imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

700 MHz to 3800 MHz high linearity variable gain amplifier

Rev. 5 — 20 January 2017

Product data sheet

1. Product profile

1.1 General description

The BGA7210 MMIC is, also known as the BTS6001A, an extremely linear Variable Gain Amplifier (VGA), operating from 0.7 GHz to 3.8 GHz. The maximum gain is 30 dB. It has an attenuation range of 31.5 dB. At its minimum attenuation setting it has a maximum output power of 21 dBm, an IP3_O of 39 dBm and a noise figure of 6.5 dB.

The current consumption can be optimized per attenuation setting allowing for optimized overall system performance. The current consumption and attenuation level are controlled through a Serial Peripheral Interface (SPI). The current can be reduced to 120 mA. Optimal linearity performance is obtained at 185 mA. The BGA7210 has a fast switching power-down pin to further reduce current consumption during idle time.

The BGA7210 has been designed and qualified for the severe mission profile of cellular base stations, but its outstanding RF performance and interfacing flexibility make it suitable for a wide variety of applications.

The BGA7210 is housed in a 32 pins 5 mm \times 5 mm leadless HVQFN32 package.

1.2 Features and benefits

- Operating frequency range from 0.7 GHz to 3.8 GHz
- High gain of 30 dB
- High IP3_O of 39 dBm
- Attenuation range of 31.5 dB with 0.5 dB step (6 bit)
- Maximum output power of 21 dBm
- Noise figure of 6.5 dB at maximum gain
- ESD protection on all pins (HBM 4 kV; CDM 2 kV)
- Fast switching power-save mode
- Moisture sensitivity level 1
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS)

1.3 Applications

- IF and RF applications
- WiMAX and cellular base stations
- Cable modem termination systems
- Temperature compensation circuits

1.4 Quick reference data

Table 1. Quick reference data

4.75 V \leq V_{SUP} \leq 5.25 V; -40 °C \leq T_{amb} \leq +85 °C; maximum current; input and output is terminated with 50 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{SUP}	supply voltage		[1]	4.75	5.0	5.25	V
I _{CC(tot)}	total supply current	maximum current		160	195	230	mA
		optimized current	[2]	-	185	-	mA
		minimum current		-	120	-	mA
		power-down current		-	15	-	mA
T _{amb}	ambient temperature			-40	+25	+85	°C
Gp	power gain	minimum attenuation					
		700 MHz \leq f \leq 1400 MHz		26	30	33	dB
		1400 MHz \leq f \leq 1700 MHz		26	29.5	33	dB
		$1700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$		26	29	33	dB
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		25	28	31	dB
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		22	26	30	dB
α_{range}	attenuation range	$700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$		28	31.5	35	dB
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		27	30.5	34	dB
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		26	29.5	33	dB
NF	noise figure	minimum attenuation					
		700 MHz \leq f \leq 2200 MHz		-	6.5	8.5	dB
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		-	7	9	dB
		3400 MHz \leq f \leq 3800 MHz		-	8	10	dB
		maximum attenuation					
		700 MHz \leq f \leq 2200 MHz		-	27.5	30.5	dB
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		-	28	31	dB
		3400 MHz \leq f \leq 3800 MHz		-	28.5	32	dB
IP3 ₀	output third-order intercept point	minimum attenuation	[3]				
		700 MHz \leq f \leq 1400 MHz		34	39	-	dBm
		1400 MHz \leq f \leq 1700 MHz		32	37	-	dBm
		1700 MHz \leq f \leq 2200 MHz		30	35	-	dBm
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		28	34	-	dBm
		2200 MHz \leq f \leq 2800 MHz; C_{sh} = 0.68 pF	[4]	30	35	-	dBm
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		24	30	-	dBm
		maximum attenuation	[3]				
		700 MHz \leq f \leq 1400 MHz		-	35	-	dBm
		1400 MHz \leq f \leq 1700 MHz		-	33	-	dBm
		$1700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$		-	31	-	dBm
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		-	30	-	dBm
		2200 MHz $\leq f \leq$ 2800 MHz; C_{sh} = 0.68 pF	[4]	-	30	-	dBm
		3400 MHz \leq f \leq 3800 MHz		-	25	-	dBm

Table 1. Quick reference data ...continued

4.75 V \leq V_{SUP} \leq 5.25 V; -40 °C \leq T_{amb} \leq +85 °C; maximum current; input and output is terminated with 50 Ω ; unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Unit
output power at 1 dB gain compression	minimum attenuation				
	$700 \text{ MHz} \leq f \leq 2800 \text{ MHz}$	18	21	-	dBm
	2200 MHz \leq f \leq 2800 MHz; C _{sh} = 0.68 pF [4]	20	23	-	dBm
	$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$	16	19	-	dBm
	Parameter output power at 1 dB gain compression	ParameterConditionsoutput power at 1 dB gain compressionminimum attenuation $700 \text{ MHz} \le f \le 2800 \text{ MHz}$ $2200 \text{ MHz} \le f \le 2800 \text{ MHz}$ $2200 \text{ MHz} \le f \le 2800 \text{ MHz}$ $3400 \text{ MHz} \le f \le 3800 \text{ MHz}$	ParameterConditionsMinoutput power at 1 dB gain compressionminimum attenuation $700 \text{ MHz} \le f \le 2800 \text{ MHz}$ 18 $2200 \text{ MHz} \le f \le 2800 \text{ MHz}$; C _{sh} = 0.68 pF1420 $3400 \text{ MHz} \le f \le 3800 \text{ MHz}$ 16	ParameterConditionsMinTypoutput power at 1 dB gain compressionminimum attenuation1821 $700 \text{ MHz} \le f \le 2800 \text{ MHz}$ 1821 $2200 \text{ MHz} \le f \le 2800 \text{ MHz}$; $C_{sh} = 0.68 \text{ pF}$ 2023 $3400 \text{ MHz} \le f \le 3800 \text{ MHz}$ 1619	ParameterConditionsMinTypMaxoutput power at 1 dB gain compressionminimum attenuation $700 \text{ MHz} \le f \le 2800 \text{ MHz}$ 1821- $2200 \text{ MHz} \le f \le 2800 \text{ MHz}$; $C_{sh} = 0.68 \text{ pF}$ 1821- $3400 \text{ MHz} \le f \le 3800 \text{ MHz}$ 1619-

[1] Supply voltage on pins RF_OUT, V_{CC2} , V_{DDA} , V_{CC1} and V_{DDD} .

[2] See <u>Section 9.2</u>.

- $[3] \quad P_i = -23 \text{ dBm per tone}; \Delta f = 10 \text{ MHz}.$
- [4] See <u>Section 11</u>.

2. Pinning information

2.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
GND	1, 2, 3, 4, 5, 6, 7, 8, 14, 18, 25, 26, 27, 2	9, 10, 13, Ground 8, 31, 32
n.c.	11, 30	not connected
RF_OUT	12	RF output and supply to amplifier 2
V _{CC2}	15	Supply voltage to amplifier 2
V _{DDA}	16	Analog supply voltage to DSA

BGA7210

All information provided in this document is subject to legal disclaimers

Table 2.	Pin description continu	ed
Symbol	Pin	Description
V _{CC1}	17	Supply voltage to amplifier 1
V _{DDD}	19	Digital supply voltage to digital controller
SER_OUT	20	SPI data output
SS	21	SPI slave select (0 = select; 1 = deselect)
SER_IN	22	SPI data input
CLK	23	SPI clock input
PUPMXG/	PWRDN 24	Power-up gain attenuation / power down
RF_IN	29	RF input

3. Ordering information

	Table 3. Ordering information						
Type number		Package	ackage				
		Name	Description	Version			
	BGA7210	HVQFN32	plastic thermal enhanced very thin quad flat package; no leads; 32 terminals; body $5 \times 5 \times 0.85$ mm	SOT617-3			

4. Marking

Table 4. Marking	
Type number	Marking code
BGA7210	7210

5. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{SUP}	supply voltage		<u>1</u> –0.6	+8	V
VI	input voltage		2 -0.6	+8	V
Vo	output voltage		<u>3</u> –0.6	+8	V
lı	input current		<u>[4]</u> –20	+20	mA
lo	output current		<u>[5]</u> –20	+20	mA
P _{RFIN}	power on pin RF_IN		-	30	dBm
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	150	°C
V_{ESD}	electrostatic discharge voltage	Human Body Model (HBM); According to JEDEC standard 22-A114E	-	4	kV
		Charged Device Model (CDM); According to JEDEC standard 22-C101B	-	2	kV

[1] Absolute maximum DC voltage on pins RF_OUT, V_{CC2}, V_{DDA}, V_{CC1}, V_{DDD} and RF_IN.

[2] Absolute maximum DC voltage on pins SS, SER_IN, CLK and PUPMXG/PWRDN.

- [3] Absolute maximum DC voltage on pin SER_OUT.
- [4] Absolute maximum DC current through pins SS, SER_IN, CLK and PUPMXG/PWRDN.
- [5] Absolute maximum DC current through pin SER_OUT.

6. Thermal characteristics

Table 6.	Thermal characteristics						
Symbol	Parameter	Conditions	Тур	Unit			
R _{th(j-sp)}	thermal resistance from junction to solder point	$T_{sp} \le 85 \ ^{\circ}C$	<u>11</u> 16	K/W			
[1] T_{sp} is the temperature at the solder point.							

7. Static characteristics

SymbolParameterConditionsMinTypMaxUnitV_SUPsupply voltageII4.755.05.25VICC(tot)total supply currentmaximumI60195230mAoptimized currentI2-185-mAminimum current-120-mAminimum current-150120mATambambient temperatureon pin RF_OUT-15-mATambsupply currenton pin V _{CC2} -450°CmASupply currenton pin V _{DDA} -5-mAsupply currenton pin V _{DDA} -5-mAsupply currenton pin V _{DDD} -5-mAvoltLOW-level input voltageII-10+0.8VV _{IL} LOW-level output voltageII-IIIIIV _{OL} LOW-level output voltageII-IIIIIIV _{OL} LOW-level output voltageIII <t< th=""><th>Table 7.</th><th>Static characteristics</th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Table 7.	Static characteristics						
V_SUPsupply voltageII4.755.05.25VICC(tot)total supply currentmaximum160195230mAoptimized currentII-185-mAoptimized currentII-120-mApower-down current-15-mATambambient temperatureon pin RF_OUT-45+85°CICCsupply currenton pin V _{CC2} -45-mAsupply currenton pin V _{CC1} -55-mAsupply currenton pin V _{CC1} -55-mAsupply currenton pin V _{DDD} -55-mAvoltLOW-level input voltage-II0+0.8VV _{IL} LOW-level output voltageII-10+0.8VV _{OH} HIGH-level output voltageII-153.33.4VI _{OL} LOW-level output currentIIII0iImAI _{OH} HIGH-level output currentIIIIIIIIIIIIII _{OH} HIGH-level output currentIIIIIIIIIIIIIIIIIII _{OH} HIGH-level output currentII	Symbol	Parameter	Conditions		Min	Тур	Max	Unit
ICC(tot)total supply currentmaximum160195230mAoptimized current[2]-185-mAminimum current-120-mApower-down current-15-mATambambient temperature40+25+85°CICCsupply currenton pin RF_OUT-85-mAsupply currenton pin V _{CC2} -45-mAsupply currenton pin V _{CC1} -55-mAsupply currenton pin V _{DDA} -55-mAsupply currenton pin V _{DDD} -55-mAsupply currenton pin V _{DDD} -50-mAVILLOW-level input voltage-[3]-0.10+0.8VVOHHIGH-level output voltage[4]-0.10+0.8VIOLLOW-level output current[4]-15-0mAIOHHIGH-level output current[4]0-15mA	V _{SUP}	supply voltage		[1]	4.75	5.0	5.25	V
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I _{CC(tot)}	total supply current	maximum		160	195	230	mA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			optimized current	[2]	-	185	-	mA
power-down current - 15 - mA T_{amb} ambient temperature -40 +25 +85 °C I_{CC} supply current on pin RF_OUT - 85 - mA supply current on pin V _{CC2} - 45 - mA supply current on pin V _{CC1} - 55 - mA supply current on pin V _{CC1} - 55 - mA viply current on pin V _{CC1} - 55 - mA ViL LOW-level input voltage - 13 -0.1 0 +0.8 V ViH HIGH-level input voltage - 13 -0.1 0 +0.8 V VoL LOW-level output voltage - 13 -0.1 0 +0.8 V Vol HIGH-level output voltage - 13 -0.1 0 +0.8 V Vol HIGH-level output voltage - 14<			minimum current		-	120	-	mA
$\begin{array}{ccc} T_{amb} & ambient temperature & -40 & +25 & +85 & ^{\circ}C \\ \hline I_{CC} & supply current & on pin RF_OUT & - & 85 & - & mA \\ supply current & on pin V_{CC2} & - & 45 & - & mA \\ supply current & on pin V_{DDA} & - & 5 & - & mA \\ supply current & on pin V_{CC1} & - & 55 & - & mA \\ supply current & on pin V_{DDD} & - & 55 & - & mA \\ supply current & on pin V_{DDD} & - & 5 & - & mA \\ \hline V_{IL} & LOW-level input voltage & 0 & pin V_{DDD} & - & 5 & - & mA \\ \hline V_{IL} & ILOW-level input voltage & 1 & 0 & +0.8 & V \\ \hline V_{OL} & LOW-level output voltage & 1 & 0 & +0.8 & V \\ \hline V_{OL} & LOW-level output voltage & 1 & 0 & -0.1 & 0 & +0.8 & V \\ \hline V_{OL} & LOW-level output voltage & 1 & 0 & -0.8 & V \\ \hline V_{OL} & ILOW-level output voltage & 1 & 0 & -0.8 & V \\ \hline I_{OL} & ILOW-level output current & 1 & -15 & - & 0 & mA \\ \hline I_{OH} & HIGH-level output current & 1 & 0 & -0 & 15 & mA \\ \hline \end{array}$			power-down current		-	15	-	mA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	T _{amb}	ambient temperature			-40	+25	+85	°C
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I _{CC}	supply current	on pin RF_OUT		-	85	-	mA
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		supply current	on pin V_{CC2}		-	45	-	mA
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		supply current	on pin V _{DDA}		-	5	-	mA
supply current on pin V_{DDD} - 5 - mA V_{IL} LOW-level input voltage I3 -0.1 0 +0.8 V V_{IH} HIGH-level input voltage I3 2 3.3 V_{SUP} + 0.1 V V_{OL} LOW-level output voltage I4 -0.1 0 +0.8 V V_{OL} LOW-level output voltage I4 2.5 3.3 3.4 V V_{OL} LOW-level output current I4 -15 - 0 mA I_{OL} HIGH-level output current I4 0 - 15 mA		supply current	on pin V_{CC1}		-	55	-	mA
		supply current	on pin V_{DDD}		-	5	-	mA
V_{IH} HIGH-level input voltage [3] 2 3.3 $V_{SUP} + 0.1$ V V_{OL} LOW-level output voltage [4] -0.1 0 $+0.8$ V V_{OH} HIGH-level output voltage [4] 2.5 3.3 3.4 V I_{OL} LOW-level output current [4] -15 - 0 mA I_{OH} HIGH-level output current [4] 0 - 15 mA	V _{IL}	LOW-level input voltage		[3]	-0.1	0	+0.8	V
	V _{IH}	HIGH-level input voltage		[3]	2	3.3	$V_{SUP} + 0.1$	V
V_{OH} HIGH-level output voltage [4] 2.5 3.3 3.4 V I_{OL} LOW-level output current [4] -15 - 0 mA I_{OH} HIGH-level output current [4] 0 - 15 mA	V _{OL}	LOW-level output voltage		<u>[4]</u>	-0.1	0	+0.8	V
I _{OL} LOW-level output current [4] -15 - 0 mA I _{OH} HIGH-level output current [4] 0 - 15 mA	V _{OH}	HIGH-level output voltage		[4]	2.5	3.3	3.4	V
I _{OH} HIGH-level output current [4] 0 - 15 mA	I _{OL}	LOW-level output current		[4]	-15	-	0	mA
	I _{OH}	HIGH-level output current		[4]	0	-	15	mA

[1] Supply voltage on pins RF_OUT, $V_{CC2},\,V_{DDA},\,V_{CC1}$ and $V_{DDD}.$

[2] See <u>Section 9.2</u>.

[3] Digital input pins are: SS, SER_IN, CLK and PUPMXG/PWRDN.

[4] Digital output pin is: SER_OUT.

8. Dynamic characteristics

Table 8. Dynamic characteristics

4.75 V \leq V_{SUP} \leq 5.25 V; -40 °C \leq T_{amb} \leq +85 °C; maximum current; input and output terminated with 50 Ω , unless otherwise specified.

	1						
Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
Gp	power gain	minimum attenuation					
		$700 \text{ MHz} \leq f \leq 1400 \text{ MHz}$		26	30	33	dB
		1400 MHz \leq f \leq 1700 MHz		26	29.5	33	dB
		$1700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$		26	29	33	dB
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		25	28	31	dB
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		22	26	30	dB
$\Delta G / \Delta T$	gain variation with temperature			-0.03	-0.006	0	dB/°C
$\Delta G/\Delta V_{SUP}$	gain variation with supply voltage			-0.2	-	+0.2	dB/V
α_{range}	attenuation range	700 MHz \leq f \leq 2200 MHz		28	31.5	35	dB
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		27	30.5	34	dB
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		26	29.5	33	dB
α_{step}	attenuation step	$700 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		0	0.5	1	dB
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		0	0.5	1.2	dB
ΔG_p	power gain variation	$700 \text{ MHz} \leq f \leq 3800 \text{ MHz}$	[1]	-1.5	-	+1.5	dB
		$700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$	[2]	$\begin{array}{l}-(0.5 \ + \\ 0.025 \times i_{\alpha})\end{array}$	-	$+(0.5 + 0.025 \times i_{\alpha})$	dB
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$	[2]	$\begin{array}{c} -(0.3 \ + \\ 0.025 \times i_{\alpha}) \end{array}$	-	$+(0.3 + 0.025 \times i_{\alpha})$	dB
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$	[2]	$\begin{array}{c} -(0.5 \ + \\ 0.025 \times i_{\alpha}) \end{array}$	-	$+(0.5 + 0.025 \times i_{\alpha})$	dB
G _{p(flat)}	power gain flatness	700 MHz \leq f \leq 3800 MHz; per 200 MHz		-	-	1	dB
RL _{in}	input return loss	$700 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		10	-	-	dB
RL _{out}	output return loss	700 MHz \leq f \leq 3800 MHz		7	-	-	dB
		2200 MHz \leq f \leq 2800 MHz; C_{sh} = 0.68 pF		10	-	-	dB
NF	noise figure	minimum attenuation					
		$700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$		-	6.5	8.5	dB
		$2200~MHz \leq f \leq 2800~MHz$		-	7	9	dB
		$3400~MHz \leq f \leq 3800~MHz$		-	8	10	dB
		maximum attenuation					
		$700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$		-	27.5	30.5	dB
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		-	28	31	dB
		3400 MHz \leq f \leq 3800 MHz		-	28.5	32	dB

Table 8. Dynamic characteristics ... continued

4.75 V \leq V_{SUP} \leq 5.25 V; -40 °C \leq T_{amb} \leq +85 °C; maximum current; input and output terminated with 50 Ω , unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
IP3 _O	output third-order	minimum attenuation	[3]				
	intercept point	700 MHz \leq f \leq 1400 MHz		34	39	-	dBm
		1400 MHz \leq f \leq 1700 MHz		32	37	-	dBm
		$1700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$		30	35	-	dBm
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		28	33	-	dBm
		2200 MHz \leq f \leq 2800 MHz; C_{sh} = 0.68 pF	[4]	30	35	-	dBm
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		24	27	-	dBm
		maximum attenuation	[3]				
		700 MHz \leq f \leq 1400 MHz		-	35	-	dBm
		1400 MHz \leq f \leq 1700 MHz		-	33	-	dBm
		$1700 \text{ MHz} \leq f \leq 2200 \text{ MHz}$		-	31	-	dBm
		$2200 \text{ MHz} \leq f \leq 2800 \text{ MHz}$		-	30	-	dBm
		2200 MHz \leq f \leq 2800 MHz; C_{sh} = 0.68 pF	[4]	-	30	-	dBm
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		-	25	-	dBm
P _{L(1dB)}	output power at	minimum attenuation					
	1 dB	700 MHz \leq f \leq 2800 MHz		18	21	-	dBm
	gain compression	2200 MHz \leq f \leq 2800 MHz; C_{sh} = 0.68 pF	[4]	20	23	-	dBm
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		16	19	-	dBm
		maximum attenuation					
		700 MHz \leq f \leq 2800 MHz		-	20	-	dBm
		2200 MHz \leq f \leq 2800 MHz; C_{sh} = 0.68 pF	[4]	-	20	-	dBm
		$3400 \text{ MHz} \leq f \leq 3800 \text{ MHz}$		-	16	-	dBm
t _{d(pd)}	power-down delay time		[5]	-	100	-	ns
t _{d(pu)}	power-up delay time		[5]	-	5	-	μS
$t_{resp(\alpha)}$	attenuation response time		<u>[5][</u> 6]	-	100	-	ns

[1] Normalized to maximum gain and attenuation.

[2] i_{α} specifies the decimal attenuation step, ranging from 0 to 63.

 $[3] \quad P_i = -23 \text{ dBm per tone}; \Delta f = 10 \text{ MHz}.$

[4] See <u>Section 11</u>.

- [5] To within 0.1 dB of final gain state.
- [6] After last SPI bit is clocked in.

9. Serial Peripheral Interface

9.1 Command word format

The Serial Peripheral Interface (SPI) operates in mode 0. This means that when the SPI is inactive the clock pin is logically LOW. When the SPI interface is active the data is clocked in at the rising edge of the clock pulse; data is clocked out at the negative edge. The

control word length is 12 bits (see <u>Figure 2</u>), however the word length can be extended appropriately with trailing zeros (see <u>Figure 3</u>).

The word written on the input (SER_IN) will be replicated on the output (SER_OUT)

9.2 Setting current and attenuation

The current and attenuation are set by bits D9 to D0 and are preceded by the command bits C0 and C1, which are always set to logic LOW, see <u>Figure 4</u>. If all bits are set to logic LOW (0x000) then current is at maximum and attenuation is at minimum; if all bits are set to logic HIGH (0x3FF) then current is at minimum and attenuation is at maximum.

attenuation (D5, ... , D2)

Depending on the attenuation setting the current through the first amplifier and the second amplifier can be optimized, without compromising on linearity. At attenuations less than 9 dB the current in the first amplifier can be reduced with 10 mA; at attenuations equal or larger than 9 dB the current in the second amplifier can be reduced by 15 mA.

Table 9.	Current first amplifier truth table	
D9, D8	Current reduction (mA)	
0x0	0	
0x1	-10	
0x2	-20	
0x3	-30	

Table 10. Current second amplifier truth table

D7, D6	Current reduction (mA)
0x0	0
0x1	-15
0x2	-30
0x3	-45

Table 11. Attenuation truth table; major states only

D5, D4, D3, D2, D1, D0	Attenuation (dB)
0x00	0
0x01	0.5
0x02	1
0x04	2
0x08	4
0x10	8
0x20	16
0x3F	31.5

9.3 SPI timing

Table 12. SPI timing

4.75 V \leq V_{SUP} \leq 5.25 V; -40 °C \leq T_{amb} \leq +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Unit
SPI frequency		0.1	-	20	MHz
set-up time		10	-	-	ns
hold time		10	-	-	ns
set-up time on pin SS		10	-	-	ns
hold time on pin SS		10 + 11 / f _{SPI}	-	-	ns
	ParameterSPI frequencyset-up timehold timeset-up time on pin SShold time on pin SS	ParameterConditionsSPI frequencyset-up timehold timeset-up time on pin SShold time on pin SS	ParameterConditionsMinSPI frequency0.1set-up time10hold time10set-up time on pin SS10hold time on pin SS10 + 11 / f_SPI	ParameterConditionsMinTypSPI frequency0.1-set-up time10-hold time10-set-up time on pin SS10-hold time on pin SS10 + 11 / f_{SPI}-	ParameterConditionsMinTypMaxSPI frequency0.1-20set-up time10hold time10set-up time on pin SS10hold time on pin SS10 + 11 / f_{SPI}

BGA7210

10. Power-up and power save

The PUPMXG/PWRDN pin determines the attenuation and currents at start-up of the chip (see Table 13). After start-up it can be used to power-down the device.

Fig 6. PUPMXG/PWRDN

Table 13. Power-up truth table					
PUPMXG/PWRDN	Current	Attenuation			
	(mA)	(dB)			
0	120	31.5			
1	195	0			

11. Application information

11.1 Application board

A customer application board is available from NXP upon request. It includes USB interface circuitry and customer software to facilitate evaluation of the BGA7210.

The final application shall be terminated with 50 Ω and decoupled as depicted in Figure 7. The ground leads and exposed paddle should be connected directly to the ground plane. A sufficient number of via holes should be provided to connect the top and bottom ground planes in the final application board. Sufficient cooling should be provided that the temperature of the exposed die pad does not exceed 85 °C.

Table 14. List of components

See Figure 7 for schematics.

Component	Description	Value	Remarks
C1, C27	DC blocking capacitor	100 pF	Murata GRM
C12	decoupling capacitor	100 nF	close to pin 19
C14	decoupling capacitor	100 nF	close to pin 17
C17	decoupling capacitor	100 nF	close to pin 15
C18	decoupling capacitor	100 nF	close to pin 16
C22	optional decoupling capacitor	10 μF	part of optional ripple filter
C23	optional decoupling capacitor	10 μF	part of optional ripple filter
C24	decoupling capacitor	100 pF	
C25	decoupling capacitor	100 nF	
C26	decoupling capacitor	4.7 μF	
C _{sh}	optional matching capacitor to improve linearity at 2.2 GHz to 2.8 GHz	0.68 pF	Murata GRM; shall be located 5.5 mm from pin RF-OUT when using FR4 PCB described below.
L1	optional inductor	820 nH	part of optional ripple filter
L2	inductor	22 nH	Murata LQW 18

The recommended FR4 PCB layer stack is described in Figure 8. A 50 Ω coplanar grounded wave guide can be implemented by a 0.48 mm RF track and a clearance between the track and the ground planes of 1 mm on both sides.

11.2 Characteristics

