imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BGA614 Silicon Germanium Broadband MMIC Amplifier

RF & Protection Devices

Edition 2011-09-02

Published by Infineon Technologies AG, 81726 München, Germany © Infineon Technologies AG 2011. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGA614

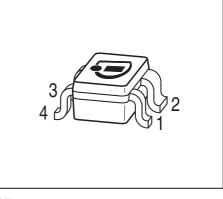
BGA614, Silicon Germanium Broadband MMIC Amplifier

Revision History: 2011-09-02, Rev. 2.1

Previous Version: 2003-11-04					
Page	Subjects (major changes since last revision)				
All	New Chip Version with integrated ESD protection				
5	Electrical Characteristics slightly changed				
7-8	Figures updated				
All	Document layout change				

Trademarks

SIEGET[®] is a registered trademark of Infineon Technologies AG.


Silicon Germanium Broadband MMIC Amplifier

1 Silicon Germanium Broadband MMIC Amplifier

Feature

- Cascadable 50 Ω-gain block
- 3 dB-bandwidth: DC to 2.4 GHz with 19 dB typical gain at 1.0 GHz
- Compression point P_{-1dB} = 12 dBm at 2.0 GHz
- Noise figure $F_{50\Omega}$ = 2.1 dB at 2.0 GHz
- Absolute stable
- 70 GHz $f_{\rm T}$ Silicon Germanium technology
- 1 kV HBM ESD protection (Pin-to-Pin)
- Pb-free (RoHS compliant) package

SOT343

Applications

- Driver amplifier for GSM/PCS/CDMA/UMTS
- Broadband amplifier for SAT-TV & LNBs
- Broadband amplifier for CATV

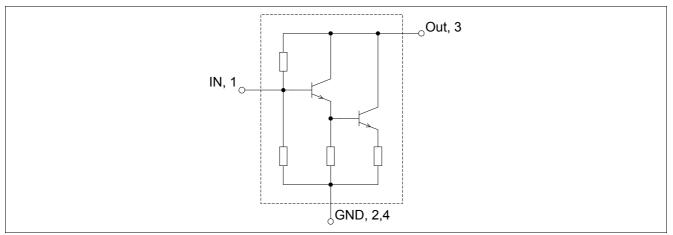


Figure 1 Pin connection

Description

BGA614 is a broadband matched, general purpose MMIC amplifier in a Darlington configuration. It is optimized for a typical supply current of 40 mA.

The BGA614 is based on Infineon Technologies' B7HF Silicon Germanium technology.

Туре	Package	Marking
BGA614	SOT343	BOs

Note: ESD: Electrostatic discharge sensitive device, observe handling precaution

Electrical Characteristics

Maximum Ratings

Table 1 Maximum ratings

Parameter	Symbol	Limit Value	Unit	
Device voltage	VD	3	V	
Device current	ID	80	mA	
Current into pin In	I _{in}	0.7	mA	
Input power ¹⁾	$P_{\rm in}$	10	dBm	
Total power dissipation, $T_{\rm S}$ < 102 °C ²⁾	P _{tot}	240	mW	
Junction temperature	TJ	150	°C	
Ambient temperature range	T _A	-65 150	°C	
Storage temperature range	$T_{\rm STG}$	-65 150	°C	
ESD capability all pins (HBM: JESD22-A114)	V _{ESD}	1000	V	

1)Valid for $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω , $V_{\rm CC}$ = 5 V, $R_{\rm Bias}$ = 62 Ω

2) $T_{\rm S}$ is measured on the ground lead at the soldering point

Note: All Voltages refer to GND-Node

Thermal resistance

Table 2Thermal resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	200	K/W

1) For calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance

2 Electrical Characteristics

Electrical characteristics at T_A = 25 °C (measured in test circuit specified in **Figure 2**) V_{CC} = 5 V, R_{Bias} = 62 Ω , Frequency = 2 GHz, unless otherwise specified

Table 3 Electrical Characteristics

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Insertion power gain	$ S_{21} ^2$		19.8		dB	<i>f</i> = 0.1 GHz
			19.0		dB	<i>f</i> = 1.0 GHz
			17.5		dB	<i>f</i> = 2.0 GHz
Noise figure ($Z_{\rm S}$ = 50 Ω)	$F_{50\Omega}$		1.8		dB	<i>f</i> = 0.1 GHz
			2.0		dB	<i>f</i> = 1.0 GHz
			2.1		dB	<i>f</i> = 2.0 GHz
Output power at 1 dB gain compression	P _{-1dB}		12		dBm	
Output third order intercept point	OIP ₃		25		dBm	
Input return loss	<i>RL</i> _{in}		18		dB	
Output return loss	<i>RL</i> _{out}		20		dB	
Total device current	ID		40		mA	

BGA614

Electrical Characteristics

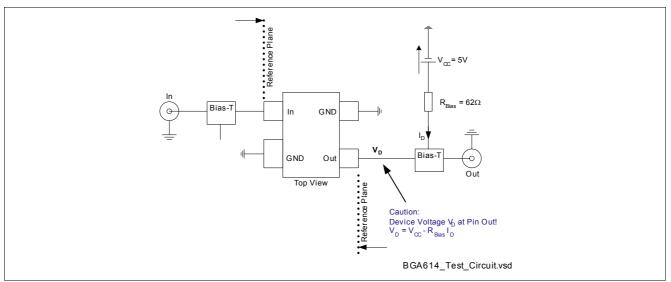
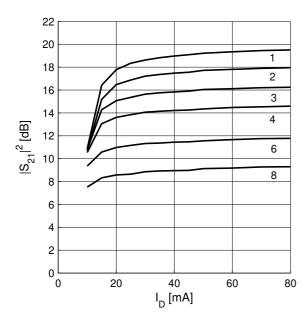
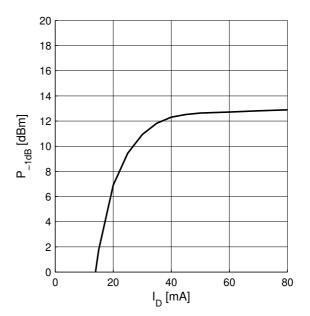


Figure 2 Test Circuit for Electrical Characteristics and S-Parameter

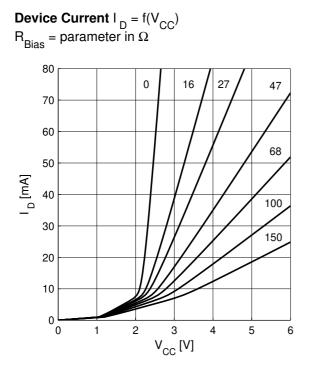

3 Measured Parameters

Power Gain $|S_{21}|^2$, $G_{ma} = f(f)$ $V_{CC} = 5V$, $R_{Bias} = 62\Omega$, $I_C = 40mA$ 22 G_{ma} 20 18 |S₂₁|² 16 $|S_{21}|^2$, G_{ma} [dB] 14 12 10 8 6 4 2 0 10⁻¹ 10⁰ 10¹ Frequency [GHz]

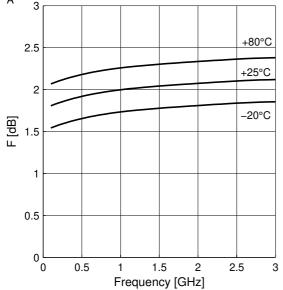
Matching $|S_{11}|$, $|S_{22}| = f(f)$ $V_{CC} = 5V$, $R_{Bias} = 62\Omega$, $I_C = 40mA$ $u = \frac{10}{5}$ $u = \frac{-10}{5}$ $u = \frac{-20}{5}$ $u = \frac{-20}{10}$ $u = \frac{-20}{10}$ u

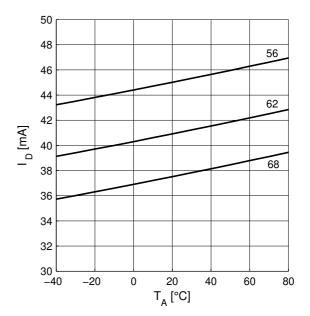

Frequency [GHz]

 $\begin{array}{l} \textbf{Power Gain} \mid S_{21} \mid = f(I_{D}) \\ f = parameter in GHz \end{array}$

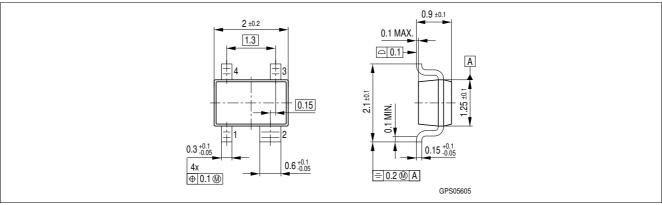

Output Compression Point

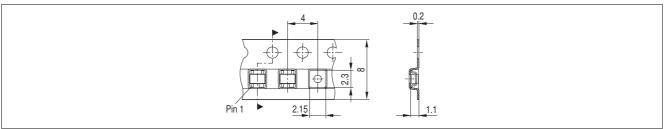
 $P_{-1dB} = f(I_D), f = 2GHz$




Measured Parameters

Noise figure F = f(f) $V_{CC} = 5V, R_{Bias} = 62\Omega, Z_{S} = 50\Omega$ $T_{A} = parameter in °C$


Device Current I $_{D} = f(T_{A})$ V_{CC} = 5V,R_{Bias} = parameter in Ω



Package Information

4 Package Information

Figure 3 Package Outline SOT343

Figure 4 Tape for SOT343