

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BF244A BF244B BF244C

N-Channel RF Amplifier

This device is designed for RF amplifier and mixer applications operating up to 450 MHz, and for analog switching requiring low capacitance. Sourced from Process 50.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	Value	Units	
V_{DG}	Drain-Gate Voltage	30	V	
V _{GS}	Gate-Source Voltage	- 30	V	
I _D	Drain Current	50	mA	
I _{GF}	Forward Gate Current	10	mA	
T _{stg}	Storage Temperature Range	-55 to +150	°C	

 $^{{}^{\}star}$ These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics TA = 25°C unless otherwise noted

Symbol	Characteristic	Max	Units	
		BF244A / BF244B / BF244C		
P _D	Total Device Dissipation	350	mW	
	Derate above 25°C	2.8	mW/°C	
$R_{\theta JC}$	Thermal Resistance, Junction to Case	125	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W	

Тур

Min

(continued)

Max Units

lectric	1 🔿		_ 4	:	
 IDCTTI/	rai (i	nara	CTAL	etice	TA 4
CCLII	Jai Oi	ıaıa	CICII	เอเเษอ	IA = 7

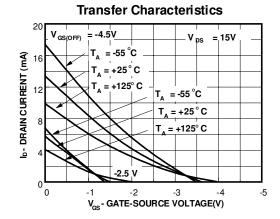
Parameter

TA = 25°C unless otherwise noted

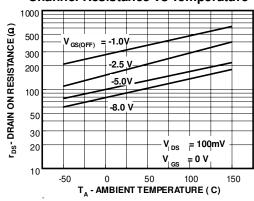
Test Conditions

OFF OLIA	DACTEDICTION					
	RACTERISTICS				•	1
$V_{(BR)GSS}$	Gate-Source Breakdown Voltage	$I_G = 1.0 \mu\text{A}, V_{DS} = 0$		30		V
I _{GSS}	Gate Reverse Current	$V_{GS} = -20 \text{ V}, V_{DS} = 0$			5.0	nA
$V_{GSS(off)}$	Gate-Source Cutoff Voltage	$V_{DS} = 15 \text{ V}, I_D = 10 \text{ nA}$		- 0.5	- 8.0	V
V _{GS}	Gate-Source Voltage	$V_{DS} = 15 \text{ V}, I_D = 200 \mu\text{A}$	244A	- 0.4	- 2.2	V
		•	244B	- 1.6	- 3.8	V
			244C	- 3.2	- 7.5	V

ON CHARACTERISTICS

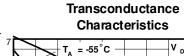

Symbol

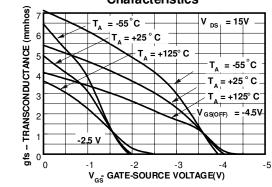
I _{DSS}	Zero-Gate Voltage Drain Current	$V_{DS} = 15 \text{ V}, V_{GS} = 0$	244A	2.0	6.5	mA
			244B	6.0	15	mA
			244C	12	25	mA

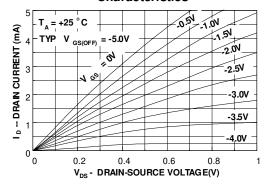

SMALL SIGNAL CHARACTERISTICS

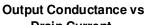
y fs	Forward Transfer Admittance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}$ $V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 200 \text{ MHz}$	3.0	5.6	6.5	mmhos mmhos
yos	Output Admittance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 kHz		40		μmhos
y rs	Reverse Transfer Admittance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 200 \text{ MHz}$		1.0		μmhos
Ciss	Input Capacitance	V _{DS} = 20 V, V _{GS} = - 1.0 V		3.0		pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 20 \text{ V}, V_{GS} = -1.0 \text{ V},$ f = 1.0 MHz		0.7		pF
Coss	Output Capacitance	$V_{DS} = 20 \text{ V}, V_{GS} = -1.0 \text{ V},$ f = 1.0 MHz		0.9		pF
NF	Noise Figure	$V_{DS} = 15 \text{ V}, V_{GS} = 0, R_G = 1.0 \text{ k}\Omega,$ f = 100 MHz		1.5		dB
F(Y _{fs})	Cut-Off Frequency	$V_{DS} = 15 \text{ V}, V_{GS} = 0$		700		MHz

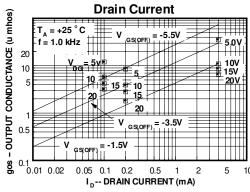
Typical Characteristics

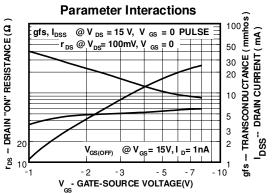


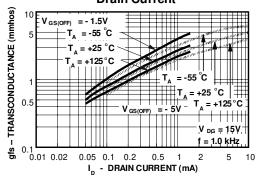

Channel Resistance vs Temperature

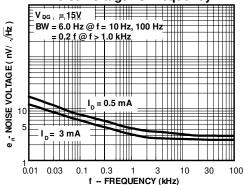

(continued)


Typical Characteristics (continued)

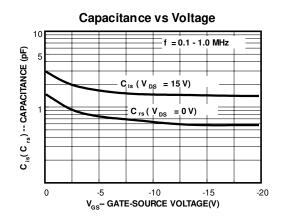


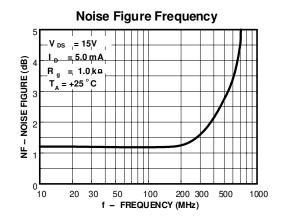

Common Drain-Source Characteristics

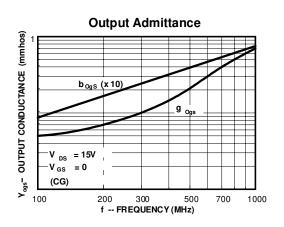


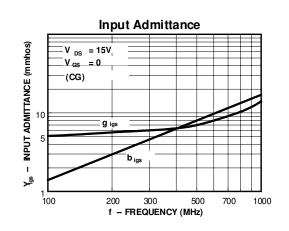

Transconductance

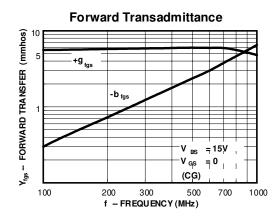
Transconductance vs **Drain Current**

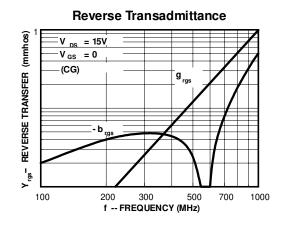



Noise Voltage vs Frequency

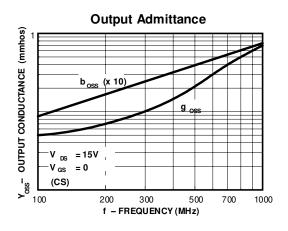

(continued)

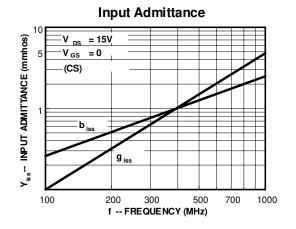

Typical Characteristics (continued)

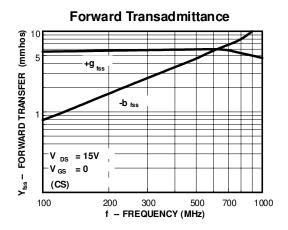


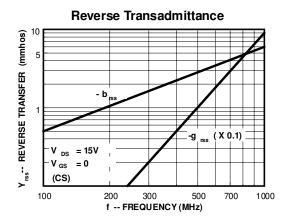


Common Gate Characteristics








(continued)

Common Source Characteristics

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

 $ACEx^{TM}$ $FASTr^{TM}$ PowerTrench® SyncFETTM QFET™ TinyLogic™ Bottomless™ GlobalOptoisolator™ QSTM UHC™ CoolFET™ GTO™ QT Optoelectronics™ **VCXTM** CROSSVOLT™ HiSeC™

DOME™ ISOPLANAR™ Quiet Series™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.