

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BGA7204

400 MHz to 2750 MHz high linearity variable gain amplifier

Rev. 4 — 15 November 2016

Product data sheet

1. Product profile

1.1 General description

The BGA7204 MMIC is an extremely linear Variable Gain Amplifier (VGA), operating from 0.4 GHz to 2.75 GHz. At minimum attenuation it has a gain of 18.5 dB, an output IP3 of 38 dBm and a noise figure of 7 dB. The attenuation range is 31.5 dB with an attenuation step of 0.5 dB.

The gain control is offered through a digital parallel interface or a digital serial interface (SPI). The digital serial interface offers advanced features like reprogramming the attenuation curve and on-chip temperature monitoring. The interfaces can be combined to support response to fast fading. The serial interface can be used to pre-set the desired gain level, whereas the parallel interface can be used to select this gain setting in $0.15~\mu s$.

It has been designed and qualified for the severe mission profile of cellular base stations, but its outstanding RF performance and interfacing flexibility makes it suitable for a wide variety of applications.

The BGA7204 is housed in a 32 pins 5 mm × 5 mm leadless HVQFN package.

1.2 Features and benefits

- High output IP3 of 38 dBm
- Attenuation range of 31.5 dB
- Output power at 1 dB compression of 21 dBm
- Noise figure of 7 dB at minimum attenuation
- Single 5 V supply
- Digital parallel and digital serial control (SPI)
- Programmable attenuation curve
- Temperature sensor
- ESD protection on all pins (HBM > 2 kV)
- Moisture sensitivity level 1
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS)

1.3 Applications

- IF and RF applications
- WiMAX and cellular base stations
- Cable modem termination systems
- Temperature compensation circuits

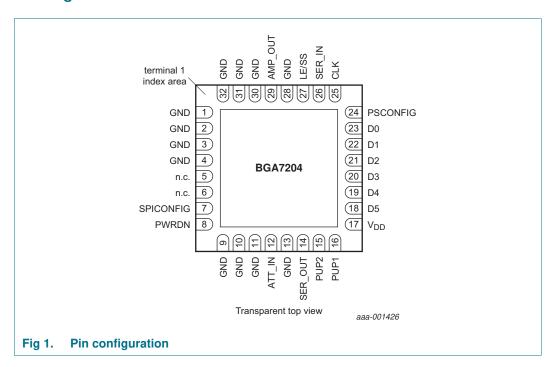
400 MHz to 2750 MHz high linearity variable gain amplifier

1.4 Quick reference data

Table 1. Quick reference data

 $4.75~V \le V_{SUP} \le 5.25~V;~f = 400~MHz~to~2750~MHz;~-40~^{\circ}C \le T_{amb} \le +85~^{\circ}C;~input~and~output~are~terminated~with~50~\Omega,~unless~otherwise~specified.$

Symbol	Parameter	Conditions	Mi	n Typ	Max	Unit
V_{SUP}	supply voltage		<u>[1]</u> 4.	75 5.0	5.25	V
I _{CC(tot)}	total supply current	PWRDN = 0	-	115	133	mA
		PWRDN = 1	-	15	-	mA
T _{amb}	ambient temperature		-4	0 +25	+85	°C
Gp	power gain	minimum attenuation				
		400 MHz \leq f \leq 1450 MHz	16	18.5	21	dB
		$1450~MHz \leq f \leq 2100~MHz$	15	17.5	20	dB
		$2100~MHz \leq f \leq 2750~MHz$	14	16.5	19	dB
α_{range}	attenuation range	$400~MHz \leq f \leq 1450~MHz$	29	31.5	34	dB
		$1450~MHz \leq f \leq 2100~MHz$	28	30.5	33	dB
		$2100~MHz \leq f \leq 2750~MHz$	27	30.0	33	dB
$lpha_{\sf step}$	attenuation step		0	0.5	1	dB
NF	noise figure	minimum attenuation				
		400 MHz \leq f \leq 700 MHz	-	7	9.5	dB
		700 MHz \leq f \leq 2100 MHz	-	6.5	9	dB
		$2100~MHz \leq f \leq 2750~MHz$	-	7.0	10	dB dB
IP3 _O	output third-order intercept point	minimum attenuation				
		400 MHz \leq f \leq 700 MHz	[<u>2</u>] 34	38	-	dBm
		700 MHz ≤ f ≤ 1450 MHz	[<u>2</u>] 33	37.5	-	dBm
		$1450~MHz \leq f \leq 2100~MHz$	<u>[2]</u> 31	36	-	dBm
		2100 MHz \leq f \leq 2750 MHz	<u>[2]</u> 28	.5 34	-	dBm
P _{L(1dB)}	output power at 1 dB gain compression	minimum attenuation				
		400 MHz ≤ f ≤ 1450 MHz	19	21	-	dBm
		$1450~MHz \leq f \leq 2100~MHz$	18	20.5	-	dBm
		$2100~MHz \leq f \leq 2750~MHz$	17	.5 20	-	dBm


^[1] Absolute maximum DC voltage on pin RF_OUT and V_{DD} .

^[2] $\Delta f = 1$ MHz; $P_i = -12$ dBm per tone.

400 MHz to 2750 MHz high linearity variable gain amplifier

2. Pinning information

2.1 Pinning

2.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
GND	1, 2, 3, 4, 9, 10, 11, 13, 28, 30, 31, 32	Ground
n.c.	5, 6	not connected
SPICONFIG	7	set SPI mode [1]
PWRDN	8	power-down RF section [2]
ATT_IN	12	RF input to attenuator
SER_OUT	14	SPI data output
PUP2	15	power-up control 2
PUP1	16	power-up control 1
V_{DD}	17	supply voltage
D5	18	attenuation control word [3]
D4	19	attenuation control word [3]
D3	20	attenuation control word [3]
D2	21	attenuation control word [3]
D1	22	attenuation control word [3]
D0	23	attenuation control word [3]
PSCONFIG	24	set digital gain control mode [4]
CLK	25	SPI clock input

400 MHz to 2750 MHz high linearity variable gain amplifier

 Table 2.
 Pin description ...continued

Symbol	Pin	Description
SER_IN	26	SPI data input
LE/SS	27	latch enable or slave select [5]
AMP_OUT	29	RF output of amplifier
GND	GND paddle	exposed die pad

- [1] 0 = extended; 1 = basic; unconnected pulled up.
- [2] 0 = enabled; 1 = disabled; unconnected pulled down.
- [3] D5 = MSB; D0 = LSB; unconnected pulled down.
- [4] 0 = parallel; 1 = SPI; unconnected pulled down.
- [5] parallel = LE; SPI = SS (active LOW); unconnected pulled up.

3. Ordering information

Table 3. Ordering information

Type number	Package		
	Name	Description	Version
BGA7204	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $5\times5\times0.85$ mm	SOT617-3

4. Marking

Table 4. Marking

Type number	Marking code	Description
BGA7204	7204	
	****	manufacturing code
	TSDyww	yww = The actual assembly date code.

400 MHz to 2750 MHz high linearity variable gain amplifier

5. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{SUP}	supply voltage		<u>[1]</u> –0.6	+8	V
VI	input voltage		[2] -0.6	+8	V
V _O	output voltage		[<u>3</u>] -0.6	+8	V
I _I	input current		<u>[4]</u> –20	+20	mA
Io	output current		<u>[5]</u> –20	+20	mA
T _{stg}	storage temperature		-65	+150	°C
T _j	junction temperature		-	150	°C
$P_{i(RF)(ATT_IN)}$	RF input power on pin ATT_IN		-	30	dBm
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM); According JEDEC standard 22-A114E	-	4	kV
		Charged Device Model (CDM); According JEDEC standard 22-C101B	-	2	kV

^[1] Absolute maximum DC voltage on pin RF_OUT and V_{DD} .

6. Thermal characteristics

Table 6.	Thermal	characteristics
iable 0.	HIIGHIIIAI	Cital acter istics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j-sp)}$	thermal resistance from junction to solder point	$T_{sp} \le 85 ^{\circ}C$	<u>11</u> 10	K/W

^[1] T_{sp} is the temperature at the solder point.

7. Static characteristics

Table 7. Static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{SUP}	supply voltage		<u>[1]</u> 4.75	5.0	5.25	V
$I_{CC(tot)}$	total supply current	PWRDN = 0	-	115	133	mA
		PWRDN = 1	-	15	-	mA
T _{amb}	ambient temperature		-40	+25	+85	°C
I_{DD}	supply current	on pin V_{DD}				
		PWRDN = 0	-	43	-	mA
		PWRDN = 1	-	15	-	mA
		on pin AMP_OUT				
		PWRDN = 0	-	72	-	mA
		PWRDN = 1	-	0.05	-	mA

BGA7204

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved.

^[2] Absolute maximum DC voltage on pin SPICONFIG, PWRDN, D5, D4, D3, D2, D1, D0, PSCONFIG, CLK, SER_IN and LE/SS.

^[3] Absolute maximum DC voltage on pin SER_OUT.

^[4] Absolute maximum DC current through pin SPICONFIG, PWRDN, D5, D4, D3, D2, D1, D0, PSCONFIG, CLK, SER_IN and LE/SS.

^[5] Absolute maximum DC current through pin SER_OUT.

400 MHz to 2750 MHz high linearity variable gain amplifier

Table 7. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IL}	LOW-level input voltage		<u>[2]</u> –0.1	0	+0.8	V
V_{IH}	HIGH-level input voltage		[2] 2	3.3	V _{SUP} + 0.1	V
V_{OL}	LOW-level output voltage		<u>[3]</u> −0.1	0	+0.8	V
V _{OH}	HIGH-level output voltage		3 2.5	3.3	3.4	V
I _{OL}	LOW-level output current		<u>[3]</u> –4	-	-	mA
I _{OH}	HIGH-level output current		[3] _	-	4	mA

^[1] Supply voltage on pin RF_OUT and V_{DD} .

8. Dynamic characteristics

Table 8. Dynamic characteristics

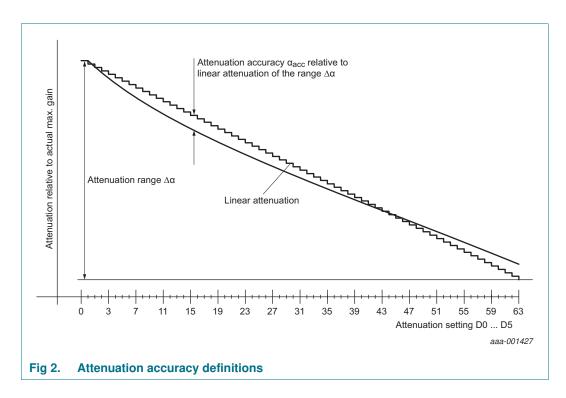
 $4.75~V \le V_{SUP} \le 5.25~V$; f = 400~MHz to 2750~MHz; $-40~C \le T_{amb} \le +85~C$; input and output are terminated with $50~\Omega$; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
G_p	power gain	minimum attenuation					
		$400~MHz \leq f \leq 1450~MHz$		16	18.5	21	dB
		$1450~MHz \leq f \leq 2100~MHz$		15	17.5	20	dB
		$2100~MHz \leq f \leq 2750~MHz$		14	16.5	19	dB
α_{range}	attenuation range	$400~MHz \leq f \leq 1450~MHz$		29	31.5	34	dB
		$1450~MHz \leq f \leq 2100~MHz$		28	30.5	33	dB
		$2100~MHz \leq f \leq 2750~MHz$		27	30.0	33	dB
α_{step}	attenuation step			0	0.5	1	dB
ΔG_p	power gain variation		[1]	-2.0	-	+2.0	dB
G _{p(flat)}	power gain flatness	minimum attenuation; per 100 MHz		-	-	0.4	dB
RLin	input return loss	$400~MHz \leq f \leq 2750~MHz$		10	-	-	dB
RL _{out}	output return loss	$400~MHz \leq f \leq 2750~MHz$		8	-	-	dB
NF	noise figure	minimum attenuation					
		$400~MHz \leq f \leq 700~MHz$		-	7	9.5	dB
		$700~MHz \leq f \leq 2100~MHz$		-	6.5	9	dB
		$2100~MHz \leq f \leq 2750~MHz$		-	7.0	10	dB
IP3 _O	output third-order intercept point	minimum attenuation					
		$400~MHz \leq f \leq 700~MHz$	[2]	34	38	-	dBm
		$700~MHz \leq f \leq 1450~MHz$	[2]	33	37.5	-	dBm
		$1450~MHz \leq f \leq 2100~MHz$	[2]	31	36	-	dBm
		$2100~MHz \leq f \leq 2750~MHz$	[2]	28.5	34	-	dBm

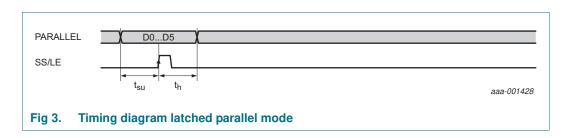
^[2] Digital input pins are: SPICONFIG, PWRDN, PUP2, PUP1, D5, D4, D3, D2, D1, D0, PSCONFIG, CLK, SER_IN and LE/SS.

^[3] Digital output pins are: SER_OUT.

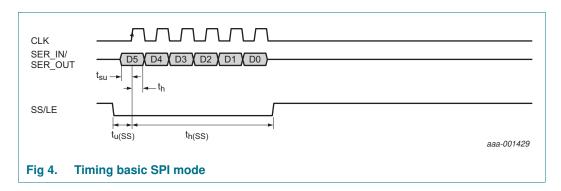
400 MHz to 2750 MHz high linearity variable gain amplifier


 Table 8.
 Dynamic characteristics ...continued

 $4.75~V \le V_{SUP} \le 5.25~V$; f = 400~MHz to 2750 MHz; $-40~^{\circ}C \le T_{amb} \le +85~^{\circ}C$; input and output are terminated with $50~\Omega$; unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
P _{L(1dB)} output power at 1 dB gain compression	output power at 1 dB gain compression	minimum attenuation				
		400 MHz \leq f \leq 1450 MHz	19	21	-	dBm
	1450 MHz \leq f \leq 2100 MHz	18	20.5	-	dBm	
		2100 MHz \leq f \leq 2750 MHz	17.5	20	-	dBm

^[1] Normalized to maximum gain and attenuation; see Figure 2.


^[2] $\Delta f = 1$ MHz; $P_i = -12$ dBm per tone.

9. Interface timing characteristics

400 MHz to 2750 MHz high linearity variable gain amplifier

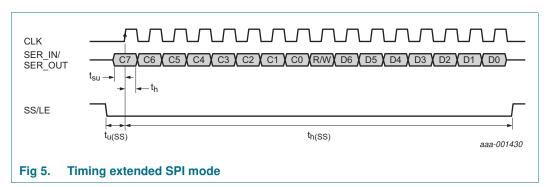
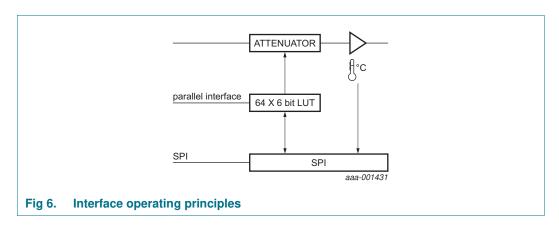



Table 9. Interface timing characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f_{SPI}	SPI frequency		-	-	10	MHz
f _{intf(par)}	parallel interface frequency		-	-	2	MHz
t _{su}	set-up time		-	10	-	ns
t _h	hold time		-	10	-	ns
$t_{su(SS)}$	set-up time on pin SS		-	10	-	ns
t _{h(SS)}	hold time on pin SS		-	0	-	ns

10. Control modes

10.1 Interface operating principles

BGA7204

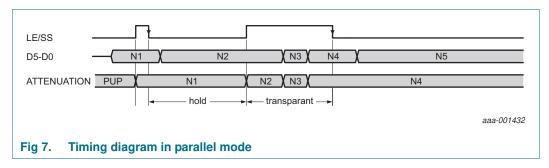
400 MHz to 2750 MHz high linearity variable gain amplifier

Table 10. Control modes, control options and features

Control pin configuration	Parallel	Basic SPI	Extended SPI
PSCONFIG (pin 24)	0	1	1
SPICONFIG (pin 7)	don't care	1	0
Control features	Parallel	Basic SPI	Extended SPI
6 bits digital control	Yes	Yes	Yes
programmable attenuation curve	No 🗓	No [1]	Yes
junction temperature read out	No	No	Yes
enable over-temperature protection	No	No	Yes
disable attenuator block	No	No	Yes
disable amplifier block	No	No	Yes
chip type read-out	No	No	Yes
chip version read-out	No	No	Yes
reset	No	No	Yes
daisy chaining multiple VGA's	No	Yes	No

^[1] One could however switch to the SPI extended mode, reprogram the attenuation curve and switch back to the digital parallel or SPI basic control mode.

10.2 Attenuation truth table


Table 11. Attenuation control truth tableFactory setting of look-up table; major states only.

Attenua	tion con	itrol woi	ď		Typical attenuation at 700 MHz	
D5	D4	D3	D2	D1	D0	
16 dB	8 dB	4 dB	2 dB	1 dB	0.5 dB	
1	1	1	1	1	1	0 dB
1	1	1	1	1	0	0.5 dB
1	1	1	1	0	1	1 dB
1	1	1	0	1	1	2 dB
1	1	0	1	1	1	4 dB
1	0	1	1	1	1	8 dB
0	1	1	1	1	1	16 dB
0	0	0	0	0	0	31.5 dB

10.3 Parallel control mode

The parallel input is connected internally to a latch. If LE/SS (pin 27) is logical HIGH the attenuation control word D5 to D0 is transferred to the attenuator register and the attenuator assumes the new attenuation setting. Upon a negative edge of LE/SS (pin 27) the actual attenuation control word will be hold: any changes in the control word at the parallel interface will be ignored. The timing is depicted in Figure 7.

400 MHz to 2750 MHz high linearity variable gain amplifier

LE/SS (pin 27) is provided with an internal pull-up resistor and can be left unconnected.

10.4 Basic SPI mode

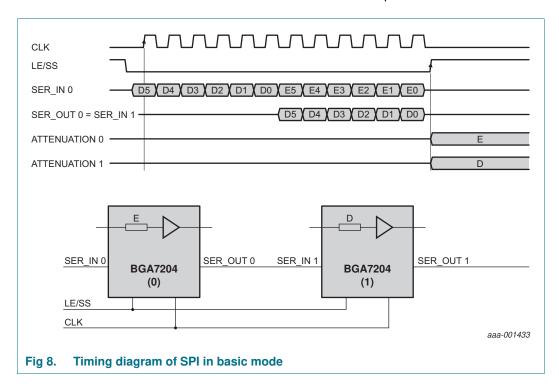

In the Basic SPI mode the attenuator register is loaded via the SPI interface.

Table 12. SPI commands for basic mode: PSCONFIG (pin 24) = 1; SPICONFIG (pin 7) = 1

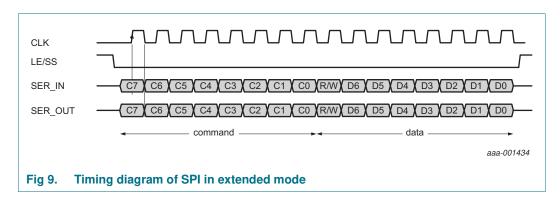
Control word [1]	D5	D4	D3	D2	D1	D0
Default attenuation	16 dB	8 dB	4 dB	2 dB	1 dB	0.5 dB

[1] D5 to D0 (bit 5 to 0) form the attenuation selecting word (address of the look-up table).

<u>Figure 4</u> depicts the timing diagram of SPI data format in the basic SPI mode. The data is clocked into a 6-bit shift register. This mode also allows daisy chaining of multiple chips. <u>Figure 8</u> shows a configuration of two VGAs in daisy chain. Data word D5 to D0 is stored in Attenuator 1, while data word E5 to E0 is stored in Attenuator 0. On the rising edge of LE/SS (pin 27), the data is captured and stored in the attenuator register. At the same moment the stored words become active on the attenuator outputs.

400 MHz to 2750 MHz high linearity variable gain amplifier

10.5 Extended SPI mode


Table 13. SPI commands for extended mode: PSCONFIG (pin 24) = 1; SPICONFIG (pin 7) = 0

Bit 7 is used to indicate whether it is a read operation (bit 7 = 1) or a write operation (bit 7 = 0). In case of a read operation the logic state of bits 0 to 6 don't care for the data from the master to the slave. The bits are updated by the slave.

•												•					
	Co	Command					Data				Reset value						
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
Attenuation [1]	0	0	0	0	0	0	0	0	rw	0	D5	D4	D3	D2	D1	D0	0x00
Temperature status [2]	0	0	0	1	0	0	0	0	1	0	0	0	D3	D2	D1	D0	0x8-
Temperature configuration [3]	0	0	0	1	0	0	0	1	rw	RF	PG	MG	D3	D2	D1	D0	0x00
Enable [4]	0	1	0	1	0	0	0	0	rw	0	0	0	0	ΑT	AM	TS	0x3F
Program LUT / attenuation curve [5]	1	0	C5	C4	C3	C2	C1	C0	rw	0	D5	D4	D3	D2	D1	D0	N/A
Chip type 6	1	1	1	1	0	0	0	0	1	0	0	0	0	1	0	0	0x84

- [1] D0 to D5 (bit 5 to 0) forms the attenuation selecting word (address of the look-up table).
- [2] D3 to D0 (bit 3 to 0) forms the temperature read out word.
- [3] D3 to D0 (bit 3 to 0) forms the temperature threshold for the temperature protection. Next to the temperature, RF, PG or MG is selected (mutual exclusive). In case RF is selected the RF part of the chip will switch off if the threshold is exceeded. If PG is selected the attenuator will switch to the attenuation gain that is configured with the PUPn pins if the threshold is exceeded. If MG is selected the attenuation gain will drop to a minimum value if the threshold is exceeded.
- [4] TS (bit 0) enables the temperature sensor, AM (bit 1) enables the amplifier and AT (bit 2) enables the attenuator.
- [5] D5 to D0 (bit 5 to 0) forms the attenuation control word to be programmed at address C5 to C0 (bit 13 to 8). After reset the curve is linear: D5 to D0 = C5 to C0 for all attenuation states.
- [6] Returns 04: 4 bits for third digit (0000 = 0) and 4 bits for the last digit (0010 = 2) of the chip type.

<u>Figure 9</u> depicts the timing diagram of SPI data write format in extended mode. The first 8 bits indicate the command. The first data bit indicates if it is a read or write action. In case of a read action, the data bits on pin SER_OUT (pin 14) are replaced with the read value.

10.6 Temperature sensor

In the extended SPI mode the temperature sensor can be read out. The temperature sensor is located close to the amplifier junctions. The temperature coding is listed in <u>Table 14</u>.

400 MHz to 2750 MHz high linearity variable gain amplifier

Table 14. Temperature ranges

The overlap between ranges reflects the inaccuracy of the temperature sensor.

T _j (°C)	D3	D2	D1	D0
< -15	0	0	0	0
-35 to +5	0	0	0	1
-15 to +35	0	0	1	0
15 to 80	0	0	1	1
60 to 110	0	1	0	0
90 to 130	0	1	0	1
110 to 140	0	1	1	0
120 to 150	0	1	1	1
130 to 160	1	0	0	0
> 140	1	0	0	1

10.7 Power-up states

The VGA is provided with power-up program pins. These pins configure the attenuation after start-up (see <u>Table 15</u>) depending on how LE/SS (pin 27) and PSCONFIG (pin 24) are configured at start-up (see <u>Table 16</u>).

Table 15. Power-up configuration

PUP2 (pin 15)	PUP1 (pin 16)	Attenuator gain at 700 MHz
0	0	–31.5 dB
0	1	−24 dB
1	0	-16 dB
1	1	0 dB

Table 16. Power-up states

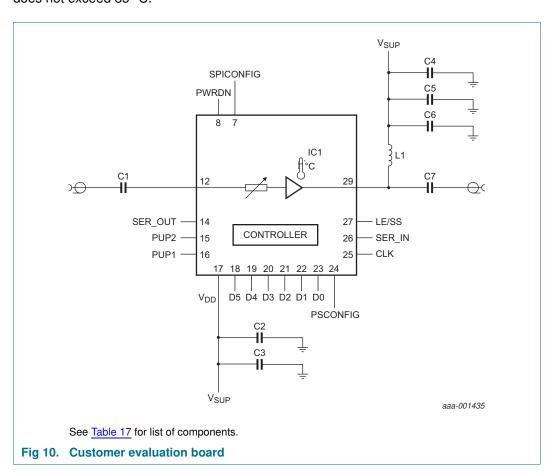
LE/SS (pin 27)	PSCONFIG (pin 24)	Power up state defined by
0	don't care	power-up program pins (PUP2 and PUP1) [1]
1	0	D5 to D0 (bit 5 to 0)
1	1	power-up program pins (PUP2 and PUP1) [1]

^[1] See <u>Table 15</u>.

The attenuation gain remains valid until it is updated with the parallel interface or SPI interface.

10.8 Power-on sequence

Digital inputs (SPICONFIG, PWRDN, PUP2, PUP1, D5, D4, D3, D2, D1, D0, PSCONFIG and LE/SS) should be powered simultaneously or after V_{DD} and GND are powered (see also <u>Table 5</u>). This prevents damage to the ESD protection diodes of the digital input. If the digital inputs need to be powered before V_{DD} is powered measures should be taken to limit the current to 20 mA, e.g. by means of an external resistor.


400 MHz to 2750 MHz high linearity variable gain amplifier

11. Application information

11.1 Application board

A customer application board is available from NXP upon request. It includes USB interface circuitry and customer software to facilitate evaluation of the BGA7204.

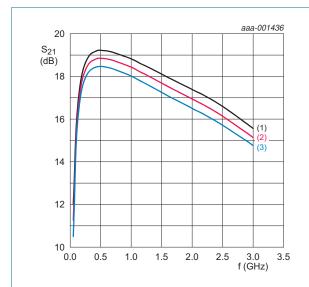
The final application shall be decoupled as depicted in Figure 10. The ground leads and exposed paddle should be connected directly to the ground plane. Enough via holes should be provided to connect the top and bottom ground planes in the final application board. Sufficient cooling should be provided that the temperature of the exposed die pad does not exceed 85 $^{\circ}$ C.

Table 17. List of components See Figure 10 for schematics.

Component	Description	Value	Supplier
C1	capacitor	100 pF	various
C2	capacitor	330 nF	various
C3	capacitor	100 pF	various
C4	capacitor	100 nF	various
C5	capacitor	100 pF	various
C6	capacitor	4.7 μF	various

BGA7204

All information provided in this document is subject to legal disclaimers.

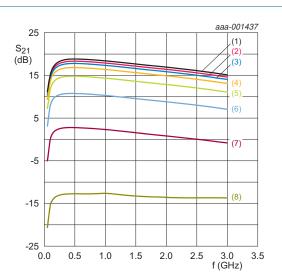

© NXP B.V. 2016. All rights reserved.

400 MHz to 2750 MHz high linearity variable gain amplifier

Table 17. List of components ...continued See Figure 10 for schematics.

Component	Description	Value	Supplier
C7	capacitor	100 pF	various
IC1	BGA7204		NXP
L1	choke	47 nH	

11.2 Characteristics



 $V_{SUP} = 5 V.$

(1)
$$T_{amb} = -40 \, ^{\circ}C$$

(2)
$$T_{amb} = +25 \, ^{\circ}C$$

(3)
$$T_{amb} = +85 \, ^{\circ}C$$

 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \text{ °C}.$

(3) attenuation =
$$61 (0x3D)$$

(4) attenuation =
$$59 (0x3B)$$

(7) attenuation =
$$31 (0x1F)$$

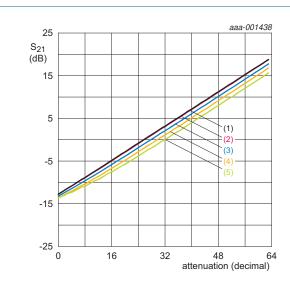
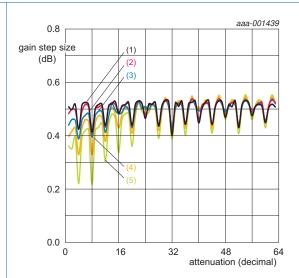

(8) attenuation = 00 (0x00, maximum)

Fig 11. Maximum power gain as a function of frequency; typical values

Fig 12. Power gain as a function of frequency; typical values

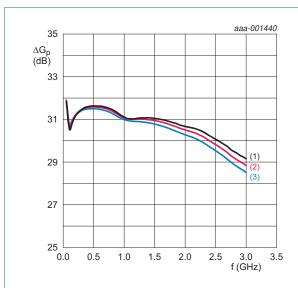
⁽¹⁾ attenuation = 63 (0x3F, minimum)


400 MHz to 2750 MHz high linearity variable gain amplifier

 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) f = 0.4 GHz
- (2) f = 0.7 GHz
- (3) f = 1.45 GHz
- (4) f = 2.10 GHz
- (5) f = 2.75 GHz

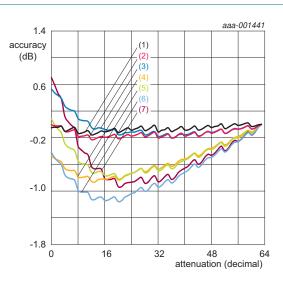
Fig 13. Power gain as a function of attenuation state (63 = minimum attenuation); typical values



 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) f = 0.4 GHz
- (2) f = 0.7 GHz
- (3) f = 1.45 GHz
- (4) f = 2.10 GHz
- (5) f = 2.75 GHz

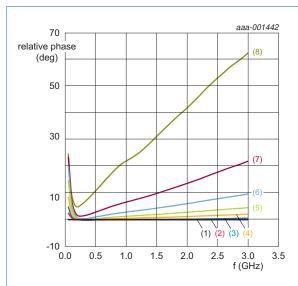
Fig 14. Gain step size as a function of attenuation state (63 = minimum attenuation); typical values


400 MHz to 2750 MHz high linearity variable gain amplifier

$$V_{SUP} = 5 V.$$

- (1) $T_{amb} = -40 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

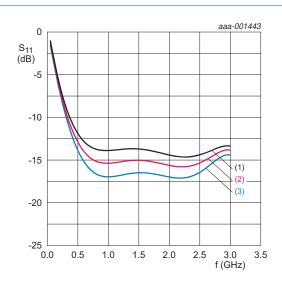
Fig 15. Power gain range as a function of frequency; typical values



 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) f = 0.4 GHz; $\alpha_{range} = 31.5 \text{ dB}$
- (2) f = 0.7 GHz; $\alpha_{range} = 31.5 \text{ dB}$
- (3) f = 1.45 GHz; $\alpha_{range} = 31.5 \text{ dB}$
- (4) f = 1.45 GHz; α_{range} = 30.5 dB
- (5) f = 2.10 GHz; α_{range} = 30.5 dB
- (6) f = 2.10 GHz; $\alpha_{range} = 30.0 \text{ dB}$
- (7) f = 2.75 GHz; α_{range} = 30.5 dB

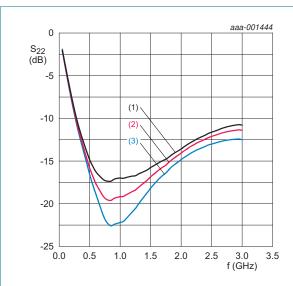
Fig 16. Relative power gain accuracy as a function of attenuation state (63 = minimum attenuation); typical values


400 MHz to 2750 MHz high linearity variable gain amplifier

 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) attenuation = 63 (0x3F, minimum)
- (2) attenuation = 62 (0x3E)
- (3) attenuation = 61 (0x3D)
- (4) attenuation = 59 (0x3B)
- (5) attenuation = 55 (0x37)
- (6) attenuation = 47 (0x2F)
- (7) attenuation = 31 (0x1F)
- (8) attenuation = 00 (0x00, maximum)

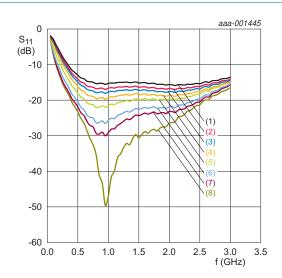
Fig 17. Relative phase as a function of frequency; typical values



V_{SUP} = 5 V; minimum attenuation.

- (1) $T_{amb} = -40 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

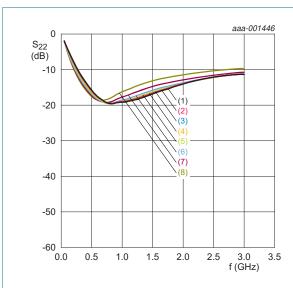
Fig 18. Input return loss as a function of frequency; typical values


400 MHz to 2750 MHz high linearity variable gain amplifier

 $V_{SUP} = 5 V$; minimum attenuation.

- (1) $T_{amb} = -40 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

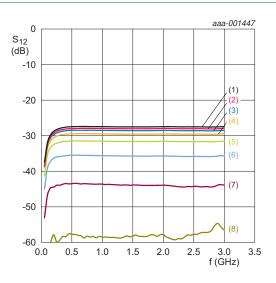
Fig 19. Output return loss as a function of frequency; typical values



 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) attenuation = 63 (0x3F, minimum)
- (2) attenuation = 62 (0x3E)
- (3) attenuation = 61 (0x3D)
- (4) attenuation = 59 (0x3B)
- (5) attenuation = 55 (0x37)
- (6) attenuation = 47 (0x2F)
- (7) attenuation = 31 (0x1F)
- (8) attenuation = 00 (0x00, maximum)

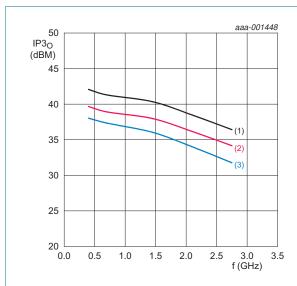
Fig 20. Input return loss as a function of frequency; typical values


400 MHz to 2750 MHz high linearity variable gain amplifier

 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) attenuation = 63 (0x3F, minimum)
- (2) attenuation = 62 (0x3E)
- (3) attenuation = 61 (0x3D)
- (4) attenuation = 59 (0x3B)
- (5) attenuation = 55 (0x37)
- (6) attenuation = 47 (0x2F)
- (7) attenuation = 31 (0x1F)
- (8) attenuation = 00 (0x00, maximum)

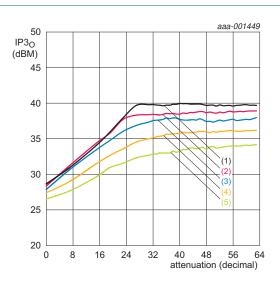
Fig 21. Output return loss as a function of frequency; typical values



 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) attenuation = 63 (0x3F, minimum)
- (2) attenuation = 62 (0x3E)
- (3) attenuation = 61 (0x3D)
- (4) attenuation = 59 (0x3B)
- (5) attenuation = 55 (0x37)
- (6) attenuation = 47 (0x2F)
- (7) attenuation = 31 (0x1F)
- (8) attenuation = 00 (0x00, maximum)

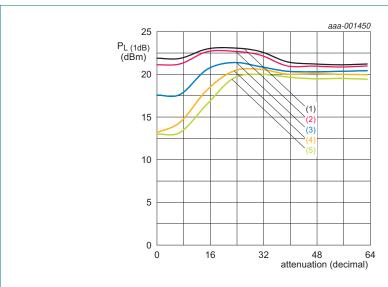
Fig 22. Isolation as a function of frequency; typical values


400 MHz to 2750 MHz high linearity variable gain amplifier

 $V_{SUP} = 5 V$; minimum attenuation.

- (1) $T_{amb} = -40 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

Fig 23. Output third-order intercept point as a function of frequency; typical values

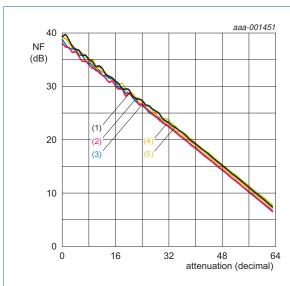


 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 ^{\circ}\text{C}.$

- (1) f = 0.4 GHz
- (2) f = 0.7 GHz
- (3) f = 1.45 GHz
- (4) f = 2.10 GHz
- (5) f = 2.75 GHz

Fig 24. Output third-order intercept point as a function of attenuation state (63 = minimum attenuation); typical values

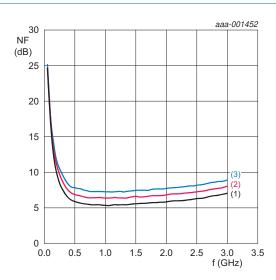
400 MHz to 2750 MHz high linearity variable gain amplifier



 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) f = 0.4 GHz
- (2) f = 0.7 GHz
- (3) f = 1.45 GHz
- (4) f = 2.10 GHz
- (5) f = 2.75 GHz

Fig 25. Output power at 1 dB gain compression as a function of attenuation state (63 = minimum attenuation); typical values


400 MHz to 2750 MHz high linearity variable gain amplifier

 $V_{SUP} = 5 \text{ V}; T_{amb} = 25 \,^{\circ}\text{C}.$

- (1) f = 0.4 GHz
- (2) f = 0.7 GHz
- (3) f = 1.45 GHz
- (4) f = 2.10 GHz
- (5) f = 2.75 GHz

Fig 26. Noise figure as a function of attenuation state (63 = minimum attenuation); typical values

V_{SUP} = 5 V; minimum attenuation.

- (1) $T_{amb} = -40 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

Fig 27. Noise figure as a function of frequency; typical values

400 MHz to 2750 MHz high linearity variable gain amplifier

12. Package outline

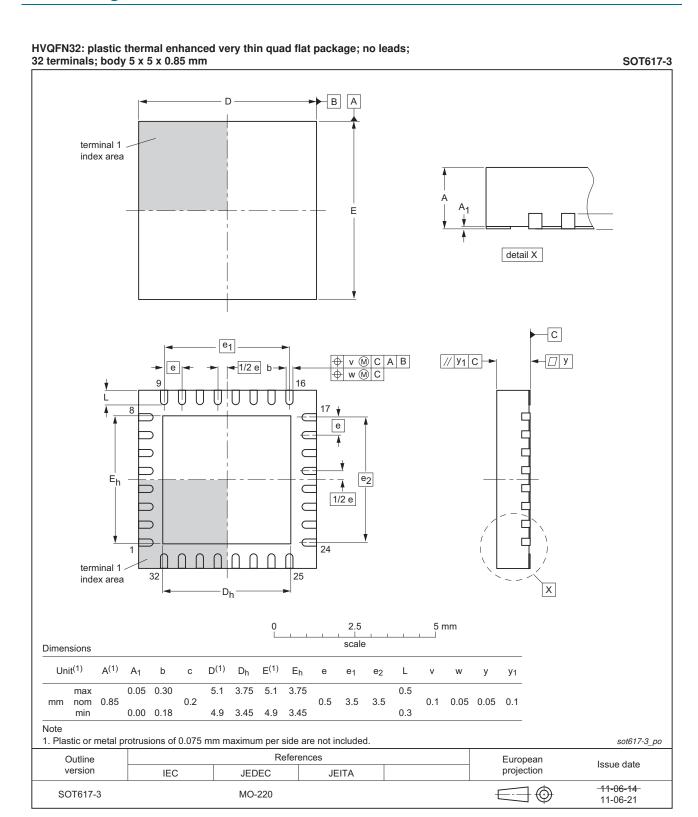
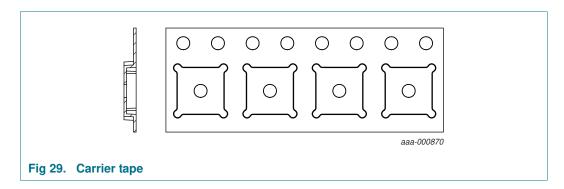


Fig 28. Package outline SOT617-3 (HVQFN32)


BGA7204 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2016. All rights reserved.

400 MHz to 2750 MHz high linearity variable gain amplifier

13. Packing information

The BGA7204 will be delivered in reel pack SMD 7", 1500 pieces per reel.

14. Abbreviations

Table 18. Abbreviations

Acronym	Description
ESD	ElectroStatic Discharge
НВМ	Human Body Model
IF	Intermediate Frequency
LSB	Least Significant Bit
LUT	Look-Up Table
MMIC	Monolithic Microwave Integrated Circuit
MSB	Most Significant Bit
RF	Radio Frequency
SPI	Serial Peripheral Interface
USB	Universal Serial Bus
WiMAX	Worldwide Interoperability for Microwave Access

15. Revision history

Table 19. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BGA7204 v.4	20161115	Product data sheet		BGA7204 v.3
Modifications:	• Table 4 on p	age 4: Marking code has been	changed from TSS t	o TSD.
BGA7204 v.3	20130128	Product data sheet	-	BGA7204 v.2
Modifications:	• <u>Section 1.2 c</u>	on page 1: moisture sensitivity	level 2 has been cha	inged to 1.
BGA7204 v.2	20120118	Product data sheet	-	BGA7204 v.1
BGA7204 v.1	20120105	Product data sheet	-	-

400 MHz to 2750 MHz high linearity variable gain amplifier

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BGA7204