imall

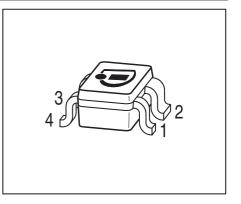
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



BFP540

Low Noise Silicon Bipolar RF Transistor

- For highest gain and low noise amplifier
- Outstanding G_{ms} = 21.5 dB at 1.8 GHz Minimum noise figure NF_{min} = 0.9 dB at 1.8 GHz
- Pb-free (RoHS compliant) and halogen-free package with visible leads
- Qualification report according to AEC-Q101 available

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Туре	Marking	Pin Configuration				Package		
BFP540	ATs	1=B	2=E	3=C	4=E	-	-	SOT343

Maximum Ratings at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V _{CEO}		V
<i>T</i> _A = 25 °C		4.5	
<i>T</i> _A = -55 °C		4	
Collector-emitter voltage	V _{CES}	14	
Collector-base voltage	V _{CBO}	14	
Emitter-base voltage	V _{EBO}	1	
Collector current	I _C	80	mA
Base current	I _B	8	
Total power dissipation ¹⁾	P _{tot}	250	mW
<i>T</i> _S ≤ 77°C			
Junction temperature	TJ	150	°C
Ambient temperature	T _A	-65 150	
Storage temperature	T _{Stq}	-65 150	

 $^{1}\mathcal{T}_{S}$ is measured on the emitter lead at the soldering point to the pcb

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	290	K/W

Electrical Characteristics at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.]
DC Characteristics					•
Collector-emitter breakdown voltage	V _{(BR)CEO}	4.5	5	-	V
<i>I</i> _C = 1 mA, <i>I</i> _B = 0					
Collector-emitter cutoff current	I _{CES}	-	-	10	μA
$V_{\rm CE}$ = 14 V, $V_{\rm BE}$ = 0					
Collector-base cutoff current	I _{CBO}	-	-	100	nA
$V_{\rm CB} = 5 \text{V}, I_{\rm E} = 0$					
Emitter-base cutoff current	I _{EBO}	-	-	10	μA
$V_{\rm EB}$ = 0.5 V, $I_{\rm C}$ = 0					
DC current gain	h _{FE}	50	110	185	-
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 3.5 V, pulse measured					

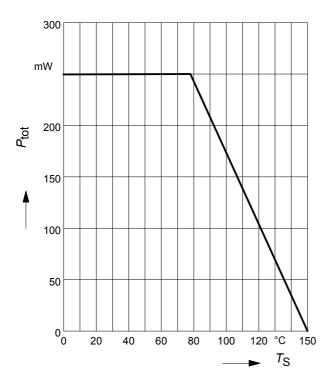
¹For the definition of R_{thJS} please refer to Application Note AN077 (Thermal Resistance Calculation)

Parameter	Symbol		Unit		
		min.	typ.	max.	
AC Characteristics (verified by random sampling	g)	1			
Transition frequency	f _T	21	30	-	GHz
$I_{\rm C}$ = 50 mA, $V_{\rm CE}$ = 4 V, f = 1 GHz					
Collector-base capacitance	C _{cb}	-	0.14	0.24	pF
$V_{CB} = 2 V, f = 1 MHz, V_{BE} = 0$,					
emitter grounded					
Collector emitter capacitance	C _{ce}	-	0.33	-	
$V_{CE} = 2 V, f = 1 MHz, V_{BE} = 0$,					
base grounded					
Emitter-base capacitance	C _{eb}	-	0.65	-	
$V_{\rm EB}$ = 0.5 V, <i>f</i> = 1 MHz, $V_{\rm CB}$ = 0 ,					
collector grounded					
Minimum noise figure	NF _{min}				dB
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 2 V, f = 1.8 GHz, $Z_{\rm S}$ = $Z_{\rm Sopt}$		-	0.9	1.4	
$I_{\rm C}$ = 5 mA, $V_{\rm CE}$ = 2 V, f = 3 GHz, $Z_{\rm S}$ = $Z_{\rm Sopt}$		-	1.3	-	
Power gain, maximum stable ¹⁾	G _{ms}	-	21.5	-	dB
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
$Z_{\rm L} = Z_{\rm Lopt}$, $f = 1.8 \rm GHz$					
Power gain, maximum available ¹⁾	G _{ma}	-	16	-	dB
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm Sopt}$,					
$Z_{\rm L} = Z_{\rm Lopt}, f = 3 {\rm GHz}$					
Transducer gain	S _{21e} ²				dB
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω ,					
<i>f</i> = 1.8 GHz		16	18.5	-	
<i>f</i> = 3 GHz		-	14.5	-	
Third order intercept point at output ²⁾	IP3	-	24.5	-	dBm
V_{CE} = 2 V, I_{C} = 20 mA, Z_{S} = Z_{L} =50 Ω , f = 1.8 GHz					
1dB compression point at output	P _{-1dB}	-	11	-	
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 2 V, $Z_{\rm S}$ = $Z_{\rm L}$ =50 Ω , f = 1.8 GHz					

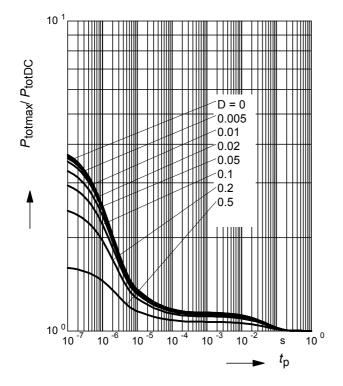
Electrical Characteristics at T_A = 25 °C, unless otherwise specified

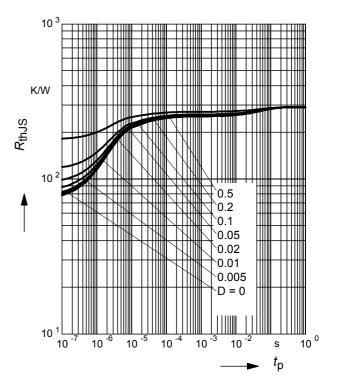
 ${}^{1}G_{\rm ma} = |S_{21e} \ / \ S_{12e}| \ ({\rm k} \cdot ({\rm k}^{\rm z} \cdot 1)^{1/2}), \ G_{\rm ms} = |S_{21e} \ / \ S_{12e}|$

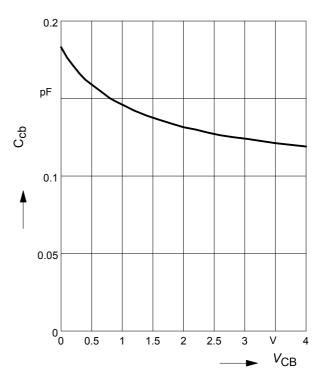
 $^2\mbox{IP3}$ value depends on termination of all intermodulation frequency components.


Termination used for this measurement is 50Ω from 0.1 MHz to 6 GHz

BFP540

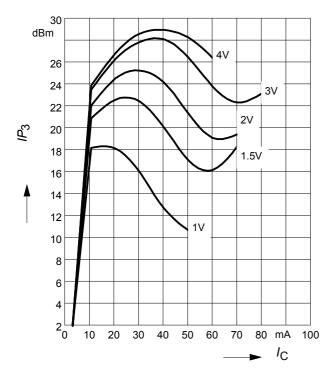

Total power dissipation $P_{tot} = f(T_S)$

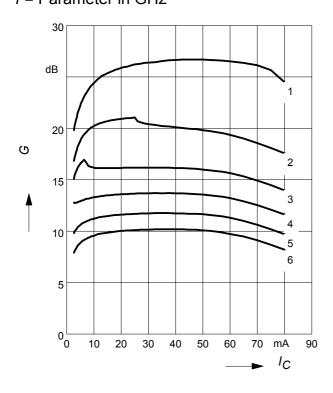

Permissible Pulse Load $R_{\text{thJS}} = f(t_p)$


Permissible Pulse Load

 $P_{\text{totmax}}/P_{\text{totDC}} = f(t_{p})$

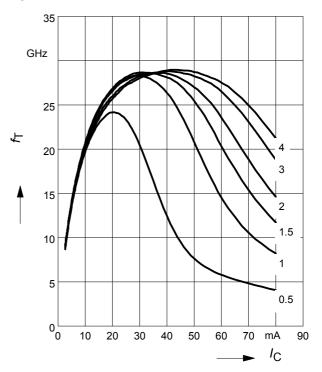
Collector-base capacitance C_{CD} = $f(V_{CB})$ f = 1MHz

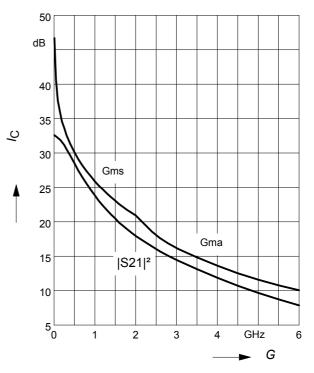



Third order Intercept Point $IP_3=f(I_C)$

(Output, $Z_S=Z_L=50\Omega$)

 V_{CE} = parameter, f = 1.8GHz

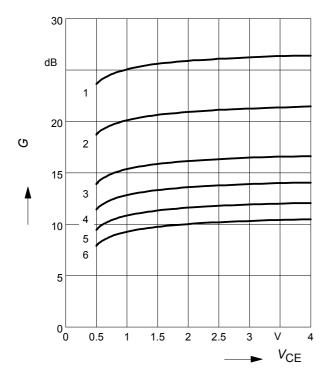

Power gain G_{ma} , $G_{ms} = f(I_C)$ $V_{CE} = 2V$ f = Parameter in GHz

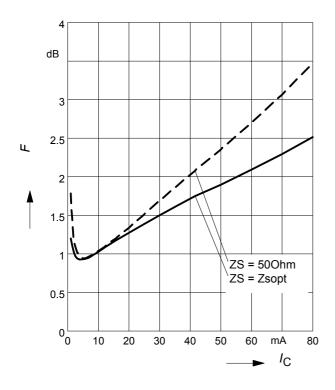

Transition frequency $f_{T} = f(I_{C})$

f = 1GHz

 V_{CE} = Parameter in V

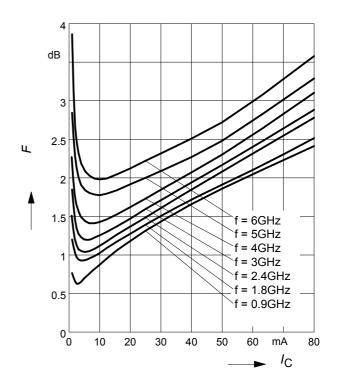
Power Gain G_{ma} , $G_{ms} = f(f)$, $|S_{21}|^2 = f(f)$ $V_{CE} = 2V$, $I_C = 20mA$



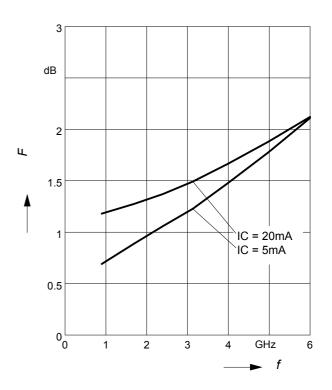

Power gain G_{ma} , $G_{ms} = f(V_{CE})$

*I*_C = 20mA

f = Parameter in GHz



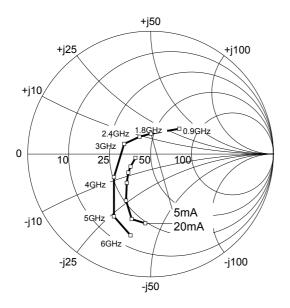
Noise figure $F = f(I_C)$ $V_{CE} = 2V, f = 1.8GHz$



Noise figure $F = f(I_C)$

 V_{CE} = 2V, Z_S = Z_{Sopt}

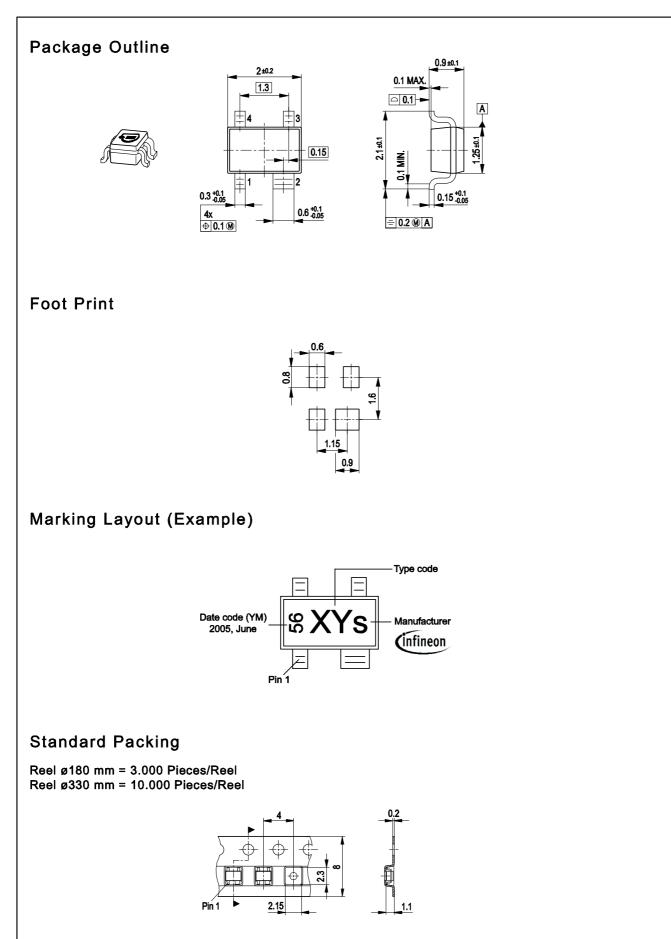
Noise figure F = f(f) $V_{CE} = 2V, Z_S = Z_{Sopt}$



Source impedance for min.

noise figure vs. frequency

 $V_{\rm CE}$ = 2V, $I_{\rm C}$ = 5mA / 20mA



SPICE GP Model

For the SPICE Gummel Poon (GP) model as well as for the S-parameters (including noise parameters) please refer to our internet website www.infineon.com/rf.models.

Please consult our website and download the latest versions before actually starting your design. You find the BFP540 SPICE GP model in the internet in MWO- and ADS-format, which you can import into these circuit simulation tools very quickly and conveniently. The model already contains the package parasitics and is ready to use for DC and high frequency simulations. The terminals of the model circuit correspond to the pin configuration of the device. The model parameters have been extracted and verified up to 10 GHz using typical devices. The BFP540 SPICE GP model reflects the typical DC- and RF-performance within the limitations which are given by the SPICE GP model itself. Besides the DC characteristics all S-parameters in magnitude and phase, as well as noise figure (including optimum source impedance, equivalent noise resistance and flicker noise) and intermodulation have been extracted.

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<<u>www.infineon.com</u>>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.