imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

3.5V to 60V Input 1ch Boost DC/DC Controller

BD9615MUV-LB

General Description

This is the product guarantees long time support in Industrial market.

BD9615MUV-LB is a low side MOSFET controller with high withstand voltage (60V). It is suitable for circuits requiring low side FET such as boost and flyback, and it can be used in various applications.

An external resistor can adjust the switching frequency from 100kHz to 2500kHz. It reduces the total mounting area because It can operate at extremely high switching frequency. In addition, it has an external clock synchronization function to perform noise management. BD9615MUV-LB has Thermal Shutdown (TSD), Over Voltage Protection (OVP), and Over Current Protection (OCP) to prevent damage caused by various abnormal modes.

Features

- Long Time Support Product for Industrial Applications
- Wide Input Voltage Range: 3.5V to 60V
- Frequency Setting Function: 100kHz to 2500kHz
- External Clock Synchronization Function
- Soft Start Time Control Function
- ON/OFF Control by the EN Pin (Standby Current 0µA)
- Over Voltage Protection Function by an Independent Pin
- Normal/Abnormal Signal Output by the PGDB Pin
- UVLO Control Function by External Resistors
- MAX DUTY Change Function: (50%/90%)
- High Power Small Package (VQFN16KV3030)

Applications

Industrial Instruments

Typical Application Circuit

Key Specifications

- Input Voltage Range:
 - 3.5V to 60V Reference Voltage Precision: (Ta=25°C) 0.8V±1.5% (Ta=-40°C to +105°C) ±2.0%
 - Frequency Range: 100kHz to 2500kHz
- **Operating Temperature Range:** -40°C to +105°C
- Package

VQFN16KV3030

W (Typ) x D (Typ) x H (Max)

3.00mm x 3.00mm x 1.00mm

Figure 1. Typical Application Circuit

OProduct structure : Silicon monolithic integrated circuit OThis product has no designed protection against radioactive rays

Pin Configuration

Figure 2. Pin Configuration

Pin Description

Pin No.	Pin Name	Function				
1	SYNC	External clock input pin				
2	MDT	MAX DUTY setting input pin				
3	RT	Resistor pin for setting frequency				
4	SS	Pin for setting soft start time				
5	MON	Output voltage monitor input Pin				
6	COMP	ERROR AMP output pin				
7	FB	ERROR AMP input pin				
8	OCP_P	Over current detect pin plus input pin				
9	OCP_M	Over current detect pin minus input pin. Connect to GND				
10	GND	GND pin				
11	OUT	Output pin for external FET driver				
12	VREG	Power voltage output pin for driver				
13	VCC	Power input pin				
14	EN	ON/OFF control pin				
15	VREF	Internal power voltage output pin				
16	PGDB	Power Good output pin				
-	EXP-PAD	Thermal pad for heat dissipation. Connect to GND for increased heat dissipation.				

Block Diagram

Figure 3. Block Diagram

Description of Blocks

1. ERROR AMP

The ERROR AMP block is an error amplifier that detects the output signal and outputs the PWM control signal. The internal reference voltage is set to 0.8V (Typ).

Connect a phase compensation element at the COMP pin.

2. OSC

OSC block is an oscillation circuit with frequency setting function and external synchronization function. The oscillation frequency can be set by the RT pin.

It can do external clock synchronous operation by inputting an external clock at the SYNC pin that is within ±20% of the set frequency.

When not using the external synchronization function, connect the SYNC pin to GND.

3. MAX DUTY

It is a MAX DUTY switching function. It can switch MAX DUTY 50% and 90% by setting H/L voltage. (H: 50%, L: 90%)

4. PWM

PWM is a voltage – pulse width converter for controlling output voltage depending on the input voltage. It compares the internal sawtooth waveform with the ERROR AMP output voltage, controls the pulse and outputs it to the driver.

5. VREF

The VREF block is an internal circuit power supply regulator. This voltage is 3.0V (Typ).

6. VREG

VREG block is regulator for FET drive voltage. This voltage is 5.0V (Typ). Voltage can be applied from an output voltage to the VREG pin.

7. VCCUVLO

The VCCUVLO block prevents internal circuit error during decrease of power supply voltage. It monitors the VCC pin voltage. When the VCC voltage becomes 3.1V (Typ) or less, it turns off output FET and DC/DC converter output, and resets Soft Start circuit.

8. ENUVLO

It can set low input voltage protection setting by configuring the EN pin with a resistor divider from VCC. If the voltage from this pin is 0.3V or less, IC operation is off. If it is between 1.4V and 1.7V, internal REG circuit turns on. If it is 1.8V (Typ) or more, the IC operates and a hysteresis generation current of 10µA (Typ) is sourced from the internal circuit. To turn off the IC, source current should be removed.

9. TSD

The TSD block is for thermal protection. When it detects the temperature exceeding Maximum Junction Temperature (Tj=150°C), it turns off the output FET, and resets Soft Start circuit. When the temperature is decreased, the IC automatically returns to normal operation with hysteresis.

10. OCP

This IC has over current protection to protect the FET from over current. If over current flows in FET, OCP function turns off the output and protects FET.

11. OVP

The OVP block is an over voltage output detect function. If the MON pin voltage is 0.9V (Typ) or more, IC operation is OFF. OVP detect threshold has a hysteresis of 50mV (Typ).

12. UVP

The UVP block is an under voltage output detect function. If the FB pin voltage is 0.65V (Typ) or less, the comparator output is low. The output signal is added with other protection feature detection signals, and is output from the PGDB pin.

13. Soft Start

The Soft Start circuit raises slowly the output voltage of the DC/DC converter to prevent in-rush current during start-up. Soft Start time can be adjusted by an external capacitor C_{SS} .

14. SSDET

This is a Soft Start finish detect block. If the SS pin voltage is SS_{DETTH} (1.2V (Typ)) or more, SSDET output is high. Output signal is added with other protection feature detection signals, and is output from the PGDB pin.

15. Power Good

This block generates an output signal that is the output voltage state of Normal or Error.

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply Voltage VCC to GND EN to GND PGDB to GND	VCC V _{EN} V _{PGDB}	62	V
Supply Voltage VREG to GND OUT to GND	V _{REG}	12	V
Supply Voltage VREF, SS, FB, COMP, MDT, RT, SYNC, OCP_P, OCP_M, MON to GND	V _{REF} , V _{SS} , V _{FB} , V _{COMP} , V _{MDT} , V _{RT} , V _{SYNC} , V _{OCP_P} , V _{OCP_M} , V _{MON}	7	V
Storage Temperature Range	Tstg	-55 to +150	°C
Maximum Junction Temperature	Tjmax	150	°C

Caution 1: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Caution 2: Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. Increase the board size and copper area to prevent exceeding the maximum junction temperature rating.

Thermal Resistance^(Note 1)

Parameter	Symbol	Thermal Re	Lloit	
Farameter	Symbol	1s ^(Note 3)	2s2p ^(Note 4)	Unit
VQFN16KV3030				
Junction to Ambient	θ _{JA}	189.0	57.5	°C/W
Junction to Top Characterization Parameter ^(Note 2)	Ψ_{JT}	23	10	°C/W

(Note 1) Based on JESD51-2A(Still-Air).

(Note 2) The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. (Note 3) Using a PCB board based on JESD51-3.

, ,		
Layer Number of Measurement Board	Material	Board Size
Single	FR-4	114.3mm x 76.2mm x 1.57mmt
Тор		
Copper Pattern	Thickness	
Footprints and Traces	70µm	

(Note 4) Using a PCB board based on JESD51-5, 7.

Layer Number of	Matorial	Board S	izo	Thermal Via ^(Note 5)			
Measurement Board	Wateria	Duaru S	lize	Pitch	Diameter		
4 Layers	FR-4	114.3mm x 76.2m	nm x 1.6mmt	1.20mm	Ф0.30mm		
Тор		2 Internal L	ayers	Bottom			
Copper Pattern	Thickness	Copper Pattern	Thickness	Copper Pattern	Thickness		
Footprints and Traces	70µm	74.2mm x 74.2mm	35µm	74.2mm x 74.2mm	70µm		

(Note 5) This thermal via connects with the copper pattern of all layers.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Power Supply Voltage	VCC	3.5	12	60	V
Switching Frequency	fosc	100	500	2500	kHz
Switching Frequency Setting Resistor	R _{RT}	19	100	500	kΩ
External Synchronize Frequency	f _{EXT}	100	-	2500	kHz
External Synchronize Frequency for RT Setting Frequency	-	-20	-	+20	%
Operating Temperature	Topr	-40	+25	+105	°C

Electrical Characteristics (Unless otherwise specified Ta=25°C, VCC=12V, V_{EN}=3V, R_{RT}=100kΩ)

Damanatan		Symbol	Limit			Linit	Conditions
Para	Imeter	Symbol	Min	Тур	Max	Unit	Conditions
Circuit Current		- H					
Standby Current		I _{ST}	-	0	10	μΑ	V _{EN} =0V
Operating Current		Icc	-	2.0	4.0	mA	V _{FB} =1.2V
VCCUVLO		-					
UVLO Detect Three	shold Voltage	V _{UV}	2.9	3.1	3.3	V	VCC sweep down
UVLO Hysteresis		VUVHYS	-	100	200	mV	
VREF		1			1		
Output Voltage		V _{REF}	-	3.0	-	V	
VREG		1			1		
Output Voltage		V_{REG}	4.8	5.0	5.2	V	
OVLO Threshold V	oltage	VREGOV	5.2	5.4	5.6	V	V _{REG} sweep up
OVLO Hysteresis		VREGOVHYS	-	100	200	mV	
Oscillator		1			1		
Oscillating Frequer	ю	f _{OSC}	450	500	550	kHz	R _{RT} =100kΩ
	MAX DUTY1	D _{MAX1}	82	90	98	%	V _{MDT} =L, V _{SYNC} =0V
MAX DUTY Cycle	MAX DUTY2	D _{MAX2}	42	50	58	%	V _{MDT} =H, V _{SYNC} =0V
MDT Pin Input High	1 Level	V _{IH MD}	0.8 x V _{REF}	-	V _{REF} + 0.2	V	
MDT Pin Input Low	Level	V _{IL MD}	-0.3	-	$0.2 \times V_{REF}$	V	
MDT Pin Input Curr	rent	IIH MD	-	3	8	μA	V _{MDT} =3.0V
ERROR AMP		-				•	
			0.788	0.800	0.812	V	Ta=25°C
FB Threshold Volta	ge	V _{FB}	0.784	0.800	0.816	V	Ta=-40°C to +105°C
FB Pin Input Curre	nt 1	I _{FB1}	-1	0	+1	μA	V _{FB} =0V
FB Pin Input Curre	nt 2	I _{FB2}	-1	0	+1	μA	V _{FB} =3.0V
Maximum Output V	/oltage	V _{CMPH}	2.7	V _{REF}	-	V	
Minimum Output Vo	oltage	V _{CMPL}	-	0	0.3	V	
Output Sink Curren	it	I _{CMPSI}	0.5	1.5	-	mA	V _{COMP} =1.25V, V _{FB} =1.5V
Output Source Cur	rent	I _{CMPSO}	100	180	-	μA	V _{COMP} =1.25V, V _{FB} =0V
Soft Start						-	
SS Pin Source Cur	rent	I _{SSSO}	1.4	2	2.6	μA	V _{SS} =0.5V
SS Pin Sink Curren	nt	I _{SSSI}	5	12	-	mA	V _{SS} =0.5V
Power Good Signa	l Output						
PGDB Pin Output L	Low Level Voltage	V _{PGBOL}	-	-	0.4	V	I _{PGDB} =1mA
PGDB Pin Leak Cu	urrent	I _{PGBLK}	-	0	10	μA	V _{PGDB} =60V
Monitor Output Volt	tage						
UVP Detect Thresh	old Voltage	VPGTH	0.60	0.65	0.70	V	V _{FB} sweep down
UVP Detect Hyster	esis	VPGHYS	-	50	75	mV	
OVP Detect Thresh	nold Voltage	VOVPTH	0.85	0.90	0.95	V	V _{MON} sweep up
OVP Detect Hyster	resis	VOVPHYS	-	50	75	mV	
MON Pin Input Cur	rent 1		-1	0	+1	μA	V _{MON} =0.0V
MON Pin Input Cur	rrent 2		-1	0	+1	μA	V _{MON} =3.0V
Output	-	INICINE	-	-	1	I	
Output Hiah Side C	N Resistance	RONH	-	3	-	Ω	V _{BEG} =5.0V
Output Low Side O	N Resistance	R _{ONL}	-	1.7	-	Ω	V _{REG} =5.0V

Electrical Characteristics (Unless otherwise specified Ta=25°C, VCC=12V, V_{EN}=3V, R_{RT}=100kΩ) - continued

Parameter	Symbol		Limit		Llpit	Conditions	
Falameter	Symbol	Min	Тур	Max	Unit		
OCP							
Over Current Detect Threshold	V _{OCPTH}	80	100	120	mV		
OCP_P Pin Input Bias Current	I _{OCP_P}	-	20	100	μA	V _{OCP_P} =0.1V	
OCP_M Pin Input Bias Current	I _{OCP_M}	-	50	100	μA	V _{OCP_M} =GND	
Over Current Detect Latch Stop Time	tocp	10	20	30	ms		
CTL							
EN Pin Internal REG ON-Threshold	V _{ENON}	0.3	-	1.4	V		
EN Pin UVLO Threshold	VENUV	1.7	1.8	1.9	V	IC Output ON condition	
EN Pin Source Current	I _{EN}	9.0	10.0	11.0	μA	V _{EN} =3V	
SYNC							
SYNC Pin Threshold Voltage High	V _{SYNCH}	2.0	-	5.5	V		
SYNC Pin Threshold Voltage Low	V _{SYNCL}	-0.3	-	+0.8	V		
SYNC Pin Input Current	I _{SYNC}	6	12	24	μA	V _{SYNC} =3V	

Detailed Description

• Frequency Setting Function

It can determine frequency input to PWM by using the RT pin. It establishes constant current in the IC by connecting a timing resistor, R_{RT} . Oscillation frequency can be set from 100kHz to 2500kHz and calculated as follows.

• External CLK for SYNC Function

This IC can operate synchronization function by inputting an external CLK signal to the SYNC pin. Input CLK signal is limited within ±20% of the frequency set by the RT pin. LOW level is 0.8V or less, and HIGH level is 2.0V or more. Required width of H section and L section is 100ns or more. After the 3rd input pulse at the SYNC pin, falling edge of internal sawtooth wave synchronizes with the falling edge of the SYNC pin. If external CLK stops, the device transitions to self-running mode after 1.5 times of oscillation period.

Figure 5. Frequency Synchronization Function Timing Chart

Detailed Description - continued

• In the Case of Not Using the Synchronization Function

Although the SYNC pin is internally pulled down by a resistor, it is recommended to connect the SYNC pin to GND if the synchronization function is not in use.

Figure 6. Circuit Diagram of SYNC Pin Not in Use

MDT Pin Function

It can change MAX DUTY by processing the MDT pin

If the MDT pin is connected to the GND pin, MAX DUTY is prescribed in D_{MAX1} and is limited to 90% (Typ).

If the MDT pin is connected to the VREF pin, MAX DUTY is prescribed in D_{MAX2} and is limited to 50% (Typ).

To prevent malfunction caused by noise, connect the MDT pin to the GND pin or the VREF pin.

When External Synchronize Frequency is input from SYNC (f_{EXT}), MAX DUTY is determined by the frequency (f_{OSC}) set by the RT pin and MAX DUTY set by the MDT pin and is prescribed in D_{MAX_SYNC} by following formula.

$$D_{MAX_SYNC} = \left(1 - \frac{\frac{1}{f_{OSC}} \times (1 - D_{MAX})}{\frac{1}{f_{EXT}}}\right) \times 100 \,[\%]$$

Where:

 $\begin{array}{l} \text{MDT=GND: } D_{\text{MAX}} = D_{\text{MAX1}} \\ \text{MDT=VREF: } D_{\text{MAX}} = D_{\text{MAX2}} \\ \text{MDT=VREF: } D_{\text{MAX}} = D_{\text{MAX2}} \\ \end{array}$

UVLO Control Function by External Resistors

The EN pin has built-in precise reset function. The EN pin connected with a resistor divider from VCC, as shown in Figure 7, can set low voltage malfunction prevention more than internal UVLO. When it is used, establish R_{EN1} and R_{EN2} , as shown in Figure 7, for any VCC start-up voltage V_{START} [V] and VCC shutdown voltage V_{STOP} [V].

 $R_{EN1} = \frac{V_{START} - V_{STOP}}{I_{EN}} \ [\Omega]$

$$R_{EN2} = \frac{V_{ENUV} \times R_{EN1}}{V_{START} - V_{ENUV}} [\Omega]$$

Detailed Description - continued

• Soft Start Time

Soft Start Time t_{SS} is determined by Soft Start Time Setting Capacitor C_{SS} , SS Source Current I_{SSSO} , and the FB pin Threshold Voltage V_{FB} . Set C_{SS} capacitance that can be fully discharged during the "Hiccup" time when OCP is detected.

$$t_{ss} = C_{SS} \times \frac{V_{FB}}{I_{SSSO}}$$
 [S]

In addition, when COMP terminal capacitor C_3 is big and C_{SS} is small, rise voltage ΔV_{SS} of the SS pin voltage becomes big at time t_{COMP} before COMP pin voltage arriving at lower voltage of the internal saw-tooth wave (1.0V) from EN ON, and rush current occurs at the time of switching start. t_{COMP} , ΔV_{SS} is calculated in the following formula. Set C_{SS} and C_{OUT} in consideration of rush current to be proportional to ΔV_{SS} and C_{OUT} .

Figure 8. Error amplifier circuit diagram

Figure 9. Output voltage starting diagram

Boost application

$$t_{COMP} = C_3 \left(\sqrt{(R_{FB2} + R_2)^2 + \frac{2 \times C_{SS} \times R_{FB2}}{C_3 \times I_{SS}}} \left(\frac{R_2 \times VCC}{R_{FB1} + R_{FB2}} + 1 \right) - (R_{FB2} + R_2) \right) + \frac{C_{SS} \times VCC \times R_{FB2}}{I_{SS} \times (R_{FB1} + R_{FB2})}$$
[s]

Flyback application

$$t_{COMP} = C_3 \left(\sqrt{(R_{FB1} / / R_{FB1} + R_2)^2 + \frac{2 \times C_{SS} \times R_{FB1} / / R_{FB1}}{C_3 \times I_{SS}}} - (R_{FB1} / / R_{FB1} + R_2) \right) [s]$$

$$\Delta V_{SS} = \frac{I_{SS}}{C_{SS}} \times t_{COMP} [V]$$

www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001

Detailed Description - continued

OVP Function

The MON pin has built-in OVP function. When the MON pin voltage becomes V_{OVPTH} or more, switching of the OUT pin is stop and switching is reopened if the MON pin voltage becomes V_{OVPTH} - V_{OVPHYS} or less. The OVP detect voltage (V_{OVP}) can be set by connecting the MON pin with a resistor divider from V_{OUT} , as shown in Figure 10.

$$V_{OVP} = \frac{R_{MON1} + R_{MON2}}{R_{MON2}} \times V_{OVPTH}$$
 [V]

Figure 10. Circuit Diagram of OVP Function Setting Method

OCP Function

If over current flows in FET, OCP function turns off the output and protects FET.

The voltage between the OCP_P pin and the OCP_M pin is monitored by OCP sense resistance. If the voltage exceeds the overcurrent detection voltage (100mV (Typ)), the OUT pin is set to Low during the period (pulse by pulse control). When OCP is detected twice consecutively, the IC is turned off 20ms (Typ) ("hiccup" operation), and the IC is turned on if the voltage between the OCP_P pin and the OCP_M pin is lower than the over current detect voltage.

$$R_{SOCP} = \frac{V_{OCPTH}}{I_{OCP}} \left[\Omega \right]$$

Where:

V_{OCPTH} Over Current Detect Threshold (100mV (Typ)) I_{OCP} OCP detect current

If OCP detect circuit is unused, short the OCP_P pin and the OCP_M pin to the GND pin near the IC.

Figure 11. Timing Chart at OCP Operation

Detailed Description – continued

[Noise Design for the OCP_P pin and the OCP_M pin] The OCP input OCP_P OCP_M is a very sensitive circuit. Therefore, there is a possibility of erroneous detection due to generated noise on the board.

As a measure to prevent erroneous detection at the OCP_P and the OCP_M pin, insert coupling capacitor and resistance near and between the OCP P and the OCP M pin.

Figure 13. Effect of Noise Measurement

Consider in advance noise reduction on the board because there is limit to noise attenuation by the above measures. As precaution on pattern, make current path as short as possible, and shorten the wiring to the OCP_P and OCP_M pin as much as possible.

For peripheral components, select FET with small gate amount of charge Qg and select Di with small equivalent capacitance and short reverse recovery time t_{BB} for noise reduction.

Aside from adding a bypass capacitor, adding an R_{GATE} makes the waveform duller (concern about the efficiency deterioration as contradictory matter).

Detailed Description – continued

• VREG Pin Function

The VREG pin is output pin of internal regulator and it supplies 5.0V (Typ). It drives Nch MOSFET via the OUT pin of driver output.

[Output Voltage Regenerative Function]

For the power consumption improvement of the VREG, it can regenerate to the VREG pin via diode when voltage is upper than V_{REGOV}. Voltage range that can regeneration is V_{REGOV} (5.4V (Typ)) to 10V.

Figure 14. Example of Regeneration Application

[VCC Reduced Voltage]

Due to decrease of VCC supply voltage, drive voltage output from the VREG pin also decrease and driver R_{ON} of the OUT pin is increased.

Optimal drive voltage of FET is changed by oscillation frequency and the gate capacitance.

Selects FET and oscillation frequency that consider characteristic data when use at VCC is less than or equal to 5V.

• Power Good Output Function

The PGDB pin is the open drain output of the internal Nch FET. Using external resistance, pull up the PGDB pin to external power supply by external resister, to use Power Good Output function.

When an internal detection function is the non-detection, and output voltage is within the range from UVP (the FB pin) to OVP (the MON pin), the PGDB pin is Low. When other operation mode or shutdown (EN=L), Nch MOSFET turns off and the PGDB pin turns HIGH (pull-up voltage).

In addition, a connection between power supply (VCC) and output (V_{OUT}) can be cut by connecting the PGDB pin like Figure 15. Pull-up voltage of the PGDB pin has to be below its absolute maximum rating of 62V.

Performance Curves (Reference Data) (Unless Otherwise Specified, Ta=25°C, VCC=12V)

Figure 16. Standby Current vs Power Supply Voltage

Figure 18. UVLO Threshold vs Temperature

Figure 17. Operating Current vs Power Supply Voltage $$(V_{FB} \mbox{=} 1.2V)$$

Figure 19. VREG Output Voltage vs Power Supply Voltage

Performance Curves (Reference Data) - continued

Figure 20. VREG Output Voltage vs Temperature

Figure 22. Oscillating Frequency vs Temperature

Figure 21. VREG Output Voltage vs VREG Output Current

Figure 23. MAX DUTY Cycle vs Temperature

Performance Curves (Reference Data) - continued

Figure 26. Output High Side ON Resistance vs Temperature

Figure 25. FB Threshold Voltage vs Temperature

Figure 27. Output Low Side ON Resistance vs Temperature

Performance Curves (Reference Data) - continued

Figure 28. EN pin Source Current vs Temperature

Figure 29. Over Current Detect Threshold vs Temperature

VCCUVLO UVP OVP **ENUVLO** ENUVLO TSD OCP VCC Vuv+Vuvhys Vuv release detect VCCUVLO ΕN detect release ENUVLO release detect TSD detect OCP OCP latch OCP_latch 20ms VPGTH VOVPTH VOVPTH+VOVPHY FB/MON VPGTH+VPGHYS VPGTH+VPGHYS VPGTH+VPGHYS VPGTH+VPGHYS VPGTH VPGTH VPGTH VPGTH+VPGHYS (VOUT) release detect UVP detect release OVP SSDETTH SSDETTH SSDETTH SSDETTH SS release detect SSDET DRV_CTL PGDB NG OK

Timing Chart

www.rohm.com © 2018 ROHM Co., Ltd. All rights reserved. TSZ22111 • 15 • 001

Datasheet

Reference Characteristics of Typical Application Circuit

Figure 31. Efficiency vs Output Current

Reference Characteristics of Typical Application Circuits - continued

Figure 32. Frequency Characteristics Output Current=0.1A

Figure 33. Frequency Characteristics Output Current=1.0A

EN 2.0V/div.	
VOUT 5.0V/div.	
SW 3.0V/div.	
II 1 0A/div	

Figure 34. Startup Waveform

Figure 35. Shutdown Waveform

Application Part Setting Method

(1) Inductor

It is recommended to use shielded type inductor that satisfies the current rating (I_{PEAK}) and has low DCR (direct current resistance). Inductor value affects inductor ripple current and causes the output ripple. This ripple current can become small when inductor is large and switching frequency is high.

$$I_{PEAK} = I_{OUT} \frac{VOUT}{\eta \times VIN} + \Delta I_L / 2 \quad [A]$$
(1)

$$\Delta I_L = \frac{VIN(VOUT - VIN)}{VOUT \times f_{osc} \times L}$$
 [A] (2)

where: η is the efficiency ΔIL is the output ripple current f_{OSC} is the switching frequency Figure 36. Inductor Current

Normally, ΔIL is set 30% or less of Max Output Current (I_{OUTMAX}).

When a current flowing into the inductor exceeds the inductor current rating, it causes a magnetic saturation which causes a decrease in efficiency and oscillation at the output. Choose an inductor with a sufficient margin so that peak current does not exceed current rating of the inductor.

(2) About Switching Components FET and Di

Set switching components with sufficient margin of current tolerance obtained by the formula (1). For noise and efficiency improvement, select FET with small input capacitance (C_{ISS}, Qg) and ON resistance. Select Di with small equivalent capacitance, short reverse recovery time t_{RB}, and small forward voltage V_F.

(3) Output Capacitor

Choose output capacitor with the lower Equivalent Series Resistance (ESR). Output Ripple Voltage V_{PP} is determined in the formula (3).

$$V_{PP} = IOUT \times \frac{VOUT - VIN}{F_{OSC} \times C_{OUT} \times VOUT} + I_{PEAK} \times ESR \ [V]$$
(3)

Set within the range of allowable ripple voltage.

The VREF pin, the VREG pin connection capacitor

Between the VREF pin, the VREG pin and the GND pin is need to connect 1 μ F ceramic capacitor. It is needed to select capacitor from 0.5 μ F to 1.5 μ F that considers DC bias effect and temperature characteristics. In case capacitor short Grand fault is supposed, there is a possibility of destruction by generation of heat. Therefore, it is needed to measure set the capacitor in two series.

(4) Input Capacitor

Input capacitor needs to use electrolytic capacitor and ceramic capacitor. Output switching current is supplied by Input Capacitor (C_{IN}), so set ceramic bypass capacitor near FET and Di. When using electrolytic capacitor, consider the allowable ripple current.

(5) Output Voltage Setting

Output Voltage is determined in the formula (4)

Figure 37. Circuit Diagram of Voltage Feedback Resistor Setting Method

(4)

Application Part Setting Method - continued

(6) Selection of External Phase Compensation Stable condition of application Negative feedback is applied is as follows. When Gain is 1(0dB), phase delay is 135 degrees or less (phase margin is 45 degrees or more). DC/DC converter application is sampled by switching frequency, so as a whole f_{BW} (frequency at which gain is 0dB) is set 1/10 or less of the switching frequency. Also set f_{BW} in less than 1/5 of boost converter peculiar right half plane zero (f_{RHPZ}) so that right half plane zero frequency does not influence a control loop.

In conclusion, Application target specifications are as follows.(A) Gain is 1 (0dB), phase delay is 135 degrees or less (phase margin is 45 degrees or more).

- (B) f_{BW} is 1/10 or less of switching frequency
- (C) f_{BW} is 1/5 or less of f_{RHPZ}

It set C_1 , C_3 , R_1 , and R_2 of Figure 38 that meet the above.

 f_{BW} that determines DC/DC converter responsiveness is able to calculate by evaluate 1st pole frequency and DC gain.

[Hz]

1st pole frequency $fp1 = \frac{1}{\left(2\pi \times A \times \frac{R_{FB1} \times R_{FB2}}{R_{FB1} + R_{FB2}} \times C_3\right)}$

DC Gain
$$DCgain = \frac{A}{B} \times V_{FB} \times \frac{VOUT}{VIN}$$

Where A: ERROR Amp Gain=10⁴ (=80dB) B: Oscillator amplitude=0.5V

$$f_{BW} = DCgain \times fp1$$
 [Hz]

 $f_{RHPZ} = \frac{1}{2 \times \pi \times L \times IOUT} \times \frac{VIN^2}{VOIIT}$ [Hz]

Figure 38. Example of Phase Compensation Setting

Insert second order phase lead in order to cancel the second order phase delay by LC. Insert phase lead near LC resonance frequency.

Phase Lead
$$fz1 = \frac{1}{2\pi \times R_{FB1} \times C_1}$$
 [Hz]

Phase Lead

$$fz2 = \frac{1}{2 \times \pi \times R_2 \times C_3}$$
 [Hz]

LC Resonance Frequency
$$= \frac{1-D}{2 \times \pi \sqrt{L \times C_{OUT}}}$$
 [Hz]

Where C_{OUT}: Output Capacitor D: ON Duty=(VOUT-VIN)/VOUT

If f_{BW} goes excessive high frequency by second order phase lead, it may be stabilized by inserting first order phase delay to frequency above LC resonance frequency to further compensate it.

Phase Delay
$$fp2 = rac{1}{2 imes \pi imes R_1 imes \mathcal{C}_1}$$
 [Hz]

PCB Layout

Consider the following general points to bring out the IC performance.

- 1. Each input of the OCP_P pin and the OCP_M pin are very sensitive. Consider the above-mentioned contents.
- 2. For noise caused by parasitic capacitance coupling, consider routing by keep distance to providing a buffer zone. Especially wiring those are sensitive to noise such as the OCP_P pin, the OCP_M pin and the COMP pin.
- 3. Near the OCP_P pin, the OCP_M pin and phase compensation circuit need to set pre-pattern about capacitor as insurance.
- 4. Place the bypass capacitor near the input of the IC, FET, and Di and wire it as short as possible.
- 5. Be careful not to have common impedance to high current system with analog system VCC (GND).

I/O Equivalence Circuit

Pin No.	Pin Name	Pin Equivalence Circuit	Pin No.	Pin Name	Pin Equivalence Circuit
1	SYNC	SYNC O	5	MON	
2	MDT	MDT O	6	COMP	
3	RT	RTO GND	7	FB	FB O
4	SS		8	OCP_P	

I/O Equivalence Circuit - continued

Pin No.	Pin Name	Pin Equivalence Circuit		Pin No.	Pin Name	Pin Equivalence Circuit
9	OCP_M		-	14	EN	
11	OUT			15	VREF	VREF O
12	VREG	VREG O GND		16	PGDB	