

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BGA428

Gain and PCS Low Noise Amplifier

RF & Protection Devices

Edition 2011-09-02

Published by Infineon Technologies AG, 81726 München, Germany
© Infineon Technologies AG 2011.
All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGA428, Gain and PCS Low Noise Amplifier

Revision History: 2011-09-02, Rev. 2.3

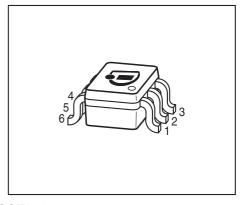
Previous Version: 2007-11-06, Rev. 2.3

Page	Subjects (major changes since last revision)							
6	Correction of typing error in Table 3 , (<i>IIP</i> ₃ is -9 dBm)							
·								

Trademarks

SIEGET® is a registered trademark of Infineon Technologies AG.

Data Sheet 3 Rev. 2.3, 2011-09-02


Silicon Germanium Broadband MMIC Amplifier

1 Silicon Germanium Broadband MMIC Amplifier

Feature

- High gain, G_{MA} = 20 dB at 1.8 GHz
- Low noise figure, NF = 1.4 dB at 1.8 GHz
- Prematched
- Ideal for GSM, DCS1800, PCS1900
- · Open collector output
- Typical supply voltage: 2.4 3 V
- SIEGET[®]-45 technology
- Pb-free (RoHS compliant) package

SOT363

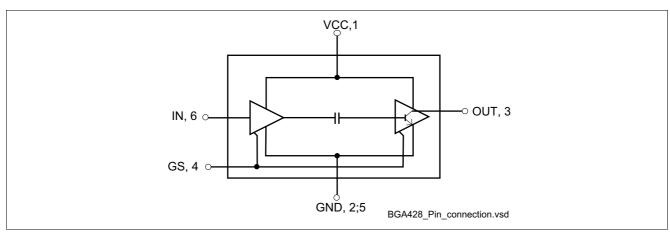


Figure 1 Pin connection

Description

BGA428 is a high gain, low noise amplifier.

Туре	Package	Marking
BGA428	SOT363	PGs

Note: ESD: Electrostatic discharge sensitive device, observe handling precaution

Silicon Germanium Broadband MMIC Amplifier

Maximum Ratings

Table 1 Maximum ratings

Parameter	Symbol	Limit Value	Unit	
Device voltage	$V_{\sf CC}$	4	V	
Voltage at pin Out	V_{out}	4	V	
Voltage at pin GS	V_{GS}	3.5	V	
Current into pin In	I_{in}	0.5	mA	
Total device current ¹⁾	I_{tot}	12	mA	
Input power ²⁾	P_{in}	8	dBm	
Total power dissipation, $T_{\rm S}$ < 125 °C ³⁾	P_{tot}	50	mW	
Junction temperature	T_{J}	150	°C	
Operating temperature range	T_{OP}	-40 85	°C	
Storage temperature range	T_{STG}	-65 150	°C	

¹⁾ $I_{\rm tot}$ = Current into Out + Current into $V_{\rm CC}$

a)
$$Z_{\rm L}$$
 = 50 Ω , $Z_{\rm S}$ = 50 Ω , $V_{\rm CC}$ = 2.7 V, $V_{\rm out}$ = 2.7 V, $V_{\rm GS}$ = 0.0 V, GND = 0.0 V b) $Z_{\rm L}$ = 50 Ω , $Z_{\rm S}$ = 50 Ω , $V_{\rm CC}$ = 0.0 V, $V_{\rm out}$ = 0.0 V, $V_{\rm GS}$ = 2.7 V, GND = 0.0 V

Note: All Voltages refer to GND-Node

Thermal resistance

Table 2 Thermal resistance

Parameter	Symbol	Value	Unit	
Junction - soldering point ¹⁾	R_{thJS}	220	K/W	

¹⁾ For calculation of R_{thJA} please refer to Application Note Thermal Resistance

²⁾ Valid for:

³⁾ $T_{\rm S}$ is measured on the ground lead at the soldering point

Electrical Characteristics

2 Electrical Characteristics

2.1 Electrical characteristics at $T_{\rm A}$ = 25 °C (measured in test circuit specified in Figure 2), $V_{\rm CC}$ = 2.7 V, Frequency = 1.8 GHz, unless otherwise specified

Table 3 Electrical Characteristics

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum available power gain	G_{MA}		20		dB	
Noise figure ($Z_{\rm S}$ = 50 Ω)	NF		1.4		dB	
Input power at 1 dB gain compression	$P_{ ext{-1dB}}$		-19		dBm	
Input third order intercept point	IIP_3		-9		dBm	
Total device current	I_{tot}		8.2		mA	
Insertion loss in gain-step-mode	L_{GS}		13.5		dB	$V_{\rm CC}$ = 0.0 V,
						$\begin{split} V_{\mathrm{CC}} &= 0.0 \; \mathrm{V}, \\ V_{\mathrm{CTRL}} &= 2.7 \; \mathrm{V}, \\ R_{\mathrm{CRRL}} &= 3 \; \mathrm{k} \Omega \end{split}$
						R_{CRRL} = 3 k Ω

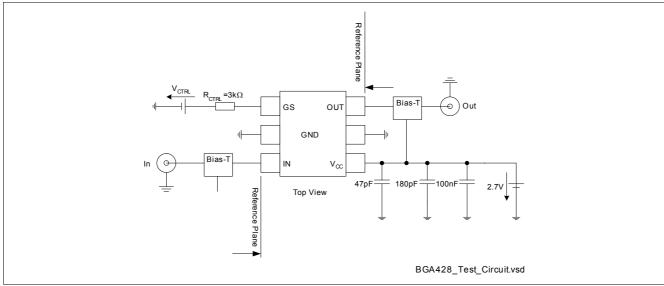


Figure 2 Test Circuit for Electrical Characteristics and S-Parameter

Electrical Characteristics

Table 4 S-Parameter at 2.7 V (see Electrical Characteristics for conditions)

Frequency	S11	S11	S21	S21	S12	S12	S22	S22
[GHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
0.100	0.6756	-31.7	58.775	-19.6	0.0005	153.5	0.9491	-3.9
0.200	0.5936	-53.6	47.806	-43.1	0.0014	138.4	0.9327	-6.3
0.300	0.5150	-71.4	39.232	-59.5	0.0021	119.0	0.9174	-8.3
0.400	0.4587	-86.6	31.740	-71.8	0.0028	104.9	0.9035	-10.3
0.600	0.4004	-110.7	23.868	-89.6	0.0042	105.9	0.8807	-14.0
0.800	0.3743	-129.1	18.509	-103.2	0.0063	94.3	0.8593	-17.7
1.000	0.3743	-143.0	14.825	-114.5	0.0082	92.4	0.8352	-21.4
1.200	0.3816	-154.5	12.288	-124.7	0.0093	87.2	0.8116	-25.1
1.400	0.3922	-164.4	10.353	-134.2	0.0110	85.3	0.7865	-28.7
1.600	0.4086	-1.72.4	8.879	-143.2	0.0132	79.4	0.7597	-32.2
1.800	0.4265	-178.9	7.732	-151.4	0.0141	79.4	0.7309	-36.0
1.900	0.4314	-178.8	7.214	-155.2	0.0146	76.1	0.7199	-37.5
2.000	0.4371	176.1	6.771	-159.1	0.0150	77.0	0.7097	-39.1
2.200	0.4505	171.2	5.976	-166.6	0.0169	75.2	0.6791	-42.3
2.400	0.4640	167.2	5.298	-173.5	0.0181	73.2	0.6593	-45.6
3.000	0.4935	155.9	3.935	167.0	0.0217	68.3	0.5925	-53.3
4.000	0.5181	141.2	2.605	139.2	0.0282	65.1	0.5284	-64.9
5.000	0.5202	126.9	1.911	113.6	0.0319	62.2	0.4829	-75.1
6.000	0.5128	110.0	1.479	89.9	0.0489	56.0	0.4323	-81.7

Electrical Characteristics

2.2 Application Circuit Characteristics (measured in test circuit specified in Figure 3), $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.7 V, Frequency = 1.85 GHz, unless otherwise specified

Table 5 Application Circuit Characteristics

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Insertion power gain	$ S_{21} ^2$		19		dB	
Noise figure ($Z_{\rm S}$ = 50 Ω)	NF		1.4		dB	
Input power at 1 dB gain compression	$P_{ ext{-1dB}}$		-19		dBm	
Input third order intercept point	IIP_3		-9		dBm	
Total device current	I_{tot}		8.2		mA	
Insertion loss in gain-step-mode	L_{GS}		13.5		dB	$V_{\rm CC}$ = 0.0 V, $V_{\rm CTRL}$ = 2.7 V,
						$R_{\text{CRRL}} = 3 \text{ k}\Omega$

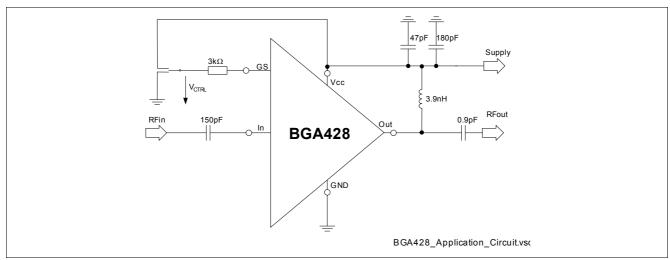
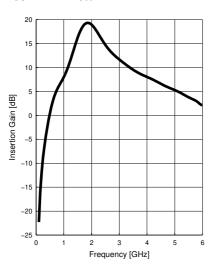
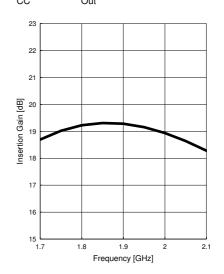


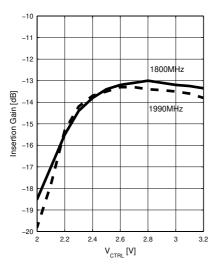
Figure 3 Application Circuit for 1850 MHz

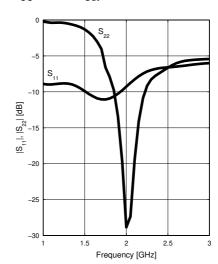


Measured Parameters


3 Measured Parameters

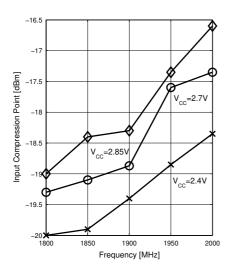
Refer to the application circuit given in Figure 3

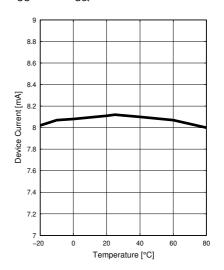

Power Gain $|S21|^2 = f(f)$ V_{CC} = 2.7V, V_{Out}=2.7V


Power Gain
$$|S21|^2 = f(f)$$

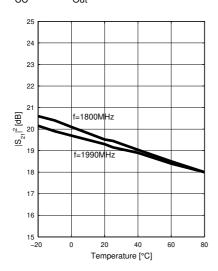
V_{CC} = 2.7V, V_{Out}=2.7V

$$\begin{aligned} & \textbf{Off-Gain} \; |S_{21}|^2 \text{=} \text{f}(\text{V}_{\text{CTRL}}) \\ \text{V}_{\text{CC}} &= 0.0 \text{V}, \, \text{V}_{\text{Out}} \text{=} 0.0 \text{V}, \\ \text{R}_{\text{CTRL}} \text{=} 2.7 \text{k}\Omega \end{aligned}$$


$$\begin{aligned} & \textbf{Matching} \ |S_{11}|, |S_{22}| = & f(f) \\ & V_{CC} = 2.7V, \ V_{Out} = & 2.7V \end{aligned}$$



Measured Parameters


Input Compression Point $P_{-1dB} = f(f)$

$\begin{array}{l} \textbf{Device Current} \ I = f(\vartheta) \\ V_{CC} = 2.7 V, \ V_{Out} = 2.7 V \end{array}$

Insertion Gain
$$|S_{21}|^2 = f(\vartheta)$$

 $V_{CC} = 2.7V$, $V_{Out} = 2.7V$

Package Information

4 Package Information

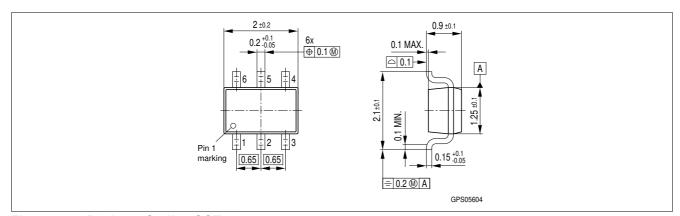


Figure 4 Package Outline SOT363

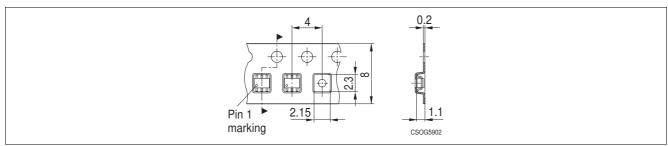


Figure 5 Tape for SOT363