

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

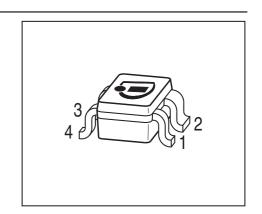
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



High Performance Bipolar NPN RF Transistor

- High transducer gain of typ. 14 dB @ 25 mA,6 GHz
- Low minimum noise figure of typ. 0.85 dB @ 6GHz
- High output compression of typ. 11 dBm @ 25 mA
- Pb-free (RoHS compliant) package
- For a wide range of non-automotive applications
 - 2nd and 3rd LNA stage and mixer stage in LNB
 - 5.8 GHz analog/digital cordless phone
 - Satellite radio SDARS
 - WLAN, WIMAX, UWB

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration			Package			
BF888	RYs	1=B	2=E	3=C	4=E	ı	-	SOT343

Maximum Ratings at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\sf CEO}$		V
<i>T</i> _A = 25 °C		4.0	
<i>T</i> _A = − 55 °C		3.5	
Collector-emitter voltage	V_{CES}	13	
Collector-base voltage	V_{CBO}	13	
Emitter-base voltage	V_{EBO}	1.2	
Collector current	$I_{\mathbb{C}}$	30	mA
Base current	l _B	3	
Total power dissipation ¹⁾	P _{tot}	160	mW
<i>T</i> _S ≤ 89 °C			
Junction temperature	T_{J}	150	°C
Ambient temperature	T_{A}	-55 150	
Storage temperature	T_{Stg}	-55 150	

 $^{^{1}}T_{\mathrm{S}}$ is measured on the emitter lead at the soldering point to the pcb

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	≤ 380	K/W

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

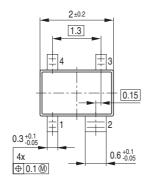
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics	,		•		•
Collector-emitter breakdown voltage	V _{(BR)CEO}	4	4.7	-	V
$I_{\rm C} = 1 \text{ mA}, I_{\rm B} = 0$					
Collector-emitter cutoff current	I _{CES}	-	1	-	nA
$V_{CE} = 5 \text{ V}, V_{BE} = 0$					
Collector-base cutoff current	I _{CBO}	-	1	-	
$V_{CB} = 5 \text{ V}, I_{E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	10	-	
$V_{\rm EB} = 0.5 \rm V, \it I_{\rm C} = 0$					
DC current gain	h _{FE}	-	250	-	-
$I_{\rm C}$ = 25 V, $V_{\rm CE}$ = 3 V, pulse measured					

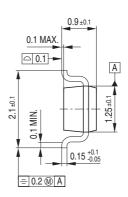
 $^{^{1}\}mbox{For calculation of}\,R_{\mbox{\scriptsize thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

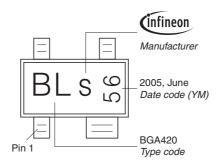
Parameter Parameter $I_A = 25^{\circ}C$, unless	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling	3)				
Transition frequency	f_{T}	-	47	-	GHz
$I_{\rm C}$ = 25 mA, $V_{\rm CE}$ = 3 V, f = 2 GHz					
Collector-base capacitance	C _{cb}	-	0.08	-	pF
V_{CB} = 3 V, f=1 MHz, V_{BE} = 0, emitter grounded					
Collector emitter capacitance	C _{ce}	-	0.35	-	
V_{CE} = 3 V, f = 1 MHz, V_{BE} = 0, base grounded					
Emitter-base capacitance	C _{eb}	-	0.45	-	
V_{EB} = 0.5 V, f =1 MHz, V_{CB} =0, collector grounded					
Noise figure	F				dB
I_{C} = 8 mA, V_{CE} = 3 V, f = 1.8 GHz, Z_{S} = Z_{Sopt}		-	0.5	-	
I_{C} = 8 mA, V_{CE} = 3 V, f = 6 GHz, Z_{S} = Z_{Sopt}		-	0.85	-	
Power gain	G _{ms}	-	27	-	dB
$I_{\rm C}$ = 25 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$, $Z_{\rm L}$ = $Z_{\rm Lopt}$,					
f = 1.8 GHz					
Power gain, maximum available ¹⁾	G _{ma}	-	17	-	dB
$I_{\rm C}$ = 25 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm Sopt,}$ $Z_{\rm L}$ = $Z_{\rm Lopt}$,					
f = 6 GHz					
Transducer gain	S _{21e} ²				dB
$I_{\rm C}$ = 25 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 1.8 GHz		-	24.5	-	
f = 6 GHz		-	14	-	
Third order intercept point at output ²⁾	IP ₃	-	25	-	dBm
$V_{CE} = 3 \text{ V}, I_{C} = 25 \text{ mA}, f = 1.8 \text{ GHz},$					
$Z_{\rm S} = Z_{\rm L} = 50 \ \Omega$					
1dB Compression point	P _{-1dB}	-	11	-	
$I_{\rm C}$ = 25 mA, $V_{\rm CE}$ = 3 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
f = 1.8 GHz					

 $^{{}^{1}}G_{\text{ma}} = |S_{21e} / S_{12e}| (k-(k^{2}-1)^{1/2})$

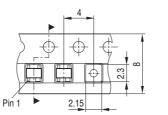

²IP3 value depends on termination of all intermodulation frequency components.


Termination used for this measurement is 50 Ω from 0.1 MHz to 6 GHz

Package Outline



Foot Print



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 3.000 Pieces/Reel Reel ø330 mm = 10.000 Pieces/Reel

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.