

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BGA615L7

Silicon Germanium GPS Low Noise Amplifier

RF & Protection Devices

Edition 2007-02-12

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGA615L7

Revision History: 2007-02-12, Rev.1.3

Previous Version: BGA615L7 V1.2

Subjects (major changes since last revision)				
added moisture sensitivity level				
added thermal resistance				
adjusted power gain settling times adjusted inband and out of band compression points				
updated recommended land pattern (added solder mask defined layout)				
added reel diameter and pcs / reel information				

Data Sheet 3 Rev.1.3, 2007-02-12

BGA615L7

Silicon Germanium GPS Low Noise Amplifier

Features

High gain: 18 dB

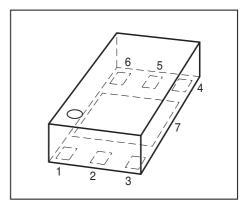
· Low Noise Figure: 0.9 dB

Power off function

Operating frequency 1575 MHz

Supply voltage: 2.4 V to 3.2 V

Tiny PG-TSLP-7-1 leadless package


· B7HF Silicon Germanium technology

• RF output internally matched to 50 Ω

Low external component count

1 kV HBM ESD protection (including Al-pin)

Moisture sensitivity level: MSL 1

TSLP-7-1

Application

1575 MHz GPS

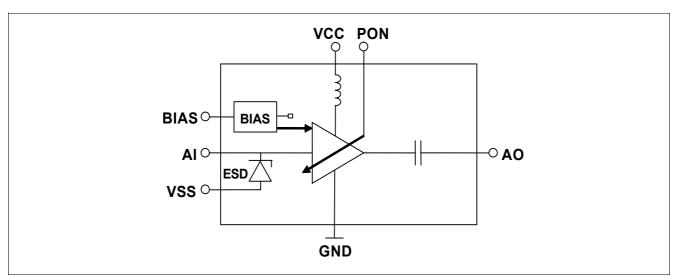


Figure 1 Blockdiagram

Description

The BGA615L7 is a front-end low noise amplifier for Global Positioning System (GPS) applications. The LNA provides 18 dB gain, 0.9 dB noise figure and high linearity performance, allowing it to be used as a first-stage LNA. Current consumption is as low as 5.6 mA. The BGA615L7 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates over a 2.4 V to 3.2 V supply range.

Туре	Package	Marking	Chip
BGA615L7	PG-TSLP-7-1	BS	T0595

Data Sheet 4 Rev.1.3, 2007-02-12

Pin Definition and Function

Table 1 Pin Definition and Function

Pin No.	Symbol	Function
1	Al	LNA input
2	BIAS	DC bias
3	GND	RF ground
4	PON	Power on control
5	VCC	Supply control
6	AO	LNA output
7	VSS	DC ground

Maximum Ratings

Table 2 Maximum Ratings

Parameter ¹⁾	Symbol	Value	Unit
Voltage at pin VCC	$V_{\sf CC}$	-0.3 3.6	V
Voltage at pin Al	V_{Al}	-0.3 0.9	V
Voltage at pin BIAS	V_{BIAS}	-0.3 0.9	V
Voltage at pin AO	V_{AO}	-0.3 V _{CC} + 0.3	V
Voltage at pin PON	V_{PON}	-0.3 V _{CC} + 0.3	V
Voltage at pin VSS	V_{SS}	-0.3 0.3	V
Current into pin VCC	I_{CC}	10	mA
RF input power	P_{IN}	10	dBm
Total power dissipation	P_{tot}	36	mW
Junction temperature	T_{J}	150	°C
Ambient temperature range	T_{A}	-30 85	°C
Storage temperature range	T_{STG}	-65 150	°C
Thermal resistance junction soldering point	$R_{th\ JS}$	240	K/W
ESD capability all pins (HBM: JESD22A-114)	V_{ESD}	1000	V

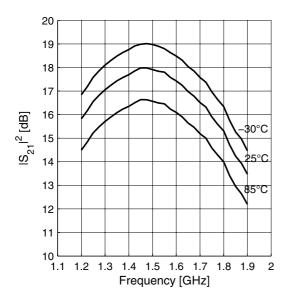
¹⁾ All voltages refer to GND-Node.

Electrical Characteristics

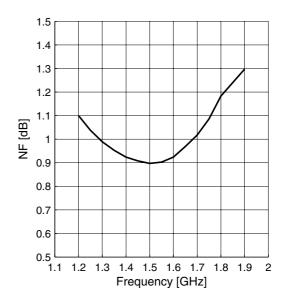
Table 3 Electrical Characteristics¹⁾: T_A = 25 °C, V_{CC} = 2.8 V, $V_{PON,ON}$ = 2.8 V, $V_{PON,OFF}$ = 0 V, f = 1575 MHz

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min.	Тур.	Max.			
Supply voltage	$V_{\sf CC}$	2.4	2.8	3.2	V		
Supply current	$I_{\rm CC}$	-	5.6	-	mA	ON-mode	
		-	0.2	3	μΑ	OFF-mode	
Gain switch control voltage	V_{pon}	1.5	-	3.2	V	ON-mode	
		0	-	0.5	V	OFF-mode	
Gain switch control current	I_{pon}	-	1.5	3	μΑ	ON-mode	
		-	0	1	μΑ	OFF-mode	
Insertion power gain	$ S_{21} ^2$	-	18	-	dB	High-gain Mode	
Noise figure ²⁾	NF	-	0.9	-	dB	$Z_{\rm S}$ = 50 Ω	
Input return loss	RL_{in}	-	13	-	dB		
Output return loss	RL_{out}	-	>15	-	dB		
Reverse isolation	$1/ S_{12} ^2$	-	35	-	dB		
Power gain settling time ³⁾	t_{S}	-	20	-	μS	OFF- to ON-mode	
		-	50	-	μS	ON- to OFF-mode	
Inband input 3rd order intercept point	IIP_3	-	-1	-	dBm	f_1 = 1575 MHz f_2 = f_1 +/-1 MHz	
Inband input 1 dB compression point	IP _{1dB}	-	-14	-	dBm		
Out of band input 1 dB compression point	$IP_{\mathrm{1dB,900M}}$	-	-9	-	dBm	f = 806 MHz 928 MHz	
Out of band input 1 dB compression point	<i>IP</i> _{1dB,1650M}	-	-12	-	dBm	f = 1612 MHz 1710 MHz	
Out of band input 1 dB compression point	<i>IP</i> _{1dB,1900M}	-	-6	-	dBm	f = 1710 MHz1785 MHz f =1850 MHz1909 MHz	
Stability	k	-	> 1.5	-		f = 20 MHz 10 GHz	

¹⁾ Measured on BGA615L7 application board including PCB losses (unless noted otherwise)


²⁾ PCB losses subtracted

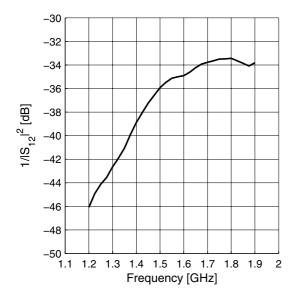
³⁾ To within 1 dB of the final gain OFF- to ON-mode; to within 3 dB of the final gain ON- to OFF-mode



Typical Measurement Results ON Mode; $T_{\rm A}$ = 25 °C

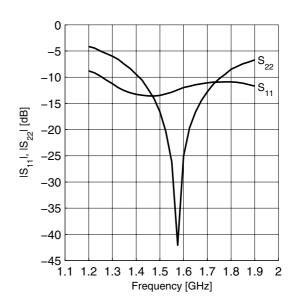
Gain
$$|S_{21}|^2 = f(f)$$

 $V_{CC} = 2.8 \text{ V}$



Noise Figure¹⁾
$$NF = f(f)$$

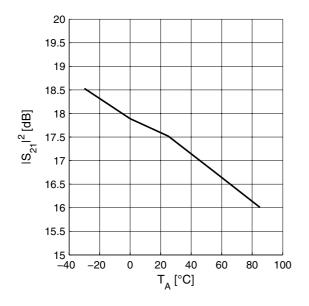
 $V_{CC} = 2.8 \text{ V}$



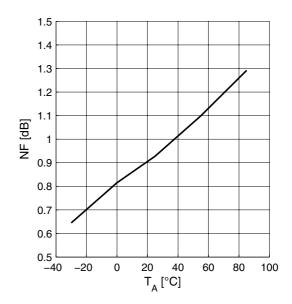
Reverse Isolation $1/|S_{12}|^2 = f(f)$

$$V_{\mathrm{CC}}$$
 = 2.8 V

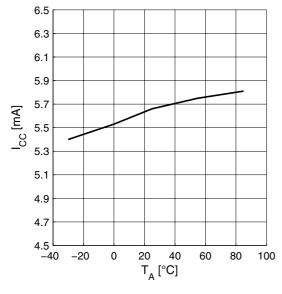
Matching $|S_{11}|$, $|S_{22}| = f(f)$ $V_{CC} = 2.8 \text{ V}$

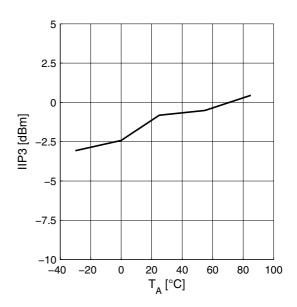


1) PCB losses subtraced



Typical Measurement Results ON Mode vs. Temperature

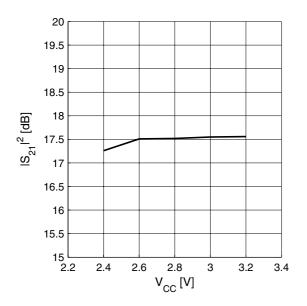

Power Gain
$$|S_{21}|^2$$
 = f($T_{\rm A}$) $V_{\rm CC}$ = 2.8 V


Noise Figure¹⁾
$$NF = f(T_A)$$

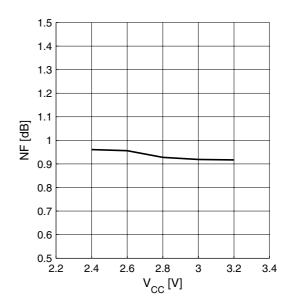
 $V_{CC} = 2.8 \text{ V}$

Supply current $I_{\rm CC}$ = f($T_{\rm A}$) $V_{\rm CC}$ = 2.8 V

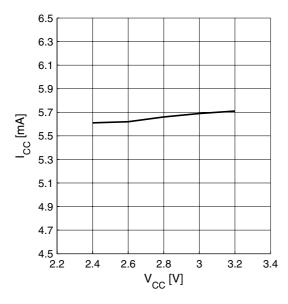
Third Order Input Intercept Point IIP_3 = f($T_{\rm A}$) $V_{\rm CC}$ = 2.8 V

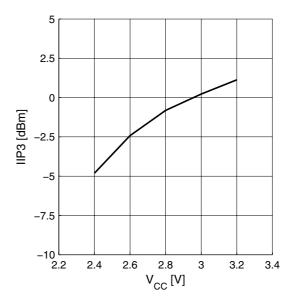


1) PCB losses subtracted



Typical Measurement Results ON Mode vs. Supply Voltage


Power Gain
$$|S_{21}|$$
 = f(V_{CC}) T_A = 25 °C


Noise Figure¹⁾
$$NF$$
 = f($V_{\rm CC}$) $T_{\rm A}$ = 25 °C

Supply current
$$I_{\rm CC}$$
 = f($V_{\rm CC}$) $T_{\rm A}$ = 25 °C

Third Order Input Intercept Point $I\!IP_3$ = f($V_{\rm CC}$) $T_{\rm A}$ = 25 $^{\circ}{\rm C}$

1) PCB losses subtracted

PCB Configuration

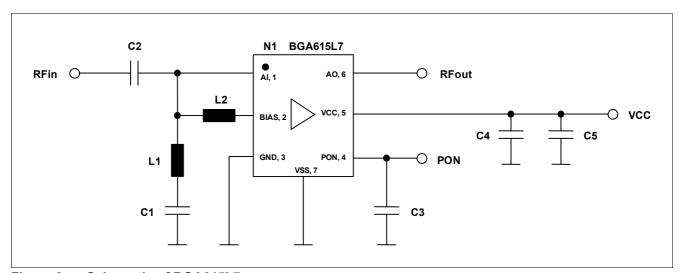


Figure 2 Schematic of BGA615L7

Table 4 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1	10 nF	0402	Various	LF trap
C2	5 pF	0402	Various	DC block
C3	10 pF	0402	Various	Control voltage filtering optional
C4	100 pF	0402	Various	Supply filtering optional
C5	2.2 nF	0402	Various	Supply filtering
L1	3.3 nH	0402	Various	LF trap & input matching
L2	100 nH	0402	Various	Biasing
N1	BGA615L7	PG-TSLP-7-1	Infineon	SiGe LNA

Application Board

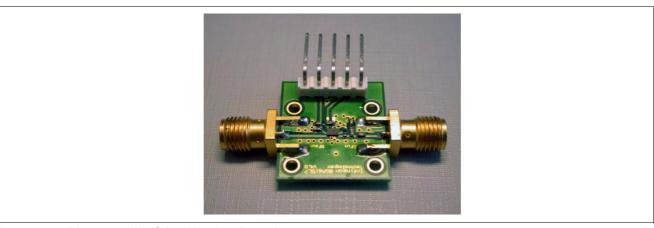


Figure 3 Photograph of Application Board

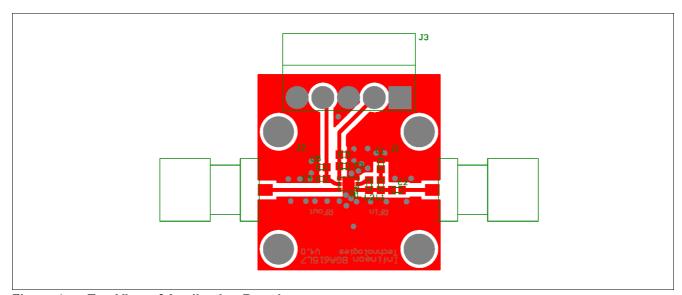


Figure 4 Top View of Application Board

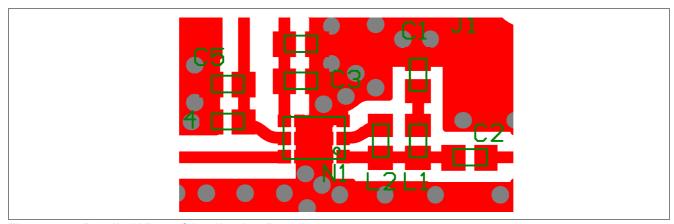


Figure 5 Detailed View of Application Board

Please note that RF-ground is connected via pin 3 only. In order to achieve the same performance as given in this data sheet, it is necessary to provide good RF-grounding on this pin. Furthermore, the LF trap consisting of inductor L1 and capacitor C1 should be placed as close as possible to pin 3.

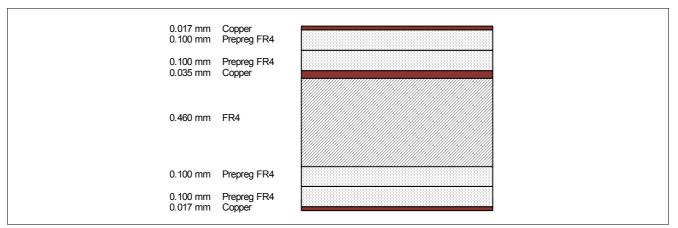


Figure 6 Cross-Section View of Application Board

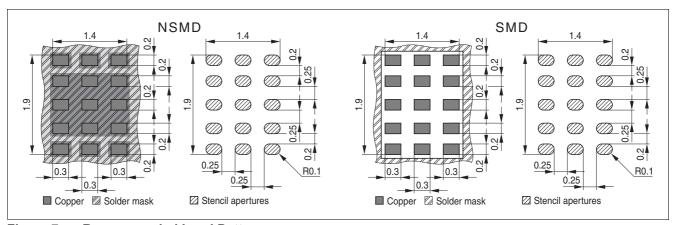


Figure 7 Recommended Land Pattern

Table 5 Application Notes

No.	Description
AN091	The BGA615L7 Silicon-Germanium Low Noise Amplifier in GPS Applications
AN093	The BGA615L7 Silicon-Germanium Low Noise Amplifier with 0201 chip components
AN094	The BGA615L7 Silicon-Germanium Low Noise Amplifier for Low-Current GPS Applications

A list of all application notes is available at http://goto.infineon.com/smallsignaldiscretes-appnotes.

Package Information

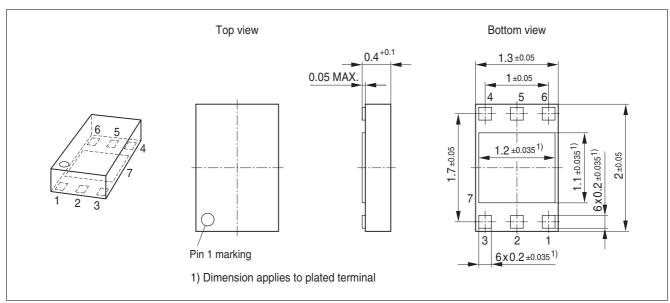


Figure 8 Package Dimensions

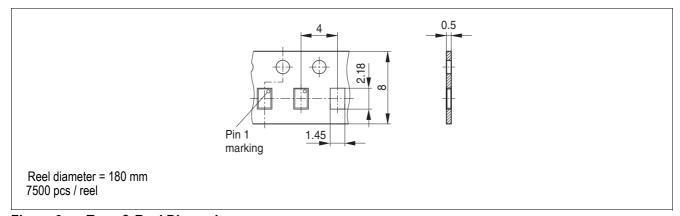


Figure 9 Tape & Reel Dimensions

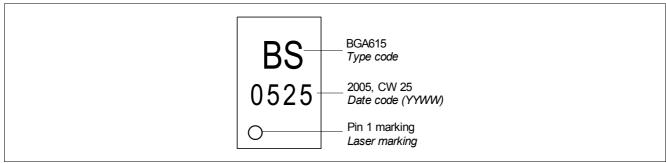


Figure 10 Marking Layout