

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

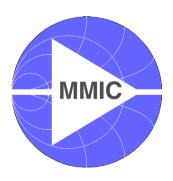


# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China








# **BGB420**

# **Active Biased Transistor**



Wireless Silicon Discretes



Edition 2001-08-10
Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München
© Infineon Technologies AG 2001
All Rights Reserved.

### Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

### Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

#### Warnings

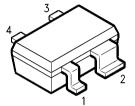
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

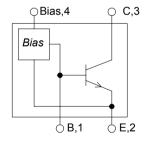
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

BGB420 Data sheet

Revision History: 2001-08-10

| Previous | Version: 2000-11-28                          |  |  |  |  |  |
|----------|----------------------------------------------|--|--|--|--|--|
| Page     | Subjects (major changes since last revision) |  |  |  |  |  |
| 7        | S-Parameter table added                      |  |  |  |  |  |
| 8        | Figure "Output Compression Point" added      |  |  |  |  |  |
| 9        | SPICE Model added                            |  |  |  |  |  |
|          |                                              |  |  |  |  |  |
|          |                                              |  |  |  |  |  |


For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com


#### **BGB420 Active Biased Transistor**

### **BGB420**

#### **Features**

- · For high gain low noise amplifiers
- Ideal for wideband applications, cellular telephones, cordless telephones, SAT-TV and high frequency oscillators
- G<sub>ma</sub>=17.5dB at 1.8GHz
- Small SOT343 package
- · Current easy adjustable by an external resistor
- · Open collector output
- Typical supply voltage: 1.4-3.3V
- SIEGET®-25 technology





### Description

SIEGET®-25 NPN Transistor with integrated biasing for high gain low noise figure applications.  $I_C$  can be controlled using  $I_{Bias}$  according to  $I_C$ =10\* $I_{Bias}$ .

**ESD:** Electrostatic discharge sensitive device, observe handling precaution!

| Туре   | Package | Marking | Chip  |
|--------|---------|---------|-------|
| BGB420 | SOT343  | MBs     | T0514 |



## **Maximum Ratings**

| Parameter                                                     | Symbol             | Value            | Unit |
|---------------------------------------------------------------|--------------------|------------------|------|
| Maximum collector-emitter voltage                             | V <sub>CE</sub>    | 3.5              | V    |
| Maximum collector current                                     | I <sub>C</sub>     | 30               | mA   |
| Maximum bias current                                          | I <sub>Bias</sub>  | 3                | mA   |
| Maximum emitter-base voltage                                  | V <sub>EB</sub>    | 1.5              | V    |
| Maximum base current                                          | I <sub>B</sub>     | 0.7              | mA   |
| Total power dissipation, T <sub>S</sub> < 107°C <sup>1)</sup> | P <sub>tot</sub>   | 120              | mW   |
| Junction temperature                                          | Tj                 | 150              | °C   |
| Operating temperature range                                   | T <sub>OP</sub>    | -40+85           | °C   |
| Storage temperature range                                     | T <sub>STG</sub>   | -65 <b>+</b> 150 | °C   |
| Thermal resistance: junction-soldering point                  | R <sub>th JS</sub> | <270             | K/W  |

#### Notes:

For detailed symbol description refer to figure 1.

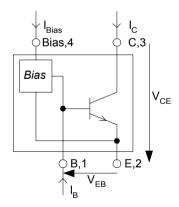



Fig. 1: Symbol definition

Data sheet 5 2001-08-10

 $<sup>^{\</sup>rm 1)}\,T_{\rm S}$  is measured on the emitter lead at the soldering point to the PCB



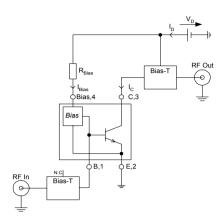
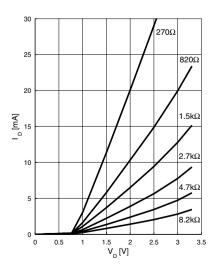


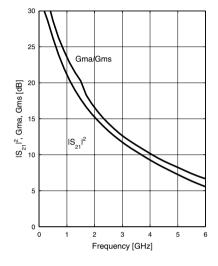

Fig. 2: Test Circuit for Electrical Characteristics and S-Parameter

**Electrical Characteristics** at  $T_A$ =25°C (measured in test circuit specified in fig. 2, min./max. values verified by random sampling)

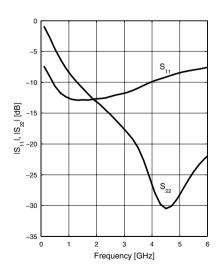

| Parameter                                                                            | Symbol                                       | min.                           | typ. | max.       | Unit       |     |
|--------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------|------|------------|------------|-----|
| Maximum available power ga<br>V <sub>D</sub> =2V, I <sub>c</sub> =20mA, f=1.8GHz     | G <sub>MA</sub>                              | 16.0                           | 17.5 |            | dB         |     |
| Insertion power gain V <sub>D</sub> =2V, I <sub>c</sub> =20mA                        | f=0.9GHz<br>f=1.8GHz                         | S <sub>21</sub>   <sup>2</sup> |      | 22<br>16   |            | dB  |
| Insertion loss<br>V <sub>D</sub> =2V, I <sub>c</sub> =0mA                            | f=0.9GHz<br>f=1.8GHz                         | IL                             |      | 21<br>15   |            | dB  |
| Noise figure ( $Z_s$ =50 $\Omega$ )<br>V <sub>D</sub> =2V, I <sub>c</sub> =5mA       | f=0.9GHz<br>f=1.8GHz                         | F <sub>50Ω</sub>               |      | 1.3<br>1.5 | 1.8<br>2.0 | dB  |
| Output power at 1dB gain col<br>V <sub>D</sub> =2V, I <sub>c</sub> =20mA, f=1.8GHz   | mpression $Z_L = Z_{LOPT}$ $Z_L = 50\Omega$  | P <sub>-1dB</sub>              | 7    | 12<br>10   |            | dBm |
| Output third order intercept p<br>V <sub>D</sub> =2V, I <sub>c</sub> =20mA, f=1.8GHz | oint $Z_{L/S}=Z_{L/SOPT}$ $Z_{L/S}=50\Omega$ | OIP <sub>3</sub>               | 17   | 22<br>20   |            | dBm |
| Collector-base capacitance V <sub>CB</sub> =2V, f=1MHz                               |                                              | C <sub>CB</sub>                |      | 0.16       |            | pF  |
| Current Ratio $I_C/I_{Bias}$<br>$I_{Bias}$ =0.5mA, $V_D$ =3V                         |                                              | CR                             | 7    | 10         | 13         |     |



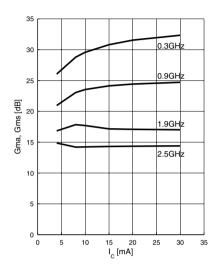
# **S-Parameter** $V_D$ =2V, $I_C$ =20mA (see Electrical Characteristics for conditions)


| Frequency | S11    | S11    | S21     | S21   | S12    | S12  | S22    | S22    |
|-----------|--------|--------|---------|-------|--------|------|--------|--------|
| [GHz]     | Mag    | Ang    | Mag     | Ang   | Mag    | Ang  | Mag    | Ang    |
| 0.1       | 0.4412 | -24.8  | 35.7070 | 160.6 | 0.0078 | 83.5 | 0.9225 | -14.1  |
| 0.2       | 0.4064 | -47.4  | 31.7670 | 143.9 | 0.0157 | 77.5 | 0.8321 | -26.2  |
| 0.4       | 0.3261 | -81.6  | 23.1980 | 120.9 | 0.0261 | 70.9 | 0.6380 | -41.4  |
| 0.6       | 0.2854 | -105.8 | 17.2590 | 106.9 | 0.0351 | 69.4 | 0.5012 | -49.6  |
| 0.8       | 0.2615 | -124.2 | 13.5050 | 97.5  | 0.0444 | 68.9 | 0.4100 | -54.2  |
| 1.0       | 0.2525 | -136.4 | 10.9810 | 90.6  | 0.0537 | 68.2 | 0.3435 | -57.4  |
| 1.2       | 0.2505 | -148.9 | 9.1940  | 84.8  | 0.0628 | 67.3 | 0.2946 | -60.2  |
| 1.4       | 0.2476 | -158.2 | 7.8930  | 80.1  | 0.0720 | 65.9 | 0.2571 | -62.6  |
| 1.6       | 0.2533 | -167.1 | 6.9070  | 75.6  | 0.0819 | 64.6 | 0.2228 | -64.2  |
| 1.8       | 0.2579 | -173.3 | 6.1460  | 71.7  | 0.0915 | 62.9 | 0.1966 | -66.0  |
| 2.0       | 0.2584 | -178.7 | 5.5300  | 68.2  | 0.1009 | 61.4 | 0.1751 | -66.3  |
| 3.0       | 0.2874 | 157.6  | 3.6990  | 51.6  | 0.1495 | 51.7 | 0.0802 | -70.1  |
| 4.0       | 0.3505 | 139.0  | 2.7770  | 36.1  | 0.1970 | 40.4 | 0.0366 | -178.8 |
| 5.0       | 0.4061 | 125.9  | 2.1930  | 21.5  | 0.2392 | 29.4 | 0.0913 | 126.7  |
| 6.0       | 0.4450 | 117.1  | 1.8050  | 8.6   | 0.2864 | 18.9 | 0.1340 | 99.8   |

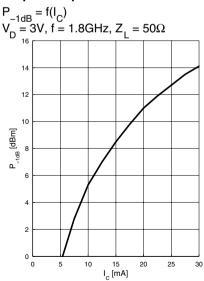
# **Device Current** $I_D = f(V_D, R_{Bias})$







# $\begin{array}{l} \textbf{Power Gain} \; |\textbf{S}_{21}|^2 , \, \textbf{Gma}, \, \textbf{Gms=f(f)} \\ \textbf{V}_{\textbf{D}} = 3\textbf{V}, \; \textbf{I}_{\textbf{C}} = 20 \text{mA} \end{array}$

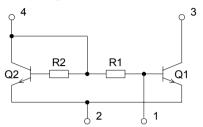



# **Matching** $|S_{11}|, |S_{22}| = f(f)$ $V_D = 3V, I_C = 20mA$



# **Power Gain** Gma, Gms= $f(I_C)$ $V_D = 3V$




# **Output Compression Point**





## **SPICE Model**

### BGB420-Chip

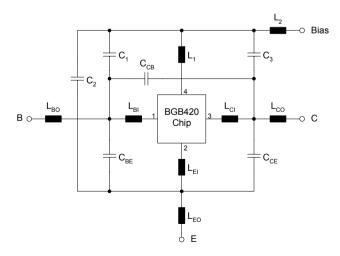


| Q1 | T502                    |
|----|-------------------------|
| Q2 | T502 (area factor: 0.1) |
| R1 | 2.7kΩ                   |
| R2 | 27kΩ                    |

### Transistor Chip Data T502 (Berkley-SPICE 2G.6 Syntax)

4

### .MODEL T502 NPN(


| + IS = 2.0045e-16 | BF = 72.534      |
|-------------------|------------------|
| + IKF = 0.48731   | ISE = 1.9049e-14 |
| + NR = 1.3325     | VAR = 19.705     |
| + NC = 1.1724     | RB = 8.5757      |
| + RE = 0.31111    | RC = 0.10105     |
| + MJE = 0.46576   | TF = 6.7661e-12  |
| + ITF = 0.001     | PTF = 0          |
| + MJC = 0.30232   | XCJC = 0.3       |
| + VJS = 0.75      | MJS = 0          |
| + XTI = 3         | FC = 0.73234)    |
|                   |                  |

| NF = 1.2432      |
|------------------|
| NE = 2.0518      |
| IKR = 0.69141    |
| IRB = 0.00072983 |
| CJE = 1.8063e-15 |
| XTF = 0.42199    |
| CJC = 2.3453e-13 |
| TR = 2.3249e-09  |
| XTB = 0          |

VAF = 28.383 BR = 7.8287 ISC = 1.9237e-17 RBM = 3.4849 VJE = 0.8051 VTF = 0.23794 VJC = 0.81969 CJS=0

EG = 1.11

# Package Equivalent Circuit



| L <sub>BI</sub> | 0.36 | nΗ |
|-----------------|------|----|
| L <sub>B0</sub> | 0.4  | nΗ |
| L <sub>EI</sub> | 0.3  | nΗ |
| L <sub>EO</sub> | 0.15 | nΗ |
| L <sub>CI</sub> | 0.36 | nΗ |
| L <sub>co</sub> | 0.4  | nΗ |
| L <sub>1</sub>  | 0.6  | nΗ |
| L <sub>2</sub>  | 0.4  | nΗ |
| C <sub>BE</sub> | 95   | fF |
| $C_{CB}$        | 6    | fF |
| $C_{CE}$        | 132  | fF |
| C <sub>1</sub>  | 28   | fF |
| C <sub>2</sub>  | 88   | fF |
| C <sub>3</sub>  | 8    | fF |
|                 |      |    |

Valid up to 3GHz



## **Typical Application**

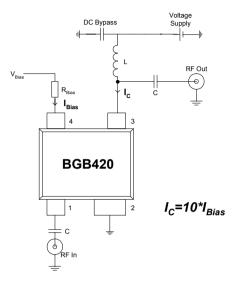
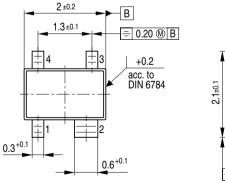




Fig. 3: Typical application circuit. This proposal demonstrates how to use the BGB420 as a Self-Biased Transistor. As for a discrete Transistor matching circuits have to be applied. A good starting point for various applications are the Application Notes provided for the BFP420.

### **Package Outline**



0.9±0.1 0.1 max A 100 ±0.1 0.15±0.1 0.15±0.1 0.105±0.1

GPS05605