON }+ \text { TRTOFF }} \leq 251.25 \mathrm{kHz}$
MaxDuy $=\frac{\text { TRTON }}{\text { TRTON }+ \text { TRTOFF }}=0.62$
Thus, RTON $=113 \mathrm{k} \Omega, ~$ RTOFF $=137 \mathrm{kHz}(\mathrm{fosc} \fallingdotseq 248.0 \mathrm{kHz}$, MaxDuty $\fallingdotseq 62.3 \%)$
Capacitor connected to SAWH: 0.1u~1.5uF ceramic capacitor
Although connecting big capacitor can reduce the jitter, it takes long time to stabilize the synchronization course.
(3) Principle of operation

The RTON (determine charge current) and RTOFF (determine discharge current) pins are used to generate SAW triangular wave, thus the switching frequency and MaxDuty can be set. The RSLP pin is used to set the slope compensation.

Fig. 32 Principle of frequency generation

The internal frequency fosc is compared with external frequency fsync, and the difference is fed back. In this way, the synchronization like PLL is observed. If fosc $>$ fsync (the internal frequency fosc is faster), the capacitor connected to SAWH pin is charged through $100 \mathrm{k} \Omega$, and the triangular wave top voltage is leveled up. When fosc is slower, the capacitor is discharged so that fosc gets near to fsync. The capacitor connected to SAWH pin is used for smoothing the voltage variation when switching, in this way stable frequency can be outputted.

Fig. 33 Principle of external synchronization

9. VCC pin and VDD pin

Connect VDD to VCC with decoupling capacitor. If the resistance is added between VCC pin and VDD pin to prevent conduction noise, use resistance less than 50Ω.

- Design of Pattern Diagram

(1) The switching voltages on the line of OUT, AUX, OUT2F, OUT2R, SYNC, CLKOUT, (SYNC) pin and the application board's switching line are the noise source. Please avoid the sensitive line of FB, LINEUV, CS1, CS2, RSLP, RDELON, RDELOFF2, RTON, RTOFF, RDELSLF, RDELOFF1, RDELSLR, SS, SAWH and VREF from being wired in parallel with noise source line. Furthermore, place the external device near the sensitive pin and the GND of external device should be connected to the low noise GND.
(2) For reducing the parasitic inductance of wire from OUT, AUX, OUT2F, OUT2R to FET gate line, it is better to make the wire as short as possible. Also, As switching current occurs while driving the FET gate, the current loop area should be made small.
(3) VCC is the power supply for IC internal analog circuits and it should be immune to external noise. On the one hand, VDD is the power supply for the output driver and switching noise occurs when the driver works. Therefore, VCC and VDD should not use the common input capacitor, but individual input capacitor near their pins. Additionally, the GND of input capacitor connected to VCC pin should be connected to low noise GND. Likewise; the GND pin of the IC also should be connected to low noise GND.

-Startup timing chart

-SOFT-STOP and Restart Timing Chart

- Adjustable Timing Through External Resistor

* The times above are under the condition:

RTON=RTOFF=RDELON=RDELOFF1=RDELOFF2=RDELSLF=RDELSLR=120k Ω
■ Adjustable timing by external resistor
(1) TPERIOD \cdots PWM frequency. Time (1) can be adjusted by RRTON, RRTOFF
(2) $\mathrm{T}_{\text {RDELON }} \cdots \mathrm{M} 2 \mathrm{R}$ in secondary side turns off \Rightarrow MMAIN in primary side turns on DELAY TIME $\left(T_{\text {RDELON }}\right.$ and $T_{\text {RDELON }}$ are linked)
(3) $T_{\text {RDELOFF1 }} \cdots M 2 R$ in secondary side turns off \Rightarrow MAUX in primary side turns off DELAY TIME
(4) $\mathrm{T}_{\text {RDELOFF2 }} \cdots$ MMAIN in primary side turns off \Rightarrow MAUX in primary side turns on DELAY TIME
(5) $\mathrm{T}_{\text {RDELSLF }} \quad$. . M2R in secondary side turns off $\Rightarrow M 2 F$ in secondary side turns on DELAY TIME
($\mathrm{T}_{\text {RDelslf }}$ and $\mathrm{T}_{\text {Rdelslf }}$ are linked)
(6) TRDELSLR : MMAIN in primary side turns off \Rightarrow M2R in secondary side turns on DELAY TIME

Fig. 34 Application Circuit

-Power Dissipation

The thermal derating characteristic is shown below.
It is necessary to design the system requirements and board layout so that the junction temperature does not exceed $150^{\circ} \mathrm{C}$
In practical use, take into consideration that the temperature rise may likely to occur because of the heat dissipation of different PCB layout and other heat source.
< PCB board >

FR4 (glass epoxy) substrate	$:$	$114.3 \mathrm{~mm} \times 76.2 \mathrm{~mm} \times 1.6 \mathrm{mmt}$
Copper foil surface	$:$	IC land pattern + test leads
2,3 layer, back side copper foil	$:$	$74.2 \mathrm{~mm} \times 74.2 \mathrm{~mm}$

