: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

NPN Silicon Germanium RF Transistor*

- High gain low noise RF transistor
- Small package $1.4 \times 0.8 \times 0.59 \mathrm{~mm}$
- Outstanding noise figure $F=0.7 \mathrm{~dB}$ at 1.8 GHz

Outstanding noise figure $F=1.3 \mathrm{~dB}$ at 6 GHz

- Maximum stable gain
$G_{\mathrm{ms}}=21 \mathrm{~dB}$ at 1.8 GHz
$G_{\mathrm{ma}}=10 \mathrm{~dB}$ at 6 GHz
- Gold metallization for extra high reliability
- Pb-free (RoHS compliant) package ${ }^{1)}$
- Qualified according AEC Q101
*Short term description

ESD (Electrostatic discharge) sensitive device, observe handling precaution!

Type	Marking	Pin Configuration					Package	
BFP620F	R2s	$1=B$	$2=\mathrm{E}$	$3=\mathrm{C}$	$4=\mathrm{E}$	-	-	TSFP-4

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	$V_{\text {CEO }}$		V
$T_{\text {A }}>0^{\circ} \mathrm{C}$		2.3	
$T_{\mathrm{A}} \leq 0{ }^{\circ} \mathrm{C}$		2.1	
Collector-emitter voltage	$V_{\text {CES }}$	7.5	
Collector-base voltage	$V_{\text {CBO }}$	7.5	
Emitter-base voltage	$V_{\text {EBO }}$	1.2	
Collector current	${ }^{\prime}$	80	mA
Base current	I_{B}	3	
Total power dissipation ${ }^{2}$) $T_{\mathrm{S}} \leq 96^{\circ} \mathrm{C}$	$P_{\text {tot }}$	185	mW
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature	$T_{\text {A }}$	-65 ... 150	
Storage temperature	$T_{\text {sta }}$	-65 ... 150	

[^0]
Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1)}$	$R_{\text {thJS }}$	≤ 290	K/W

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

| Parameter | Symbol | Values | | | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | min. | typ. | max. | |
| DC Characteristics | $V_{(B R) C E O}$ | 2.3 | 2.8 | - | V |
| Collector-emitter breakdown voltage
 $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$ | I_{CES} | - | - | 10 | $\mu \mathrm{~A}$ |
| Collector-emitter cutoff current
 $V_{\mathrm{CE}}=7.5 \mathrm{~V}, V_{\mathrm{BE}}=0$ | I_{CBO} | - | - | 100 | nA |
| Collector-base cutoff current
 $V_{\mathrm{CB}}=5 \mathrm{~V}, I_{\mathrm{E}}=0$ | I_{EBO} | - | - | 3 | $\mu \mathrm{~A}$ |
| Emitter-base cutoff current
 $V_{\mathrm{EB}}=0.5 \mathrm{~V}, I_{\mathrm{C}}=0$ | h_{FE} | 110 | 180 | 270 | - |
| DC current gain
 $I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}$, pulse measured | | | | | |

${ }^{1}$ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

BFP620F

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Transition frequency $I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, f=1 \mathrm{GHz}$	$f_{\text {T }}$	-	65	-	GHz
Collector-base capacitance $V_{\mathrm{CB}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ emitter grounded	$C_{\text {cb }}$	-	0.12	0.2	pF
Collector emitter capacitance $V_{\mathrm{CE}}=2 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{BE}}=0,$ base grounded	$C_{\text {ce }}$	-	0.2	-	
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}, V_{\mathrm{CB}}=0$ collector grounded	$C_{\text {eb }}$	-	0.45	-	
Noise figure $\begin{aligned} & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, f=1.8 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \\ & I_{\mathrm{C}}=5 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, f=6 \mathrm{GHz}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \end{aligned}$	F	-	$\begin{aligned} & 0.7 \\ & 1.3 \end{aligned}$		dB
Power gain, maximum stable ${ }^{1)}$ $\begin{aligned} & I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}} \\ & Z_{\mathrm{L}}=Z_{\mathrm{Lopt}}, f=1.8 \mathrm{GHz} \end{aligned}$	G_{ms}	-	21	-	dB
Power gain, maximum available1) $\begin{aligned} & I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{Sopt}}, \\ & Z_{\mathrm{L}}=Z_{\text {Lopt }}, f=6 \mathrm{GHz} \end{aligned}$	$G_{\text {ma }}$	-	10	-	dB
Transducer gain $\begin{aligned} & I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1.5 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, \\ & f=1.8 \mathrm{GHz} \\ & f=6 \mathrm{GHz} \end{aligned}$	$\left\|S_{21 \mathrm{e}}\right\|^{2}$	-	$\begin{gathered} 19.5 \\ 9.5 \end{gathered}$		dB
Third order intercept point at output ${ }^{2}$) $V_{\mathrm{CE}}=2 \mathrm{~V}, I_{\mathrm{C}}=50 \mathrm{~mA}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, f=1.8 \mathrm{GHz}$	$I P_{3}$	-	25	-	dBm
1dB Compression point at output $I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=2 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\mathrm{L}}=50 \Omega, f=1.8 \mathrm{GHz}$	$P_{-1 \mathrm{~dB}}$	-	14	-	
${ }^{1} G_{\mathrm{ma}}=\left\|S_{21 \mathrm{e}} / S_{12 \mathrm{e}}\right\|\left(\mathrm{k}-\left(\mathrm{k}^{2}-1\right)^{1 / 2}\right), G_{\mathrm{ms}}=\left\|S_{21 \mathrm{e}} / S_{12 \mathrm{e}}\right\|$ ${ }^{2}$ IP3 value depends on termination of all intermodulation fre Termination used for this measurement is 50Ω from 0.1 MH	quency com to 6 GHz	nents.			

SPICE Parameter (Gummel-Poon Model, Berkley-SPICE 2G. 6 Syntax):

Transistor Chip Data:

$\mathrm{IS}=$	0.22	fA	$\mathrm{BF}=$	425	-	$\mathrm{NF}=$	1.025	-
$\mathrm{VAF}=$	1000	V	$\mathrm{IKF}=$	0.25	A	$\mathrm{ISE}=$	21	fA
$\mathrm{NE}=$	2	-	$\mathrm{BR}=$	50	-	$\mathrm{NR}=$	1	-
$\mathrm{VAR}=$	2	V	$\mathrm{IKR}=$	10	mA	$\mathrm{ISC}=$	18	pA
$\mathrm{NC}=$	2	-	$\mathrm{RB}=$	3.129	Ω	$\mathrm{IRB}=$	1.522	mA
$\mathrm{RBM}=$	2.707	Ω	$\mathrm{RE}=$	0.6	-	$\mathrm{RC}=$	2.364	Ω
$\mathrm{CJE}=$	250.7	fF	$\mathrm{VJE}=$	0.75	V	$\mathrm{MJE}=$	0.3	-
$\mathrm{TF}=$	1.43	ps	$\mathrm{XTF}=$	10	-	$\mathrm{VTF}=$	1.5	V
$\mathrm{ITF}=$	2.4	A	$\mathrm{PTF}=$	0	deg	$\mathrm{CJC}=$	124.9	fF
$\mathrm{VJC}=$	0.6	V	$\mathrm{MJC}=$	0.5	-	$\mathrm{XCJC}=1$	-	
$\mathrm{TR}=$	0.2	ns	$\mathrm{CJS}=$	128.1	fF	$\mathrm{VJS}=$	0.52	V
$\mathrm{MJS}=$	0.5	-	$\mathrm{NK}=$	-1.42	-	$\mathrm{EG}=$	1.078	eV
$\mathrm{XTI}=$	3	-	$\mathrm{FC}=$	0.8		TNOM	298	K
$\mathrm{AF}=$	2	-	$\mathrm{KF}=$	$7.291 \mathrm{E}-11$				
TITF 1	-0.0065	-	TITF 2	$1.0 \mathrm{E}-5$				

All parameters are ready to use, no scalling is necessary.

To avoid high complexity of the package equivalent circuit, both emitter leads of TSFP-4 are combined in one electrical connection. R_{LxI} are series resistors for the inductances $L_{\mathrm{x} \mid}$ and $K_{\mathrm{xa}-\mathrm{yb}}$ are the coupling coefficients between the inductances L_{xa} and L_{yb}.

$L_{\mathrm{BO}}=$	0.22	nH
$L_{\mathrm{EO}}=$	0.28	nH
$L_{\mathrm{CO}}=$	0.22	nH
$K_{\mathrm{BO}-\mathrm{E} 0}=$	0.1	-
$K_{\mathrm{BO}-\mathrm{CO}}=$	0.01	-
$K_{\mathrm{EO}-\mathrm{CO}}=$	0.11	-
$C_{\mathrm{BE}}=$	34	fF
$C_{\mathrm{BC}}=$	2	fF
$C_{\mathrm{CE}}=$	33	fF
$L_{\mathrm{BI}}=$	0.42	nH
$R_{\mathrm{LBI}}=$	0.15	Ω
$L_{\mathrm{EI}}=$	0.26	nH
$R_{\mathrm{LEI}}=$	0.11	Ω
$L_{\mathrm{CI}}=$	0.35	nH
$R \mathrm{LI}=$	0.13	Ω
$K_{\mathrm{BI}-\mathrm{EI}}=$	-0.05	-
$K_{\mathrm{BI}-\mathrm{CI}}=$	-0.08	-
$K_{\mathrm{EI}-\mathrm{CI}}=$	0.2	-
Valid up to 6 GHz		

BFP620F

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$

Permissible Pulse Load $R_{\mathrm{th} J S}=f\left(t_{\mathrm{p}}\right)$

Collector-base capacitance $C_{\text {cb }}=f\left(V_{\mathrm{CB}}\right)$ $f=1 \mathrm{MHz}$

BFP620F

Third order Intercept Point $I P_{3}=f\left(I_{C}\right)$
(Output, $\mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega$)
$V_{\text {CE }}=$ parameter, $f=1.8 \mathrm{GHz}$

Power gain $G_{\mathrm{ma}}, G_{\mathrm{ms}}=f\left(I_{\mathrm{C}}\right)$
$V_{C E}=1.5 \mathrm{~V}$
$f=$ Parameter in GHz

Transition frequency $f_{\top}=f\left(l_{\mathrm{C}}\right)$
$f=1 \mathrm{GHz}$
$V_{C E}=$ Parameter in V

Power Gain $G_{\text {ma }}, G_{\mathrm{ms}}=f(f)$,
$\left|S_{21}\right|^{2}=f(\mathrm{f})$
$V_{\mathrm{CE}}=1.5 \mathrm{~V}, I_{\mathrm{C}}=50 \mathrm{~mA}$

BFP620F

Power gain $G_{m a}, G_{m s}=f\left(V_{C E}\right)$
$I_{C}=50 \mathrm{~mA}$
$f=$ Parameter in GHz

Noise figure $F=f\left(l_{C}\right)$
$V_{\mathrm{CE}}=1.5 \mathrm{~V}, f=1.8 \mathrm{GHz}$

Noise figure $F=f\left(I_{C}\right)$
$V_{\mathrm{CE}}=1.5 \mathrm{~V}, Z_{\mathrm{S}}=Z_{\text {Sopt }}$

Noise figure $F=f(f)$
$V_{C E}=1.5 \mathrm{~V}, Z_{S}=Z_{\text {Sopt }}$

Source impedance for min.
noise figure vs. frequency
$V_{C E}=1.5 \mathrm{~V}, I_{C}=5.0 \mathrm{~mA} / 50.0 \mathrm{~mA}$

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2006-02-01
Published by Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{1} \mathrm{~Pb}$-containing package may be available upon special request
 ${ }^{2} T_{S}$ is measured on the collector lead at the soldering point to the pcb

