: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

JFET VHF/UHF Amplifiers N-Channel - Depletion

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V_{DS}	± 30	Vdc
Drain-Gate Voltage	V_{DG}	30	Vdc
Gate-Source Voltage	V_{GS}	30	Vdc
Drain Current	I_{D}	100	mAdc
Forward Gate Current	$\mathrm{I}_{\mathrm{G}(\mathrm{f})}$	10	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	350	mW
Derate above $25^{\circ} \mathrm{C}$		2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Channel Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

STYLE 22
1 SOURCE

BF244A, BF244B
CASE 29-11, STYLE 22 TO-92 (TO-226AA)

BF245, BF245A,
BF245B, BF245C
CASE 29-11, STYLE 23
TO-92 (TO-226AA)

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Gate-Source Breakdown Voltage$\left(\mathrm{I}_{\mathrm{G}}=1.0 \mu \mathrm{Adc}, \mathrm{~V}_{\mathrm{DS}}=0\right)$		$\mathrm{V}_{(\mathrm{BR}) \mathrm{GSS}}$	30	-	-	Vdc
Gate-Source $\left(V_{D S}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{Adc}\right)$	$\begin{array}{ll} \text { BF245(1) } & \\ \text { BF245A, } & \text { BF244A(2) } \\ \text { BF245B, } & \text { BF244B } \\ \text { BF245C } & \end{array}$	V_{GS}	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 1.6 \\ & 3.2 \end{aligned}$	-	$\begin{aligned} & 7.5 \\ & 2.2 \\ & 3.8 \\ & 7.5 \end{aligned}$	Vdc
Gate-Source Cutoff Voltage ($\left.\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{nAdc}\right)$		V_{GS} (off)	-0.5	-	-8.0	Vdc
Gate Reverse Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{DS}}=0\right)$		IGSS	-	-	5.0	nAdc

ON CHARACTERISTICS

Zero-Gate-Voltage Drain Current		IDSS				mAdc
$\left(V_{D S}=15\right.$ Vdc, $\left.V_{G S}=0\right)$	BF245(1)					
	BF245A, BF244A(2)		2.0	-	25	
	BF245B, BF244B		2.0	-	6.5	
	BF245C		6.0	-	15	

1. On orders against the BF245, any or all subgroups might be shipped.
2. On orders against the BF244A, any or all subgroups might be shipped.

BF245A BF245B

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Typ	Max	Unit

SMALL-SIGNAL CHARACTERISTICS

| Forward Transfer Admittance | $\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{kHz}\right)$ | $\left\|\mathrm{Y}_{\mathrm{fs}}\right\|$ | 3.0 | - | 6.5 | mmhos |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| Output Admittance | $\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{kHz}\right)$ | $\left\|\mathrm{Y}_{\mathrm{os}}\right\|$ | - | 40 | - | $\mu \mathrm{mhos}$ |
| Forward Transfer Admittance | $\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=200 \mathrm{MHz}\right)$ | $\left\|\mathrm{Y}_{\mathrm{fs}}\right\|$ | - | 5.6 | - | mmhos |
| Reverse Transfer Admittance | $\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=200 \mathrm{MHz}\right)$ | $\left\|\mathrm{Y}_{\mathrm{rs}}\right\|$ | - | 1.0 | - | mmhos |
| Input Capacitance | $\left(\mathrm{V}_{\mathrm{DS}}=20 \mathrm{Vdc},-\mathrm{V}_{\mathrm{GS}}=1.0 \mathrm{Vdc}\right)$ | $\mathrm{C}_{\mathrm{iss}}$ | - | 3.0 | - | pF |
| Reverse Transfer Capacitance | $\left(\mathrm{V}_{\mathrm{DS}}=20 \mathrm{Vdc},-\mathrm{V}_{\mathrm{GS}}=1.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$ | $\mathrm{C}_{\mathrm{rss}}$ | - | 0.7 | - | pF |
| Output Capacitance | $\left(\mathrm{V}_{\mathrm{DS}}=20 \mathrm{Vdc},-\mathrm{V}_{\mathrm{GS}}=1.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$ | $\mathrm{C}_{\mathrm{oss}}$ | - | 0.9 | - | pF |
| Cut-off Frequency (3) | $\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0\right)$ | $\mathrm{F}_{(\mathrm{Yfs})}$ | - | 700 | - | MHz |

3. The frequency at which $g_{f s}$ is 0.7 of its value at 1 kHz .

COMMON SOURCE CHARACTERISTICS
 ADMITTANCE PARAMETERS

($\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{T}_{\text {channel }}=25^{\circ} \mathrm{C}$)

Figure 1. Input Admittance (y_{is})

Figure 2. Reverse Transfer Admittance (yrs)

Figure 3. Forward Transadmittance (y_{fs})

Figure 4. Output Admittance (Yos)

COMMON SOURCE CHARACTERISTICS

S-PARAMETERS

(VDS $=15 \mathrm{Vdc}, \mathrm{T}_{\text {channel }}=25^{\circ} \mathrm{C}$, Data Points in MHz)

Figure $5 . \mathrm{S}_{11 \mathrm{~s}}$

Figure 7. $\mathbf{S}_{\mathbf{2 1 s}}$

Figure 6. $\mathbf{S}_{12 \mathrm{~s}}$

Figure 8. $\mathbf{S}_{22 s}$

BF245A BF245B

COMMON GATE CHARACTERISTICS

ADMITTANCE PARAMETERS

$\left(\mathrm{V}_{\mathrm{DG}}=15 \mathrm{Vdc}, \mathrm{T}_{\text {channel }}=25^{\circ} \mathrm{C}\right)$

Figure 9. Input Admittance (yig)

Figure 10. Reverse Transfer Admittance ($\mathbf{y r g}$)

Figure 11. Forward Transfer Admittance ($\mathrm{yfg}_{\mathrm{fg}}$)

Figure 12. Output Admittance (yog)

COMMON GATE CHARACTERISTICS

S-PARAMETERS

$\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{T}_{\text {channel }}=25^{\circ} \mathrm{C}\right.$, Data Points in MHz)

Figure 13. $\mathrm{S}_{11 \mathrm{~g}}$

Figure 15. $\mathbf{S}_{\mathbf{2 1 g}}$

Figure 14. $\mathbf{S}_{12 \mathrm{~g}}$

Figure 16. $\mathbf{S 2 2 g}_{\mathbf{q}}$

PACKAGE DIMENSIONS

TO-92 (TO-226)
CASE 29-11
ISSUE AL

STYLE 22:	STYLE 23:		
PIN 1.	SOURCE	PIN 1.	GATE
2.	GATE	2.	SOURCE
3.	DRAIN	3.	DRAIN

NOTES:
. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH.
. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED
. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.175	0.205	4.45	5.20
B	0.170	0.210	4.32	5.33
C	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
H	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500	---	12.70	---
L	0.250	---	6.35	---
N	0.080	0.105	2.04	2.66
P	---	0.100	---	2.54
R	0.115	---	2.93	---
V	0.135	---	3.43	---

BF245A BF245B
Notes

Abstract

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031
Phone: 81-3-5740-2700
Email: r14525@onsemi.com
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

