imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BGA715L7

Silicon Germanium GPS Low Noise Amplifier

Small Signal Discretes

Never stop thinking

Edition 2009-10-9

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2009. All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

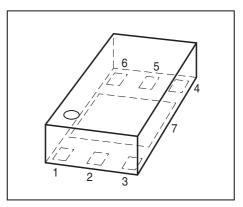
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGA715L7

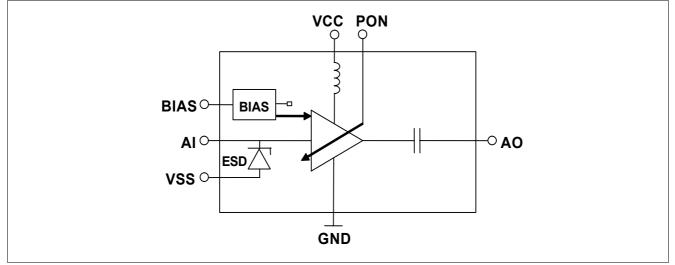
Previou	Previous Version: 2008-09-12, Rev.2.0					
Page	Subjects (major changes since last revision) Ambient temperature range is extended down to -40°C					
5						

Silicon Germanium GPS Low Noise Amplifier

1 Silicon Germanium GPS Low Noise Amplifier


Features

- High gain: 20 dB
- Low Noise Figure: 0.7 dB
- Low current consumption: 3.3 mA
- Supply voltage: 1.5 V to 3.3 V
- High input compression point -15.5 dBm at 1.8 V supply
- High input 3rd intercept point -7 dBm at 1.8 V supply
- B7HFM Silicon Germanium technology
- RF output internally matched to 50 Ω
- · Low external part count
- 2kV HBM ESD protection (including AI-pin)
- Tiny TSLP-7-1 leadless package
- Moisture sensitivity level: MSL 1
- Pb-free (RoHS compliant) package



Application

• 1575 MHz GPS, Galileo, GPS phone

2 Description

The BGA715L7 is a front-end low noise amplifier for Global Positioning System (GPS) applications. The LNA provides 20 dB gain, 0.7 dB noise figure and high linearity performance in the application configuration described in **Chapter 4**. Current consumption is as low as 3.3 mA. The BGA715L7 is based upon Infineon Technologies' B7HFM Silicon Germanium technology. It operates over a 1.5 V to 3.3 V supply range.

If an ultra low noise figure of 0.6 dB is required, please refer to Infineon BGA715L7 Application Note AN161.

Description

Туре	Package	Marking
BGA715L7	TSLP-7-1	UG

Pin Definition and Function

Table 1Pin Definition and Function

Pin No.	Symbol	Function		
1	AI	LNA input		
2	BIAS	DC bias		
3	GND	RF ground		
4	PON	Power on control		
5	VCC	DC supply		
6	AO	LNA output		
7	VSS	DC ground		

Maximum Ratings

Table 2Maximum Ratings

Parameter ¹⁾	Symbol	Value	Unit
Voltage at pin VCC	V _{CC}	-0.3 3.6	V
Voltage at pin AI	V _{AI}	-0.3 0.9	V
Voltage at pin BIAS	V _{BIAS}	-0.3 0.9	V
Voltage at pin AO	V _{AO}	-0.3 V _{CC} + 0.3	V
Voltage at pin PON	V_{PON}	-0.3 V _{CC} + 0.3	V
Voltage at pin GND	$V_{\rm GND}$	-0.3 0.3	V
Current into pin VCC	I _{CC}	10	mA
RF input power	P _{IN}	10	dBm
Total power dissipation	P _{tot}	36	mW
Junction temperature	TJ	150	°C
Ambient temperature range	T _A	-40 85	°C
Storage temperature range	T _{STG}	-65 150	°C
²⁾ Human Body Model ESD capability, all pin to all pin	$V_{\rm ESD_HBM}$	2000	V
³⁾ Machine Model ESD capability, all pin to all pin	V _{ESD_MM}	100	V

1) All voltages refer to VSS-Node.

2) According to JEDS22A-114

3) According to JEDS22A-115

Thermal resistance

Table 3 Thermal resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	159	K/W

1) For calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance

Electrical Characteristics

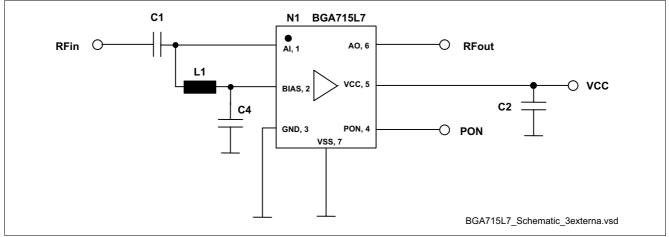
3 Electrical Characteristics

Table 4Electrical Characteristics¹): $T_A = 25 \text{ °C}$, $V_{CC} = 1.8 \text{ V}$, $V_{PON,ON} = 1.8 \text{ V}$, $V_{PON,OFF} = 0 \text{ V}$,f = 1575 MHz

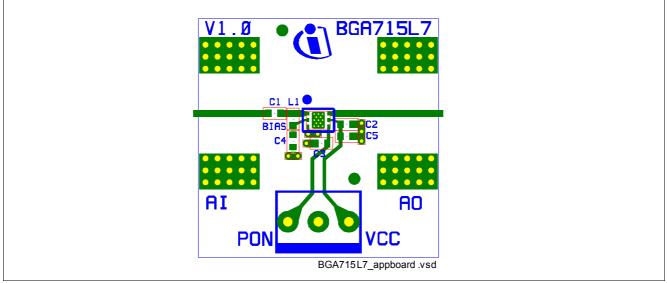
Parameter	Symbol	Values			Unit	Note / Test Condition
		Min.	Тур.	Max.		
Supply voltage	V _{CC}	1.5	1.8	3.6	V	
Supply current	I _{CC}	-	3.3	-	mA	ON-mode
		-	0.2	3	μA	OFF-mode
Gain switch control voltage	$V_{\rm pon}$	1.0	-	Vcc	V	ON-mode
		0	-	0.4	V	OFF-mode
Gain switch control current	I _{pon}	-	5		μA	ON-mode
		-		1	μA	OFF-mode
Power gain	$ S_{21} ^2$	-	20	-	dB	High-gain Mode
Noise figure ²⁾	NF	-	0.7	-	dB	Z _S = 50 Ω
Input return loss	<i>RL</i> _{in}	-	14	-	dB	
Output return loss	<i>RL</i> _{out}	-	13	-	dB	
Reverse isolation	$1/ S_{12} ^2$	-	43	-	dB	
Power gain settling time ³⁾	t _S	-	5	-	μs	OFF- to ON-mode
		-	5	-	μs	ON- to OFF-mode
Inband input 1dB compression point	IP _{1dB}	-	-15.5	-	dBm	
Inband input 3rd order intercept point ⁴⁾	IIP ₃	-	-7	-	dBm	$f_1 = 1575 \text{ MHz}$ $f_2 = f_1 + /-1 \text{ MHz}$
Stability	k	-	> 1	-		<i>f</i> = 20 MHz 20 GHz

1) Measured on BGA715L7 application board according to application schematic on page 7, including PCB losses (unless noted otherwise)

2) PCB tranmission line- and connector losses of 0.05dB are subtracted


3) To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode

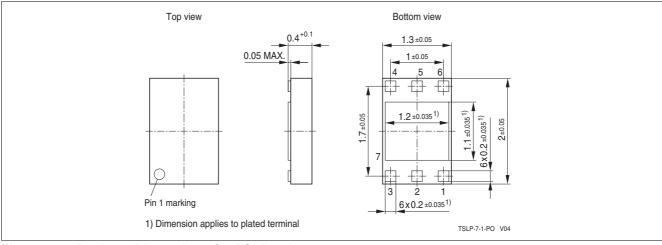
4) Input Power = -30 dBm for each tone



Application Information

4 Application Information

Figure 3	Application Board Drawing BGA715L7
----------	------------------------------------


Name	Value	Package	Manufacturer	Function
C1	1.8 pF	0402	Various	DC blocking and input matching
C2	1 μF	0402	Various	RF block
C4	15 pF	0402	Various	RF block
L1	4.7 nH LQW15A series	0402	Murata	Bias feed and input matching
N1	BGA715L7	TSLP-7-1	Infineon	SiGe LNA

A list of all application notes is available at http://goto.infineon.com/smallsignaldiscretes-appnotes.

Package Information

5 Package Information

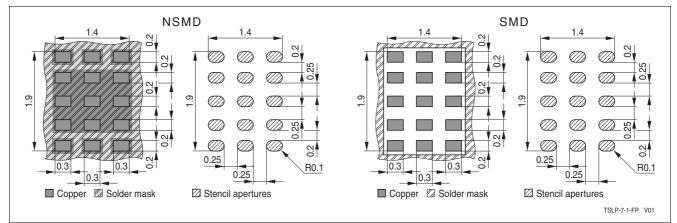


Figure 5 Footprint TSLP-7-1

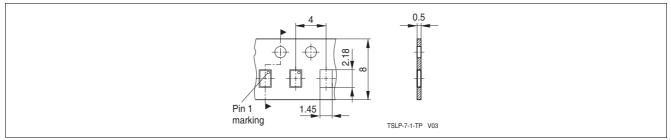


Figure 6 Tape & Reel Dimensions (Ø reel 180, pieces/reel 7500)