mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BGA461 Silicon Germanium GPS Low Noise Amplifier

RF & Protection Devices

Edition 2009-01-22

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGA461

Revision History: 2009-01-22, Rev.1.1 (Preliminary Data Sheet)

Previous Version: 2008-06-27, Rev.1.0 (Target Data Sheet)						
Page	Subjects (major changes since last revision)					
all	Preliminary data sheet					
5	Marking code defined: BU					
5	Thermal resistance and maximum rating for total power dissipation corrected					
6	Typical values for insertion power gain, noise figure and input return loss adjusted, IIP3 specified					
7	Application information updated					

Silicon Germanium GPS Low Noise Amplifier

1 Silicon Germanium GPS Low Noise Amplifier

Features

- Optimized for 1575 MHz Operation
- High gain: 19.5 dB
- Low Noise Figure: 1.1 dB
- Supply voltage: 2.4 V to 3.2 V
- 4mA current consumption
- Power off function
- 1 kV HBM ESD protection at all pins
- B7HFM Silicon Germanium technology
- RF output internally matched to 50 Ω
- Low external component count
- Tiny TSLP-7-4 leadless package
- Moisture sensitivity level: MSL 1
- Pb-free (RoHS compliant) package

Application

1575 MHz GPS, Galileo, GPS phone

2 Description

The BGA461 is a front-end low noise amplifier for Global Positioning System (GPS) applications. The LNA provides 19.5 dB gain and 1.1 dB noise figure at a current consumption of 4 mA in the application configuration described in **Chapter 4**. The BGA461 is based upon Infineon Technologies' B7HFM Silicon Germanium technology. It operates over a 2.4 V to 3.2 V supply range.

Description

Туре	Package	Marking
BGA461	TSLP-7-4	BU

Pin Definition and Function

Table 1Pin Definition and Function

Pin No.	Symbol	Function
1	IN	LNA RF input
2	BIAS	DC bias
3	n.c.	not used
4	PON	Power on control
5	VCC	DC Supply
6	OUT	LNA RF output
7	GND	DC & RF ground

Maximum Ratings

Table 2 Maximum Ratings

Parameter ¹⁾	Symbol	Value	Unit
Voltage at pin VCC	V _{CC}	-0.3 3.6	V
Voltage at pin IN	V _{IN}	-0.3 0.9	V
Voltage at pin BIAS	V _{BIAS}	-0.3 0.9	V
Voltage at pin OUT	V _{OUT}	-0.3 V _{CC} + 0.3	V
Voltage at pin PON	V _{PON}	-0.3 V _{CC} + 0.3	V
Current into pin VCC	I _{CC}	10	mA
RF input power	P _{IN}	10	dBm
Total power dissipation, $T_{\rm S}$ < 139 °C ²⁾	P _{tot}	90	mW
Junction temperature	T _J	150	°C
Ambient temperature range	T _A	-30 85	°C
Storage temperature range	T _{STG}	-65 150	°C
ESD capability all pins (HBM: JESD22A-114)	V _{ESD}	1000	V

1) All voltages refer to GND-Node.

2) $T_{\rm S}$ is measured on the ground lead at the soldering point

Thermal resistance

Table 3Thermal resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	125	K/W

1) For calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance

Electrical Characteristics

3 Electrical Characteristics

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V _{CC}	2.4	2.8	3.2	V	
Supply current	I _{CC}	-	4.0	-	mA	ON-mode
		-	0.2	3	μA	OFF-mode
Gain switch control voltage	V_{pon}	1.5	-	3.2	V	ON-mode
		0	-	0.5	V	OFF-mode
Gain switch control current	I _{pon}	-	1.5	3	μA	ON-mode
		-	0	1	μA	OFF-mode
Insertion power gain	$ S_{21} ^2$	-	19.5	-	dB	High-gain Mode
Noise figure ²⁾	NF	-	1.1	-	dB	$Z_{\rm S}$ = 50 Ω
Input return loss	<i>RL</i> _{in}	-	11	-	dB	
Output return loss	<i>RL</i> _{out}	-	>12	-	dB	
Reverse isolation	$1/ S_{12} ^2$	-	35	-	dB	
Power gain settling time ³⁾	t _S	-	20	-	μs	OFF- to ON-mode
		-	50	-	μs	ON- to OFF-mode
Inband input 3rd order intercept point ⁴⁾	IIP ₃	-	-11	-	dBm	$f_1 = 1575 \text{ MHz}$ $f_2 = f_1 + -1 \text{ MHz}$
Inband input 1 dB compression point	IP _{1dB}	-	-14	-	dBm	
Stability	k	-	> 1.5	-		<i>f</i> = 20 MHz 10 GHz

Table 4Electrical Characteristics¹⁾: $T_A = 25 \degree C$, $V_{CC} = 2.8 \lor$, $V_{PON,ON} = 2.8 \lor$, $V_{PON,OFF} = 0 \lor$, f = 1575 MHz

1) Measured on BGA461 application board described in Chapter 4, including PCB losses (unless noted otherwise)

2) PCB tranmission line- and connector losses subtracted

3) To within 1 dB of the final gain OFF- to ON-mode; to within 3 dB of the final gain ON- to OFF-mode

4) Input Power = -40 dBm for each tone

Application Information

4 Application Information

Figure 2 Application Schematic BGA461

Table 5 Name	Bill of Materials						
	Value	Package	Manufacturer	Function			
C1	10 nF	0402	Various	LF trap			
C2	2.7 pF	0402	Various	DC block and input matching			
C3	10 pF	0402	Various	(optional) Control voltage filtering			
C4	100 pF	0402	Various	Supply filtering			
C5	2.2 nF	0402	Various	(optional) Supply filtering			
L1	2.2 nH LQG15H series	0402	Murata	LF trap & input matching			
L2	33 nH LQG15H series	0402	Murata	Biasing			
R1	4.7 kΩ	0402	Various	Current adjustment			
N1	BGA461	TSLP-7-4	Infineon	SiGe LNA			

A list of all application notes is available at http://www.infineon.com/cms/en/product.

Package Information

5 Package Information

Figure 4 Footprint TSLP-7-4

Figure 5 Tape & Reel Dimensions (Ø reel 330, pieces/reel 7500)