

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

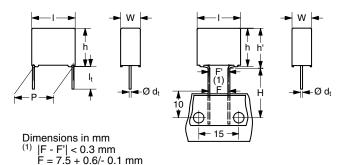
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



Vishay BCcomponents

AC and Pulse Metallized Polypropylene Film Capacitors **MKP Radial Potted Type**

APPLICATIONS

Where steep pulses occur e.g. SMPS (switch mode power supplies). Electronic lighting e.g. ballast. Motor control circuits.

REFERENCE SPECIFICATIONS

IEC 60384-17

MARKING

C-value; tolerance; rated voltage; code for dielectric material; manufacturer location; manufacturer's type; manufacturer's logo; year and week

DIELECTRIC

Polypropylene film

ELECTRODES

Metallized

CONSTRUCTION

Internal serial construction

RATED (DC) VOLTAGE

1600 V, 2000 V

RATED (AC) VOLTAGE

550 V, 700 V

RATED PEAK-TO-PEAK VOLTAGE

1600 V, 2000 V

FEATURES

7.5 mm bent back pitch, 10 mm and 15 mm lead pitch. Low contact resistance. Low loss dielectric. Small dimensions for high density packaging. Supplied loose in box and taped on

RoHS compliant product.

ENCAPSULATION

Flame retardant plastic case and epoxy resin UL-class 94 V-0

CLIMATIC TESTING CLASS ACC. TO IEC 60068-1

55/110/56

CAPACITANCE RANGE (E24 SERIES)

0.00047 to $0.033~\mu F$

CAPACITANCE TOLERANCE

±5%

LEADS

Tinned wire

RATED (DC) TEMPERATURE

85 °C

RATED (AC) TEMPERATURE

85 °C

MAXIMUM APPLICATION TEMPERATURE

110 °C

MAXIMUM OPERATING TEMPERATURE FOR LIMITED TIME

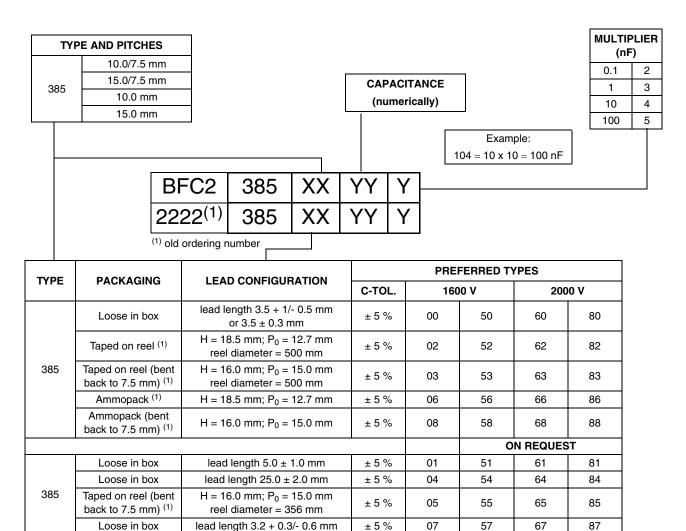
125 °C

PERFORMANCE GRADE

Grade 1 (long life)

STABILITY GRADE

Grade 2


DETAIL SPECIFICATION

For more detailed data and test requirements contact: dc-film@vishay.com

Vishay BCcomponents AC and Pulse Metallized Polypropylene Film Capacitors MKP Radial Potted Type

COMPOSITION OF CATALOG NUMBER

Note

SPECIFIC REFERENCE DATA (1600 Vdc)

DESCRIPTION VALUE				
Tangent of less angles	at 10 kHz	at 100 kHz		
Tangent of loss angle:	≤ 5 x 10 ⁻⁴	≤ 15 x 10 ⁻⁴		
Rated voltage pulse slope (dU/d _t) _R				
P = 10 mm and 10 mm bent back to 7.5 mm	> 4000) V/μs		
P = 15 mm and 15 mm bent back to 7.5 mm	> 2000	> 2000 V/μs		
R between leads, for C ≤ 1 μF at 500 V; 1 min	> 100 000 MΩ			
between leads and case; 500 V; 1 min $>$ 30 000 M Ω				
Ionization (AC) voltage (typical value) at 20 pC peak discharge	> 60	00 V		
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	2560 V	2560 V; 1 min		
Withstanding (DC) voltage between leads and case	leads and case 2840 V; 1 min			
Maximum application temperature				

www.vishay.com

For technical questions, contact: dc-film@vishay.com

⁽¹⁾ For detailed tape specifications refer to "Packaging Information" <u>www.vishay.com/doc?28139</u> or end of catalog

 U_{Rdc} = 1600 V; U_{Rac} = 550 V; $U_{p\text{-}p}$ = 1600 V; C-tol. = ± 5 %

			CATALOG NUMBER BFC2 385 XXYYY AND PACKAGING							
			LOOSE II	и вох		REEL		AN	IMOPACK	C VALUE
C (F)	Dimensions w x h (h') x l (mm)	Mass (g) ⁽¹⁾	Leads 3.5 + 1/	Leads 25.0 ±	Original		7.5 mm back)	Original	Pitch = 7.5 mm	
(' '	w x ii (ii) x i (iiiii)	(9) (7	- 0.5 mm ⁽²⁾	2.0 mm	Pitch	Ø 500 mm	Ø 365 mm	pitch	(bent back)	
			XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	YYY
	Pitch = 10 ± 0.4 mm; d	l _t = 0.60	± 0.06 mm		Pitch = 10.0 mm	Pitch = (bent ba	7.5 mm ack)	Pitch = 10.0 mm	Pitch = 7.5 mm (bent back)	
0.002 0.0022 0.0024 0.0027 0.003	4.0 x 10.0 (12.0) x 12.5	0.66	50 (1000)	54 (1250)	52 (1400)	53 (2000)	-	56 (950)	58 (1300)	202 222 242 272 302
0.0033 0.0036 0.0039 0.0043	5.0 x 11.0 (13.0) x 12.5	0.90	50 (1000)	54 (1250)	52 (1000)	53 (1900)	1	56 (750)	58 (1000)	332 362 392 432
0.0047 0.0051 0.0056 0.0062 0.0068	6.0 x 12.0 (14.0) x 12.5	1.1	50 (750)	54 (750)	52 (900)	53 (1500)	+	56 (600)	58 (850)	472 512 562 622 682
	Pitch = 15 ± 0.4 mm; d	l _t = 0.60	± 0.06 mm		Pitch = 15.0 mm	Pitch = (bent ba	7.5 mm ack)			
0.0039 0.0043 0.0047 0.0051 0.0056 0.0062 0.0068	5.0 x 11.0 (13.0) x 17.5	1.1	00 (1250)	04 (1000)	02 (1100)	03 950)	05 (550)		-	392 432 472 512 562 622 682
0.0075 0.0082			50 (1250)	54 (1000)	52 (1100)	53 (950)	55 (550)			752 822
0.0091 0.010 0.011 0.012	6.0 x 12.0 (14.0) x 17.5	1.4	50 (1000)	54 (1000)	52 (900)	53 (800)	55 (450)			912 103 113 123
	Pitch = 15 ± 0.4 mm; d	l _t = 0.80	± 0.08 mm		Pitch = 15.0 mm	Pitch = (bent ba	7.5 mm ack)			
0.013 0.015 0.016	7.0 x 13.5 (15.5) x 17.5	2.0	50 (1000)	54 (500)	52 (800)	53 (700)	55 (400)			133 153 163
0.018 0.020 0.022 0.024	8.5 x 15.0 (17.0) x 17.5	2.5	50 (1000)	54 (500)	52 (650)	53 (550)	55 (300)		-	183 203 223 243
0.027 0.030 0.033	10.0 x 16.5 (18.5) x 17.5	3.3	50 (500)	54 (500)	52 (600)	53 (500)	55 (250)			273 303 333

⁽¹⁾ Net weight for short lead component

 $^{^{(2)}}$ I_t = 3.5 \pm 0.3 mm for pitch = 15 mm

[•] SPQ = Standard Packing Quantity

Vishay BCcomponents AC and Pulse Metallized Polypropylene Film Capacitors MKP Radial Potted Type

SPECIFIC REFERENCE DATA (2000 Vdc)

DESCRIPTION VALUE				
Tangent of less ands.	at 10 kHz	at 100 kHz		
Tangent of loss angle:	≤ 5 x 10 ⁻⁴	≤ 15 x 10 ⁻⁴		
Rated voltage pulse slope (dU/d _t) _R				
P = 10 mm and 10 mm bent back to 7.5 mm	> 400	> 4000 V/μs		
P = 15 mm and 15 mm bent back to 7.5 mm	> 200	> 2000 V/μs		
R between leads, for C \leq 1 μ F at 500 V; 1 min	> 100 (> 100 000 MΩ		
R between leads and case; 500 V; 1 min	> 30 0	> 30 000 MΩ		
Ionization (AC) voltage (typical value) at 20 pC peak discharge	> 75	> 750 V		
Withstanding (DC) voltage (cut off current 10 mA); rise time 100 V/s	3200 V	3200 V; 1 min		
Withstanding (DC) voltage between leads and case	2840 V; 1 min			
Maximum application temperature	110 °C			

U_{Rdc} = 2000 V; U_{Rac} = 700 V; $U_{p\text{-}p}$ = 2000 V; C-tol. = ± 5 %

			CATALOG NUMBER BFC2 385 XXYYY AND PACKAGING									
			LOOSE	LOOSE IN BOX		REEL		REEL		AMM	IOPACK	C VALUE
C (F)	Dimensions w x h (h') x l (mm)	Mass (g) ⁽¹⁾	Leads 3.5 + 1/	Leads 25.0 ±	Original	Pitch = 7 (bent l		Original	Pitch = 7.5 mm			
			- 0.5 mm (2)	2.0 mm	pitch	Ø 500 mm	Ø 365 mm	pitch	(bent back)			
			XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	YYY		
	Pitch = 10 ± 0.4 m				Pitch = 7.5 mm							
0.00047		1				10.0 11111	(Dent ba	CK)	10.0 111111	471		
0.00047										511		
0.00056										561		
0.00062										621		
0.00068										681		
0.00075										751		
0.00082			60	64	62	63		66	68	821		
0.00091	4.0 x 10.0 (12.0) x 12.5	0.66	(1000)	(1250)	(1400)	(2000)	-	(950)	(1300)	911		
0.001										102		
0.0011										112		
0.0012										122		
0.0013										132		
0.0015										152		
0.0016										162		
0.0018										182		
0.002	5.0 x 11.0 (13.0) x 12.5	0.90	60	64	62	63		66	68	202		
0.0022	5.0 x 11.0 (13.0) x 12.5	0.90	(1000)	(1000)	(1100)	(1900)	-	(750)	(1000)	222		
0.0024										242		
0.0027										272		
0.003	6.0 x 12.0 (14.0) x 12.5	1.1	60	64	62	63	_	66	68	302		
0.0033	0.0 x 12.0 (14.0) x 12.3	1.1	(750)	(750)	(900)	(1500)	_	(600)	(850)	332		
0.0036										362		

Notes

(1) Net weight for short lead component

 $^{(2)}$ I_t = 3.5 ± 0.3 mm for pitch = 15 mm

• SPQ = Standard Packing Quantity

Revision: 19-Mar-13

Document Number: 28152

			CATALOG NUMBER BFC2 385 XXYYY AND PACKAGING									
			LOOSE	IN BOX		REEL		AMN	OPACK	C VALUE		
C (F)	Dimensions w x h (h') x l (mm)	Mass (g) ⁽¹⁾	Leads 3.5 + 1/	Leads	Original	Pitch = 1 (bent l		Original	Pitch = 7.5 mm			
	, , , ,	(0)	- 0.5 mm (2)	25.0 ± 2.0 mm	pitch	Ø 500 mm	m Ø 365 mm			pitch	(bent back)	
			XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	XX (SPQ)	YYY		
Pitch = 1	5 ± 0.4 mm; $d_t = 0.60 \pm 0.00$	6 mm	, ,		Pitch = 15.0	Pitch = 7. (bent bac						
0.00047 0.00051 0.00056 0.00062 0.00068 0.00075 0.00082 0.00091 0.0011 0.0011 0.0012	5.0 x 11.0 (13.0) x 17.5	1.1	80 (1250)	84 (1000)	82 (1100)	83 (950)	85 (550)		-	471 511 561 621 681 751 821 911 102 112 122 132		
0.0016 0.0018 Pitch = 1	$15 \pm 0.4 \text{ mm}; d_t = 0.60 \pm 0.00$	6 mm			Pitch = 15.0	Pitch = 7. (bent bac				162 182		
0.0020 0.0022 0.0024 0.0027 0.0030 0.0033 0.0036	5.0 x 11.0 (13.0) x 17.5	1.1	80 (1250)	84 (1000)	82 (1100)	83 (950)	85 (550)			202 222 242 272 302 332 362		
0.0039 0.0043 0.0047			60 (1250)	64 (1000)	62 (1100)	63 (950)	65 (550)		-	392 432 472		
0.0051 0.0056 0.0062 0.0068	6.0 x 12.0 (14.0) x 17.5	1.4	60 (1000)	64 (1000)	62 (900)	63 (800)	65 (450)			512 562 622 682		
Pitch = 1	5 ± 0.4 mm; $d_t = 0.80 \pm 0.08$	8 mm			Pitch = 15.0	Pitch = 7. (bent bac						
0.0075 0.0082 0.0091 0.010	7.0 x 13.5 (15.5) x 17.5	2	60 (1000)	64 (500)	62 (800)	63 (700)	65 (400)			752 822 912 103		
0.011 0.012 0.013	8.5 x 15.0 (17.0) x 17.5	2.5	60 (1000)	64 (500)	62 (650)	63 (550)	65 (300)		-	113 123 133		
0.015 0.016 0.018 0.020	10.0 x 16.5 (18.5) x 17.5	3.3	60 (500)	64 (500)	62 (600)	63 (500)	65 (250)			153 163 183 203		

Notes

⁽¹⁾ Net weight for short lead component

 $^{^{(2)}}$ $I_t = 3.5 \pm 0.3$ mm for pitch = 15 mm

[•] SPQ = Standard Packing Quantity

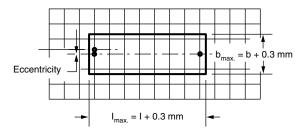
Vishay BCcomponents AC and Pulse Metallized Polypropylene Film Capacitors MKP Radial Potted Type

MOUNTING

Normal use

The capacitors are designed for mounting on printed-circuit boards. The capacitors packed in bandoliers are designed for mounting on printed-circuit boards by means of automatic insertion machines.

For detailed tape specifications refer to "Packaging Information" www.vishav.com/doc?28139 or end of catalog


Specific Method of Mounting to Withstand Vibration and Shock

In order to withstand vibration and shock tests, it must be ensured that the stand-off pips are in good contact with the printed-circuit board. The capacitors shall be mechanically fixed by the leads.

Space Requirements on Printed-Circuit Board

The maximum length and width of film capacitors is shown in the drawing:

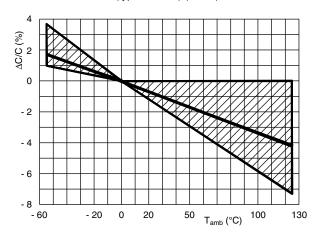
- · Eccentricity as in drawing. The maximum eccentricity is smaller than or equal to the lead diameter of the product concerned.
- Product height with seating plane as given by "IEC 60717" as reference: h_{max.} ≤ h + 0.3 mm.

Storage Temperature

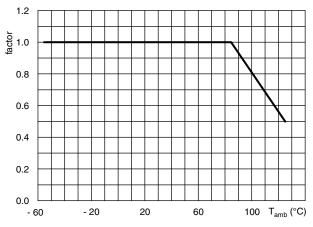
• Storage temperature: T_{stg} = - 25 °C to + 40 °C with RH maximum 80 % without condensation

Ratings and Characteristics Reference Conditions

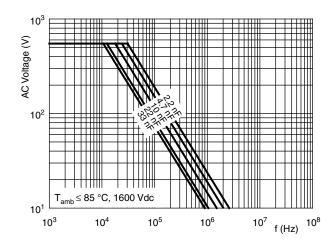
Unless otherwise specified, all electrical values apply to an ambient free temperature of 23 °C \pm 1 °C, an atmospheric pressure of 86 kPa to 106 kPa and a relative humidity of 50 % \pm 2 %.

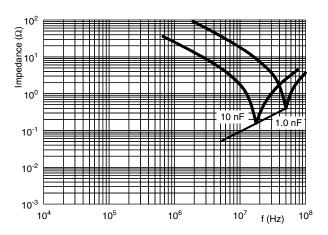

For reference testing, a conditioning period shall be applied over 96 h \pm 4 h by heating the products in a circulating air oven at the rated temperature and a relative humidity not exceeding 20 %.

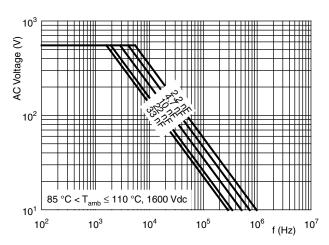
For technical questions, contact: <u>dc-film@vishay.com</u> Document Number: 28152 Revision: 19-Mar-13



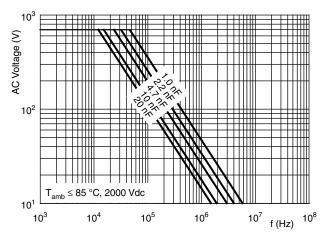
CHARACTERISTICS

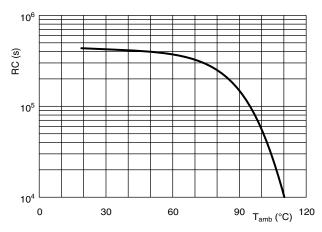

Capacitance as a function of ambient temperature (typical curve) (1 kHz)

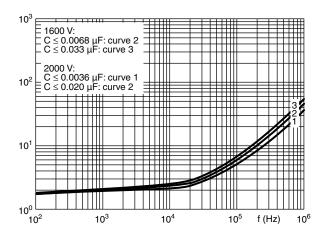

Max. DC and AC voltage as a function of temperature

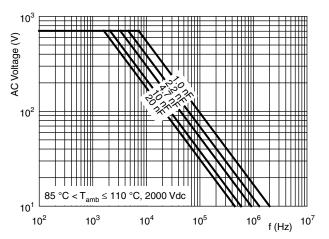

Max. RMS voltage as a function of frequency

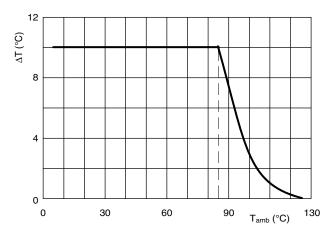
Impedance as a function of frequency (typical curve)


Max. RMS voltage as a function of frequency


Vishay BCcomponents AC and Pulse Metallized Polypropylene Film Capacitors MKP Radial Potted Type


Max. RMS voltage as a function of frequency


Insulation resistance as a function of ambient temperature (typical curve)


Tangent of loss angle as a function of frequency (typical curve)

Max. RMS voltage as a function of frequency

Maximum allowed component temperature rise (ΔT) as a function of ambient temperature (T_{amb})

www.vishay.com

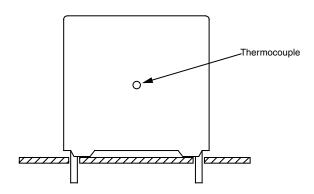
Document Number: 28152

HEAT CONDUCTIVITY (G) AS A FUNCTION OF ORIGINAL PITCH AND CAPACITOR BODY THICKNESS IN mW/°C

W (2000)	HEAT CONDU	CTIVITY (mW/°C)
W _{max.} (mm)	PITCH 10 mm	PITCH 15 mm
4.0	6.5	-
5.0	7.5	10
6.0	9.0	11
7.0	-	12
8.5	-	16
10.0	-	18

POWER DISSIPATION AND MAXIMUM COMPONENT TEMPERATURE RISE

The power dissipation must be limited in order not to exceed the maximum allowed component temperature rise as a function of the free air ambient temperature.


The power dissipation can be calculated according type detail specification "HQN-384-01/101: Technical Information Film Capacitors" with the typical tgd of the curves.

The component temperature rise (ΔT) can be measured (see section "Measuring the Component Temperature" for more details) or calculated by $\Delta T = P/G$:

- ΔT = Component temperature rise (°C)
- P = Power dissipation of the component (mW)
- G = Heat conductivity of the component (mW/°C)

MEASURING THE COMPONENT TEMPERATURE

A thermocouple must be attached to the capacitor body as in:

The temperature is measured in unloaded (T_{amb}) and maximum loaded condition (T_c) .

The temperature rise is given by $\Delta T = T_c - T_{amb}$.

To avoid radiation or convection, the capacitor should be tested in a wind-free box.

Vishay BCcomponents AC and Pulse Metallized Polypropylene Film Capacitors MKP Radial Potted Type

APPLICATION NOTE AND LIMITING CONDITIONS

These capacitors are not suitable for mains applications as across-the-line capacitors without additional protection, as described hereunder. These mains applications are strictly regulated in safety standards and therefore electromagnetic interference suppression capacitors conforming the standards must be used.

To select the capacitor for a certain application, the following conditions must be checked:

- 1. The peak voltage (U_p) shall not be greater than the rated DC voltage (U_{Rdc})
- 2. The peak-to-peak voltage (U_{p-p}) shall not be greater than the maximum (U_{p-p}) to avoid the ionisation inception level
- The voltage peak slope (dU/d_t) shall not exceed the rated voltage pulse slope in an RC-circuit at rated voltage and without ringing. If the pulse voltage is lower than the rated DC voltage, the rated voltage pulse slope may be multiplied by U_{Rdc} and divided by the applied voltage.

For all other pulses following equation must be fulfilled:

$$2 \times \int_{0}^{T} \left(\frac{dU}{dt}\right)^{2} \times dt < U_{\text{Rdc}} \times \left(\frac{dU}{dt}\right)_{\text{rated}}$$

T is the pulse duration

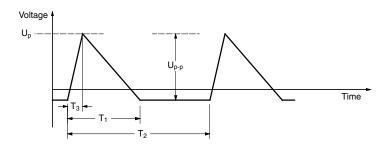
- 4. The maximum component surface temperature rise must be lower than the limits (see figure max allowed component temp rise)
- 5. Since in circuits used at voltages over 280 V peak-to-peak the risk for an intrinsically active flammability after a capacitor breakdown (short circuit) increases, it is recommended that the power to the component is limited to 100 times the values mentioned in the table: "Heat conductivity"
- 6. When using these capacitors as across-the-line capacitor in the input filter for mains applications or as series connected with an impedance to the mains the applicant must guarantee that the following conditions are fulfilled in any case (spikes and surge voltages from the mains included).

Voltage Conditions for 6 Above

ALLOWED VOLTAGES	T _{amb} ≤ 85 °C	85 °C < T _{amb} ≤ 110 °C	110 °C < T _{amb} ≤ 125 °C
Maximum continuous RMS voltage	U _{Rac}	0.7 x U _{Rac}	0.5 x U _{Rac}
Maximum temporary RMS-overvoltage (< 24 h)	1.25 x U _{Rac}	0.875 x U _{Rac}	0.625 x U _{Rac}
Maximum peak voltage (V _{o-p}) (< 2 s)	1.6 x U _{Rdc}	1.1 x U _{Rdc}	0.8 x U _{Bdc}

EXAMPLE

C = 4n7 1600 V used for the voltage signal shown in next figure.


 $U_{p-p} = 1000 \text{ V}$; $U_p = 900 \text{ V}$; $T_1 = 12 \text{ }\mu\text{s}$; $T_2 = 64 \text{ }\mu\text{s}$; $T_3 = 4 \text{ }\mu\text{s}$

The ambient temperature is 80 °C. In case of failure, the oscillation is blocked.

Checking the conditions:

- 1. The peak voltage $U_p = 900 \text{ V}$ is lower than 1600 Vdc
- 2. The peak-to-peak voltage 1000 V is lower than $2 \sqrt{2} \times 550 \text{ Vac} = 1600 \text{ U}_{p-p}$
- 3. The voltage pulse slope dU/dt = 1000 V/4 µs = 250 V/µs. This is lower than 4000 V/µs (see specific reference data for each version)
- 4. The dissipated power is 35 mW as calculated with Fourier terms and typical tgd. The temperature rise for w_{max.} = 6.0 and pitch = 10 mm will be 35 mW/9 mW/°C = 3.9 °C This is lower than 10 °C temperature rise at 80 °C, acc. figure.
- 5. Oscillation is blocked
- 6. Not applicable

Voltage signal:

www.vishay.com

For technical questions, contact: dc-film@vishay.com

INSPECTION REQUIREMENTS

General Notes:

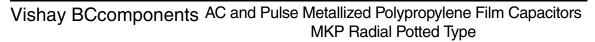
Sub-clause numbers of tests and performance requirements refer to the "Sectional Specification, Publication IEC 60384-17 and Specific Reference Data".

Group C Inspection Requirements

SUB-C	CLAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
	ROUP C1A PART OF SAMPLE B-GROUP C1		
4.1	Dimensions (detail)		As specified in chapters "General Data" of this specification
4.3.1	Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.3	Robustness of terminations	Tensile: Load 10 N; 10 s Bending: Load 5 N; 4 x 90°	No visible damage
4.4	Resistance to soldering heat	Method: 1A Solder bath: 280 °C ± 5 °C Duration: 10 s	
4.14	Component solvent resistance	Isopropylalcohol at room temperature Method: 2 Immersion time: 5 ± 0.5 min Recovery time: Min. 1 h, max. 2 h	
4.4.2	Final measurements	Visual examination	No visible damage Legible marking
		Capacitance	$\left \Delta C/C\right \leq 1 \text{ % + 5 pF of the value measured initially}$
		Tangent of loss angle	Increase of $\tan \delta$: ≤ 0.0005 Compared to values measured in 4.3.1
	RROUP C1B PART OF SAMPLE B-GROUP C1		
4.6.1	Initial measurements	Capacitance Tangent of loss angle at 100 kHz	
4.15	Solvent resistance of the marking	Isopropylalcohol at room temperature Method: 1 Rubbing material: cotton wool Immersion time: 5 ± 0.5 min	No visible damage Legible marking
4.6	Rapid change of temperature	$\theta A = -55$ °C $\theta B = +105$ °C 5 cycles Duration t = 30 min	
4.6.1 4.7	Inspection Vibration	Visual examination Mounting: See section "Mounting" of this specification Procedure B4 Frequency range: 10 Hz to 55 Hz Amplitude: 0.75 mm or Acceleration 98 m/s² (whichever is less severe) Total duration 6 h	No visible damage

Vishay BCcomponents AC and Pulse Metallized Polypropylene Film Capacitors MKP Radial Potted Type

SUB-CI	LAUSE NUMBER AND TEST	CONDITIONS	PERFORMANCE REQUIREMENTS
4.7.2	Final inspection	Visual examination	No visible damage
4.9	Shock	Mounting: See section "Mounting" of this specification Pulse shape: Half sine Acceleration: 490 m/s² Duration of pulse: 11 ms	
4.9.3	Final measurements	Visual examination	No visible damage
		Capacitance	For C $ \Delta C/C \le 2$ % or of the value measured in 4.6.1.
		Tangent of loss angle	Increase of tan δ : \leq 0.0005 Compared to values measured in 4.6.1
		Insulation resistance	As specified in section "Insulating Resistance" of this specification
	ROUP C1 COMBINED SAMPLE ECIMENS OF SUB-GROUPS ID C1B		
4.10	Climatic sequence		
4.10.2	Dry heat	Temperature: + 105 °C Duration: 16 h	
4.10.3	Damp heat cyclic Test Db, first cycle		
4.10.4	Cold	Temperature: - 55 °C Duration: 2 h	
4.10.6	Damp heat cyclic Test Db, remaining cycles		
4.10.6.2	2 Final measurements	Voltage proof = U _{Rdc} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 2$ % of the value measured in 4.4.2 or 4.9.3
		Tangent of loss angle	Increase of $\tan \delta$: \leq 0.005 Compared to values measured in 4.3.1 or 4.6.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GI	ROUP C2		
4.11	Damp heat steady state	56 days, 40 °C, 90 % to 95 % RH no load	
4.11.1	Initial measurements	Capacitance Tangent of loss angle at 1 kHz	
4.11.3	Final measurements	Voltage proof = U _{Rdc} for 1 min within 15 min after removal from testchamber	No breakdown of flash-over
		Visual examination	No visible damage Legible marking
		Capacitance	$ \Delta C/C \le 1 \% + 5 pF$ of the value measured in 4.11.1.
		Tangent of loss angle	Increase of tan $\delta \le 0.0005$ Compared to values measured in 4.11.1
		Insulation resistance	\geq 50 % of values specified in section "Insulation Resistance" of this specification


www.vishay.com

For technical questions, contact: dc-film@vishay.com

n: 2000 h ature: 85 °C : 1.25 x U _{Rac} V _{rms} , 50 Hz n: 2000 h ature: 105 °C : 0.875 x U _{Rac} V _{rms} , 50 Hz cance t of loss angle at 100 kHz examination cance	No visible damage Legible marking Temperature: 85 °C $ \Delta C/C \le 5$ % for $C > 10$ nF $ \Delta C/C \le 8$ % for $C \le 10$ nF compared to values measured in 4.12.1.1 Increase of $\tan \delta \le 0.005$ Compared to values measured in 4.12.1.1 ≥ 50 % of values specified in section "Insulation Resistance" of this specification
ature: 85 °C : 1.25 x U _{Rac} V _{rms} , 50 Hz n: 2000 h ature: 105 °C : 0.875 x U _{Rac} V _{rms} , 50 Hz tance t of loss angle at 100 kHz examination tance	Legible marking Temperature: 85 °C $ \Delta C/C \le 5 \% \text{ for } C > 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \ge 10 \text{ nF} $
eance t of loss angle at 100 kHz examination eance t of loss angle	Legible marking Temperature: 85 °C $ \Delta C/C \le 5 \% \text{ for } C > 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \ge 10 \text{ nF} $
ance t of loss angle	Legible marking Temperature: 85 °C $ \Delta C/C \le 5 \% \text{ for } C > 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \le 8 \% \text{ for } C \le 10 \text{ nF} \\ \Delta C/C \ge 10 \text{ nF} $
t of loss angle	$ \Delta C/C $ ≤ 8 % for C ≤ 10 nF compared to values measured in 4.12.1.1 Increase of tan δ: ≤ 0.005 Compared to values measured in 4.12.1.1 ≥ 50 % of values specified in section
•	Compared to values measured in 4.12.1.1 ≥ 50 % of values specified in section
on resistance	≥ 50 % of values specified in section "insulation Resistance" of this specification
n: 500 h :	
U _{Rac} at 125 °C tance t of loss angle:	
examination	No visible damage Legible marking
ance	$ \Delta C/C \le 10$ % for C + 100 pF compared values measured in 4.42.2.1
t of loss angle	Increase of tan δ : \leq 0.0005 Compared to values measured in 4.12.2.1
on resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
ance at - 55 °C	For - 55 °C to + 20 °C: + 1 % \leq Δ C/C \leq 3.75 % or for 20 °C to 125 °C - 7.5 % \leq Δ C/C \leq 0 % compared to values measured in 4.12.1.1
t	tance tance at - 55 °C tance at - 20 °C tance at + 125 °C

SUB-CLAUSE NUMBER AND TEST		CONDITIONS	PERFORMANCE REQUIREMENTS
SUB-GROU	P C4		
4.13 Cha	arge and discharge	10 000 cycles	
		Charged to U _R Vdc Discharge resistance:	
		$R = \frac{U_R}{C \times 2.5 \times (dU/dt)_R}$	
4.13.1 Initi	ial measurements	Capacitance Tangent of loss angle: at 100 kHz or	
4.13.3 Fina	al measurements	Capacitance	$ \Delta C/C \le 1$ % compared to values measured in 4.13.1
		Tangent of loss angle	Increase of tan δ : \leq 0.0005 Compared to values measured in 4.13.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification
SUB-GROU	P ADD 1		
A.1 Igni	ition of lamp test		
A.1.1 Initi	al measurements	Capacitance Tangent of loss angle at 100 kHz	
A.1. 2 Igni	ition of lamp test	Temperature: 85 °C 1000 cycles: 1 s ON 29 s OFF Frequency: 60 kHz Voltage: 1600 V type: 2800 V _{pp} 2000 V type: 3000 V _{pp}	
A.1. 2 Fina	al measurements	Visual examination Capacitance	No visible damage $ \Delta C/C \le 5$ % of the value measured in
		Tangent of loss angle at 100 kHz	A.1.1Increase of tan δ : \leq 0.0005 Compared to values measured in A.1.1
		Insulation resistance	≥ 50 % of values specified in section "Insulation Resistance" of this specification

Document Number: 28152

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000