# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



K **XIRX** 

# GLK19264A-7T-1U

Including the GLK19264A-7T-1U-USB, and GLK19264A-7T-1U-422

# **Technical Manual**

**Revision 2.5** 

PCB Revision: 2.0 or Higher

Firmware Revision: 8.4 or Higher

# **Revision History**

| Revision | Date              | Description                                           | Author  |
|----------|-------------------|-------------------------------------------------------|---------|
| 2.5      | October 27, 2015  | Correction to Hardware Lock                           | Divino  |
| 2.4      | October 19, 2015  | Revision to Commands for Firmware Revision 8.6        | Clark   |
| 2.3      | May 21, 2014      | Revision to Commands for Firmware Revision 8.5        | Martino |
| 2.2      | March 5, 2014     | Correction to Current Draw of Backlights              | Martino |
| 2.1      | September 9, 2013 | Corrected Scripted Key and Keypad Brightness Commands | Clark   |
| 2.0      | July 10, 2013     | Initial Release                                       | Clark   |

# Contents

| 1 Introduction                      |   |
|-------------------------------------|---|
| 2 Quick Connect Guide               | 2 |
| 2.1 Available Headers               | 2 |
| 2.2 Standard Module                 |   |
| Recommended Parts                   | 3 |
| Serial Connections                  |   |
| I <sup>2</sup> C Connections        | 4 |
| 2.3 USB Module                      | 5 |
| Recommended Parts                   | 5 |
| USB Connections                     | 5 |
| 2.4 RS422 Module                    | 6 |
| RS422 Connections                   | 6 |
| 3 Software                          | 7 |
| 3.1 MOGD#                           | 7 |
| 3.2 Firmware Upgrade                | 8 |
| 3.3 Application Notes               | 8 |
| 4 Hardware                          | 9 |
| 4.1 Standard Model                  | 9 |
| Extended Communication/Power Header | 9 |
| Serial DB9 Connector                | 9 |
| Power Through DB9 Jumper            |   |
| Protocol Select Jumpers             |   |
| Hardware Lock                       |   |
| 4.2 USB Model                       |   |
| Mini USB Connector                  |   |
| Alternate USB Header                |   |
| Alternate Power Connector           |   |
| 4.3 RS422 Model                     |   |
| RS422 Header                        |   |
| Alternate Power Connector           |   |

| 4.4 Common Features        | 13 |
|----------------------------|----|
| General Purpose Outputs    |    |
| Dallas One-Wire Connector  |    |
| 5 Troubleshooting          |    |
| 5.1 Power                  | 14 |
| 5.2 Display                | 14 |
| 5.3 Communication          | 15 |
| 5.4 Manual Override        | 15 |
| 6 Commands                 |    |
| 6.1 Communication          |    |
| 6.2 Text                   |    |
| 6.3 Drawing                | 21 |
| 6.4 Fonts                  | 26 |
| Font File Creation         | 27 |
| 6.5 Bitmaps                |    |
| Bitmap File Creation       | 29 |
| Bitmap Masking             |    |
| 6.6 9-Slices               |    |
| 9-Slice File Creation      |    |
| 6.7 Animations             |    |
| Animation File Creation    |    |
| 6.8 General Purpose Output |    |
| LED Indicators             |    |
| 6.9 Dallas One-Wire        |    |
| 6.10 Piezo Buzzer          | 35 |
| 6.11 Keypad                |    |
| 6.12 Display Functions     |    |
| 6.13 Scripting             | 40 |
| 6.14 Filesystem            | 40 |
| File Transfer Protocol     | 43 |
| XModem Transfer Protocol   | 44 |
| 6.15 Data Security         |    |

| 6.16 Miscellaneous4               | 7 |
|-----------------------------------|---|
| 7 Appendix4                       | 9 |
| 7.1 Command Summary4              | 9 |
| 7.2 Block Diagram5                | 4 |
| 7.3 Environmental Specifications5 | 4 |
| 7.4 Electrical Tolerances5        | 4 |
| 7.5 Dimensional Drawings5         | 5 |
| 7.1 Optical Characteristics5      | 7 |
| 8 Ordering5                       | 7 |
| 8.1 Part Numbering Scheme5        | 7 |
| 8.2 Options5                      | 7 |
| 8.3 Accessories                   | 8 |
| 9 Definitions                     | 0 |
| 10 Contact                        | 0 |

# **1** Introduction



Figure 1: GLK19264A-7T-1U Display

The GLK19264A-7T-1U is an intelligent graphic liquid crystal display engineered to quickly and easily add an elegant creativity to any application. In addition to the RS232, TTL and I2C protocols available in the standard model, USB and RS422 communication models allow the GLK19264A-7T-1U to be connected to a wide variety of host controllers. Communication speeds of up to 115.2kbps for serial protocols and 100kbps for I<sup>2</sup>C ensure lightning fast text and graphic display.

The simple command structure permits easy software control of many settings including backlight brightness, screen contrast, and baud rate. On board memory provides a whopping 256KB of customizable fonts and bitmaps to enhance the graphical user experience.

User input on the GLK19264A-7T-1U is available through a built-in seven key tactile keypad. Three bicolour LEDs provide visual outputs and six general purpose outputs provide simple switchable five volt sources on each model. In addition, an optional Dallas One-Wire header provides a communication interface for up to thirty-two devices.

The versatile GLK19264A-7T-1U, with all the features mentioned above, is available in a variety of colour, voltage, and temperature options to suit almost any application.



# 2 Quick Connect Guide

# 2.1 Available Headers

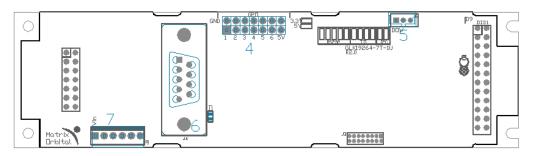



Figure 2: GLK19264A-7T-1U Standard Module Header Locations

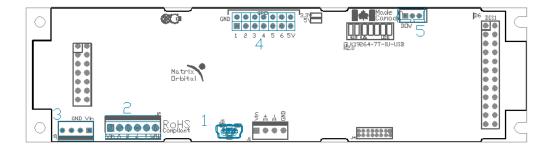



Figure 3: GLK19264A-7T-1U USB and RS422 Model Header Locations

#### Table 1: List of Available Headers

| # | Header                                 | Mate                  | Population              |
|---|----------------------------------------|-----------------------|-------------------------|
| 1 | Mini USB Connector                     | EXTMUSB3FT/INTMUSB3FT | USB Model Only          |
| 2 | RS422 Terminal Block                   | 16-30 AWG Wire        | 422 Model Only          |
| 3 | Alternate Power Connector              | PCS                   | 422 and USB Models Only |
| 4 | GPO Header                             | None Offered          | All Models              |
| 5 | Optional Dallas One-Wire Header        | Temperature Probe     | USB Model Only          |
| 6 | DB9 Serial Header                      | CSS1FT/CSS4FT         | Standard Model Only     |
| 7 | Extended Communication/Power Connector | ESCCPC5V/BBC          | Standard Model Only     |

### 2.2 Standard Module

The standard version of the GLK19264A-7T-1U allows for user configuration of two common communication protocols. First, the unit can communicate using serial protocol at either RS323 or TTL voltage levels. Second, it can communicate using the Inter-Integrated Circuit connect, or I<sup>2</sup>C protocol. Connections for each protocol can be accessed through the four pin Communication/Power Header as outlined in the Serial Connections and I<sup>2</sup>C Connections sections below.

Recommended Parts



Figure 4: Extended Communication/Power Cable (ESCCPC5V)

The most common cable choice for any standard Matrix Orbital display, the Extended Communication/ Power Cable offers a simple connection to the unit with familiar interfaces. DB9 and floppy power headers provide all necessary input to drive your display.

For a more flexible interface to the GLK19264A-7T-1U, a Breadboard Cable may be used. This provides a simple four wire connection that is popular among developers for its ease of use in a breadboard



Figure 5: Breadboard Cable (BBC)

#### **Serial Connections**

Serial protocol provides a classic connection to the GLK19264A-7T-1U. The Extended Communication/Power Cable is most commonly used for this set up as it provides connections for DB9 serial and floppy power cables. To place your board in Serial mode, adhere to the steps laid out below.

- 1. Set the Protocol Select jumpers.
  - RS232: Connect the five jumpers\* in the 232 protocol box with the zero ohm jumper resistors provided or an alternate wire or solder solution.
  - TTL: Connect the four jumpers\* in the TTL protocol box.

\*Note: Jumpers must be removed from all protocol boxes save for the one in use.

environment.



- 2. Make the connections.
  - a. Connect the six pin female header of the Extended Communication/Power Cable to the Communication/Power Header of your GLK19264A-7T-1U.
  - b. Insert the male end of your serial cable to the corresponding DB9 header of the Extended Communication/Power Cable and the mate the female connector with the desired communication port of your computer.
  - c. Select an unmodified floppy cable from a PC power supply and connect it to the power header of the Communication/Power Cable.
- 3. Create.
  - MOGD# or a terminal program will serve to get you started, and then you can move on with your own development. Instructions for the former can be found below and a variety of application notes are available for the latter at <a href="http://www.matrixorbital.ca/appnotes">www.matrixorbital.ca/appnotes</a>.

### I<sup>2</sup>C Connections

A more advanced connection to the GLK19264A-7T-1U is provided by the  $I^2C$  protocol setting. This is best accomplished using a breadboard and the Breadboard Cable. Power must be supplied from your breadboard or another external source. To dive right into your application and use the GLK19264A-7T-1U in  $I^2C$  mode, get started with the guidelines below.

- 1. Set the Protocol Select switches.
  - I<sup>2</sup>C: Ensure that the two I<sup>2</sup>C jumpers in the corresponding protocol box are connected while all others are open.
- 2. Make the connections.
  - a. Connect the Breadboard Cable to the Communication/Power Header on your GLK19264A-7T-1U and plug the four leads into your breadboard. The red lead will require power, while the black should be connected to ground, and the green and yellow should be connected to your controller clock and data lines respectively.
  - b. Pull up the clock and data lines to five volts using a resistance between one and ten kilohms on your breadboard.
- 3. Create.
  - This time you're on your own. While there are many examples within the Matrix Orbital AppNote section, <u>www.matrixorbital.ca/appnotes</u>, too many controllers and languages exist to cover them all. If you get stuck in development, it is possible to switch over to another protocol on the standard board, and fellow developers are always on our forums for additional support.

### 2.3 USB Module

The GLK19264A-7T-1U-USB offers a single USB protocol for easy connection to a host computer. The simple and widely available protocol can be accessed using the on board mini B style USB connector as outlined in the USB Connections section.

#### **Recommended Parts**



The External Mini USB cable is recommended for the GLK19264A-7T-1U-USB display. It will connect to the miniB style header on the unit and provide a connection to a regular A style USB connector, commonly found on a PC.

#### **USB** Connections

The USB connection is the quickest, easiest solution for PC development. After driver installation, the GLK19264A-7T-1U-USB will be accessible through a virtual serial port, providing the same result as a serial setup without the cable hassle. To connect to your GLK19264A-7T-1U-USB please follow the steps below.

- 1. Set the Protocol Select jumpers.
  - USB: The GLK19264A-7T-1U-USB offers USB protocol only. Model specific hardware prevents this unit from operating in any other protocol, and does not allow other models to operate in USB. Protocol Select jumpers on the USB model cannot be moved.
- 2. Make the connections.
  - Plug the mini-B header of your External Mini USB cable into your GLK19264A-7T-1U-USB and the regular USB header into your computer USB jack.
- 3. Install the drivers.
  - a. Download the latest drivers at <u>www.matrixorbital.ca/drivers</u>, and save them to a known location.
  - b. When prompted, install the USB bus controller driver automatically
  - c. If asked, continue anyway, even though the driver is not signed
  - d. When the driver install is complete, your display will turn on, but communication will not yet be possible.
  - e. At the second driver prompt, install the serial port driver automatically
  - f. Again, if asked, continue anyway
- 4. Create.
  - Use MOGD# or a terminal program to get started, and then move on with your own development. Instructions for the former can be found below and a number of application notes are available for the latter at www.matrixorbital.ca/appnotes.



### 2.4 RS422 Module

The GLK19264A-7T-1U-422 provides an industrial alternative to the standard RS232 communication protocol. Rather than single receive and transmit lines, the RS422 model uses a differential pair for the receive and transmit signals to reduce degradation and increase transmission lengths. Power can be transmitted at distance to a -VPT module or supplied from the immediate vicinity to a regular or –LV unit. RS422 signals are available in a six pin connector as described in the RS422 Connections section.

#### **RS422** Connections

The GLK19264A-7T-1U-422 provides a robust RS422 interface to the display line. For this interface, a series of six wires are usually screwed into the RS422 terminal block provided. An alternate header is also available to provide local power to a regular or –LV unit. To connect to your GLK19264A-7T-1U-422, adhere to the steps laid out below.

- 1. Set the Protocol Select jumpers.
  - RS422: The GLK19264A-7T-1U-422 offers only RS422 protocol and does not require any jumper changes.
- 2. Make the connections.
  - a. Screw one wire; sized 16 to 30 on the American Wire Gauge, into each of the six terminal block positions. When local power is supplied, a floppy cable may link to the alternate power header.
  - b. Connect the Vcc wire to the positive terminal of your power supply and the GND terminal to the negative or ground lead to provide appropriate power as per Voltage Specifications.
  - c. Secure the A and B wires to your non-inverting and inverting output signals respectively, while attaching the Z and Y wires to your inverting and non-inverting inputs.
- 3. Create.
  - a. In a PC environment, MOGD# or a terminal program will serve to get you started. In addition, a variety of application notes are available online in a number of different languages to aid in the development of a host controller. Instructions for these programs can be found below and the simple C# example at www.matrixorbital.ca/appnotes is a great first programming reference.



# 3 Software

The multiple communication protocols available and simple command structure of the GLK19264A-7T-1U means that a variety of applications can be used to communicate with the display. Text is sent to the display as a character string, for example, sending the decimal value 41 will result in an 'A' appearing on the screen. A single control character is also available. Commands are merely values prefixed with a special command byte, 254 in decimal.

| Table 2: Reserved Control Characters |                     |    |                      |
|--------------------------------------|---------------------|----|----------------------|
| Control Characters                   |                     |    |                      |
| 7                                    | Bell / Sound Buzzer | 10 | Line feed / New line |

Once the correct communication port is identified, the following communication settings can be applied to communicate correctly with the GLK19264A-7T-1U.

| Table 3: Communication Settings |           |        |           |              |
|---------------------------------|-----------|--------|-----------|--------------|
| BPS                             | Data Bits | Parity | Stop Bits | Flow Control |
| 19200                           | 8         | None   | 1         | None         |

Finally, with a communication port identified and correctly setup simple text strings or even command bytes can easily be transmitted to control your display.

## 3.1 MOGD#

The Matrix Orbital Graphic Display interface, MOGD#, is offered as a free download from <u>www.matrixorbital.ca/software/software\_graphic</u>. It provides a simple graphical interface that allows settings, fonts, and bitmaps to be easily customised for any application.

While monochromatic bitmaps can easily be created in virtually any image editing program, MOGD# provides an extensive font generation suite to stylize your display to any project design. In addition to standard font wide modifications, character ranges can be specified by start and end values to eliminate unused symbols, and individual glyphs can be modified with a double click. Finally, text spacing can be tailored and a complete font library built with your Matrix Orbital graphic display.

Like uProject, MOGD# offers a scripting capability that provides the ability to stack, run, and save a series of commands. The most basic function is the Send Numeric tool which is used to transmit a string of values to the display to write text or execute a command.



| SendNumeric Parameters |             |   |
|------------------------|-------------|---|
| Туре                   | SendNumeric | ~ |
| 254 88                 |             |   |

#### Figure 7: MOGD# Command Example

Again, the clear screen command is sent to a connected display, this time using the MOGD# Send Numeric function command style. Scripts can be run as a whole using the Play button from the toolbar or as single commands by selecting Step; once executed it must be Reset. Before issuing commands, it is a good idea to ensure communication with a display is successful using the autodetect button.

This program provides both a staging areas for your graphics display and a proving ground that will prepare it for any application environment.

### 3.2 Firmware Upgrade

Beginning with revision 8.1, the firmware of the GLK19264A-7T-1U can be upgraded in the field. All firmware revisions can be installed using software found at <u>www.matrixorbital.ca/software/GLT Series</u>.

If it is necessary to forgo all current and future upgrades to the filesystem and subsequent commands, firmware revision 8.0 may be ordered as a part of a custom order. Please use the Contact section to request more information from the Matrix Orbital sales team.

### **3.3 Application Notes**

Full demonstration programs and code are available for Matrix Orbital displays in the C# language from Simple C# AppNote Pack in the Application Note section at <u>www.matrixorbital.ca/appnotes</u>. Difficulty increases from beginner, with the Hello World program, to advanced with the Dallas One-Wire temperature reading application.

Many additional applications are available in a number of different programming languages. These programs are meant to showcase the capability of the display and are not intended to be integrated into a final design. For additional information regarding code, please read the On Code document also found on the support site.

# 4 Hardware

### 4.1 Standard Model

#### Extended Communication/Power Header



Figure 8: Extended Communication/Power Header

| Pin | Function |
|-----|----------|
| 1   | Vcc      |
| 2   | Rx (SCL) |
| 3   | Tx (SDA) |
| 4   | Gnd      |
| 5   | CTS      |
| 6   | RTS      |

Table 4: Extended Communication/Power Pinout

The Extended Communication/Power Header provides a standard connector for interfacing to the GLK19264A-7T-1U. Voltage is applied through pins one and four of the four pin Communication/Power Header. Please ensure the correct voltage input for your display by referencing Voltage Specifications before connecting power. Pins two and three are reserved for serial transmission, using either the RS-232/TTL or clocking data through the I<sup>2</sup>C protocol, depending on what has been selected by the Protocol Select Jumpers. Pins five and six can be used for serial transmission hardware flow control, and are ignored for I<sup>2</sup>C communications. The Molex 22-04-1061 style header used can be mated to a number of connectors, a 22-01-1062 for example.

#### Serial DB9 Connector

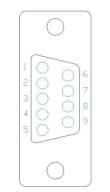



Figure 9: Serial DB9 Connector

Table 5: Serial DB9 Pinout

| Pin | Function |
|-----|----------|
| 2   | Тх       |
| 3   | Rx       |
| 5   | Gnd      |
| 7   | CTS      |
| 8   | RTS      |
| 9   | NC/Vcc*  |

The GLK19264A-7T-1U provides a DB-9 Connector to readily interface with serial devices using EIA232 standard signal levels. It is also possible to communicate at TTL levels of 0 to +5V by setting the Protocol Select Jumpers to TTL. As an added feature it is also possible to apply power through pin 9 of the DB-9 Connector in order to reduce cable clutter. A standard male DB9 header will provide the perfect mate for this connector.

\*Note: Do not apply voltage through pin 9 of the DB-9 Connector AND through the Communication/Power Header at the same time.

#### **Power Through DB9 Jumper**

In order to provide power through pin 9 of the DB-9 Connector you must connect the Power Through DB-9 Jumper labelled D, as illustrated below. This connection can be made using a zero ohm resistor, recommended size 0603, or a solder bridge. The GLK19264A-7T-1U allows all voltage models to use the power through DB-9 option, see the Voltage Specifications for power requirements.

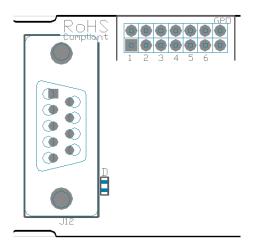



Figure 10: Power Through DB9 Jumper

#### **Protocol Select Jumpers**

The Protocol Select Jumpers provide the means necessary to toggle the GLK19264A-7T-1U between RS-232, TTL and I<sup>2</sup>C protocols. As a default, the jumpers are set to RS-232 mode with solder jumps on the RS232 jumpers. In order to place the display module in I<sup>2</sup>C mode you must first remove the solder jumps from the RS232 jumpers and then place them on the I<sup>2</sup>C jumpers. The display will now be in I<sup>2</sup>C mode and have a default slave address of 80, unless changed with the appropriate command. Similarly, in order to change the display to TTL mode, simply remove the zero ohm resistors from the RS232 or I<sup>2</sup>C jumpers and solder them to the TTL jumpers.

#### Hardware Lock

The Hardware Lock allows fonts, bitmaps, and settings to be saved, unaltered by any commands. By connecting the two pads near the memory chip, designated R74, with a zero ohm resistor, the display will be locked. This supersedes the data lock command and cannot be circumvented by any software means. To unlock the display and make changes simply remove the jumper.

## 4.2 USB Model

#### **Mini USB Connector**

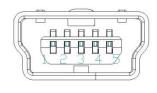



Figure 11: Mini USB Connector

#### Table 6: Mini USB Pinout

| Pin | Function |
|-----|----------|
| 1   | Vcc      |
| 2   | D-       |
| 3   | D+       |
| 5   | Gnd      |

The GLK19264A-7T-1U-USB comes with a familiar Mini USB Connector to fulfill both communication and power needs. The standard Mini-B style header can be connected to any other USB style using the appropriate cable. Most commonly used with a PC, this connection creates a virtual com port that offers a simple power solution with a familiar communication scheme.

#### Alternate USB Header

Some advanced applications may prefer the straight four pin connection offered through the Optional Alternate USB Header. This header offers power and communication access in a simple interface package. The Optional Alternate USB Header may be added to the GLK19264A-7T-1U-USB for an added charge as part of a custom order. Please use the Contact section to request more information from the friendly Matrix Orbital sales team.

#### Alternate Power Connector



*Figure 12: Alternate Power Connector* 



The Alternate Power Connector provides the ability to power the GLK19264A-7T-1U-USB using a second cable. The Tyco 171825-4 style header is particularly useful for connecting to an unmodified floppy power cable, a 171822-4 for example, from a PC power supply for a simple bench power solution.



### 4.3 RS422 Model

#### RS422 Header

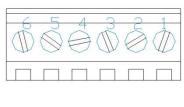



Figure 13: RS422 Header



| Pin | Function   |
|-----|------------|
| 1   | Gnd        |
| 2   | Rx (Y)     |
| 3   | Inv Rx (Z) |
| 4   | Inv Tx (B) |
| 5   | Tx (A)     |
| 6   | Vcc        |

The six pin RS422 interface header of the GLK19264A-7T-1U-422 offers power and ground connections as well as two differential pair communication lines. Regular and inverted lines are provided for both receive and transmit signals. Power is supplied locally to the regular or -LV variants while the -VPT can receive power over a distance. The Tyco 282834-6 style header is most suited to a simple wire connection.

#### Alternate Power Connector

| Alternate P | 9: Alte | Table 9: |
|-------------|---------|----------|
| Pin Funct   | Pin     | F        |
| 1 Vc        | 1       |          |
| 2 Gn        | 2       |          |
| 3 Gn        | 3       |          |
| 4 NO        | 4       |          |

The Alternate Power Connector provides the ability to power the GLK19264A-7T-1U-USB using a second cable. The Tyco 171825-4 style header is particularly useful for connecting to an unmodified floppy power cable, a 171822-4 for example, from a PC power supply for a simple bench power solution.

### 4.4 Common Features

#### **General Purpose Outputs**

| 8 | 9    | 10     | 11    | 12    | 13  | 14 |
|---|------|--------|-------|-------|-----|----|
|   |      |        |       |       |     |    |
|   |      |        |       |       |     |    |
| 1 | 2    | 3      | 4     | 5     | 6   | 7  |
|   | Figu | ire 15 | : GPC | ) Hea | der |    |

| Pin | Function | Pin | Function |
|-----|----------|-----|----------|
| 1   | GPO 1    | 8   | Gnd      |
| 2   | GPO 2    | 9   | Gnd      |
| 3   | GPO 3    | 10  | Gnd      |
| 4   | GPO 4    | 11  | Gnd      |
| 5   | GPO 5    | 12  | Gnd      |
| 6   | GPO 6    | 13  | Gnd      |
| 7   | Vcc      | 14  | Gnd      |

Table 10: GPO Pinout

A unique feature of the GLK19264A-7T-1U is the ability to control relays\* and other external devices using either one or six General Purpose Outputs. Each can source up to 10mA of current at five volts when on or sink 20mA at zero volts when off. The two row, fourteen pin header can be interfaced to a number of female connectors to provide control to any peripheral devices required.

\*Note: If connecting a relay, be sure that it is fully clamped using a diode and capacitor in order to absorb any electro-motive force (EMF) which will be generated.

Dallas One-Wire Connector

|                                      | Table 11: Dal | llas One-Wire P | Pinout |
|--------------------------------------|---------------|-----------------|--------|
|                                      | Pin           | Function        |        |
|                                      | 1             | Vcc             |        |
|                                      | 2             | D               |        |
| Figure 16: Dallas One-Wire Connector | 3             | Gnd             |        |

In addition to the six general purpose outputs the GLK19264A-7T-1U offers an Optional Dallas One-Wire bridge, to allow for an additional thirty two one-wire devices to be connected to the display. This header can be populated with a Tyco 173979 connector at an added cost by custom order only. Please use the Contact section to request more information from the Matrix Orbital sales team.



# **5** Troubleshooting

# 5.1 Power

In order for your Matrix Orbital display to function correctly, it must be supplied with the appropriate power. If the power LED near the top right corner of the board is not illuminated, power is not applied correctly. Try following the tips below.

- First, check the power cable which you are using for continuity. If you don't have an ohm meter, try using a different power cable, if this does not help try using a different power supply.
- If power is applied through the DB9 connector, ensure that the Power Through DB9 Jumper is connected.
- If changes have been made to the protocol select block, ensure all the appropriate protocol select jumpers are connected and all unused protocol jumpers are disconnected.
- The last step will be to check the interface connector in use on your display. If the power connections have become loose, or you are unable to resolve the issue, please Contact Matrix Orbital for more information.

# 5.2 Display

If your display is powered successfully, the Matrix Orbital logo, or user created screen should display on start up. If this is not the case, check out these tips.

- Ensure the contrast is not too high or too low. This can result in a darkened or blank screen respectively. See the Manual Override section to reset to default.
- Make sure that the start screen is not blank. It is possible to overwrite the Matrix Orbital logo start screen, if this happens the screen may be blank. Try writing to the display to ensure it is functional, after checking the contrast above.

# **5.3** Communication

When communication of either text or commands is interrupted, try the steps below.

- First, check the communication cable for continuity. If you don't have an ohm meter, try using a different communication cable. If you are using a PC try using a different Com/USB Port.
- Next, please ensure that the display module is set to communicate on the protocol that you are using, by checking the Protocol Select Jumpers.
- In serial and USB protocols, ensure that the host system and display module are both communicating on the same baud rate. The default rate for the display module is 19200 bps.
- Match Rx from your display to the transmitting pin from your host and the Tx pin to the receiving pin.
- If you are communicating to the display via I<sup>2</sup>C\* please ensure that the data is being sent to the correct address. The default slave address for the display module is 80.
- In I<sup>2</sup>C mode, connect Rx to the clock line of your controller and Tx to the data output.
- Unlock the display. See the Set and Save Data Lock command for more info.
- Finally, you may reset the display to its default settings using the Manual Override procedure outlined below.

\*Note: I<sup>2</sup>C communication will always require pull up resistors on SCL and SDA of one to ten kilohms.

### 5.4 Manual Override

Should the settings of your display become altered in a way that dramatically impacts usability, the default settings can be temporarily restored. To override the display, please follow the steps below.

- 1. Disconnect power from your display.
- 2. Hold down the bottom left dot key.
- 3. Reconnect power to your unit, and wait for the start screen before releasing the key.
- 4. Settings will be temporarily\*\* overridden to the defaults listed in the Manual Override Settings table. At this point any important settings, such as contrast, backlight, or baud rate, should not only be set but saved so they remain when the override is removed.

| Parameter                | Value |
|--------------------------|-------|
| Backlight                | 255   |
| Contrast                 | 128   |
| Baud Rate                | 19200 |
| I <sup>2</sup> C Address | 80    |

Table 12: Manual Override Settings

**\*\*Note:** The display module will revert back to the old settings once turned off, unless desired settings are saved.



# 6 Commands

# 6.1 Communication

| 1.1 Change     | Dec        | 254 57     | Speed                                                                 | v8.0 |
|----------------|------------|------------|-----------------------------------------------------------------------|------|
| Baud Rate      | Hex        | FE 39      | Speed                                                                 |      |
|                | ASCII      | ■ 9        | Speed                                                                 |      |
| Immediately ch | nanges the | baud rate. | Not available in I2C. Baud rate can be temporarily forced to 19200 by | а    |
| manual overrid | le.        |            |                                                                       |      |
| Crossed Durbe  | Valid catt | ings chown | a halow                                                               |      |

Speed Byte Valid settings shown below.

Table 13: Accepted Baud Rate Values

| Rate  | 9600 | 14400 | 19200 | 28800 | 38400 | 57600 | 76800 | 115200 |
|-------|------|-------|-------|-------|-------|-------|-------|--------|
| Speed | 207  | 138   | 103   | 68    | 51    | 34    | 25    | 16     |

| 1.2 Change I2C    | Dec            | 254 51    | Address v8.0                                                            |
|-------------------|----------------|-----------|-------------------------------------------------------------------------|
| Slave Address     | Нех            | FE 33     | Address                                                                 |
|                   | ASCII          | ■ 3       | Address                                                                 |
| Immediately chan  | ges the I2C wr | ite addro | ess. Only even values are permitted as the next odd address will become |
| the read address. | Default is 80. |           |                                                                         |
| Address Byte      | Even value.    |           |                                                                         |

| 1.3 Transmission    | Dec 254 160            | Protocol v8.0                                                               |
|---------------------|------------------------|-----------------------------------------------------------------------------|
| Protocol Select     | Hex FE AO              | Protocol                                                                    |
|                     | <b>■</b> á             | Protocol                                                                    |
| Selects the protoco | ol used for data trans | mission from the display. Data transmission to the display is not affected. |
| Must be set to the  | protocol in use to rea | ceive data correctly.                                                       |
| Protocol Byte       | 1 for Serial (RS232/R  | S422/TTL/USB) or 0 for I2C.                                                 |

| 1.4 Set a Non-Standard | Dec   | 254 164 | Speed |  |
|------------------------|-------|---------|-------|--|
| Baud Rate              | Нех   | FE A4   | Speed |  |
|                        | ASCII | ∎ ñ     | Speed |  |

Immediately changes the baud rate to a non-standard value. Speed must be a whole number between 977 and 153800. Due to rounding, error increases with baud rate, actual baud must be within 3% of desired baud to ensure accurate communication. Not available in I2C. Can be temporarily forced to 19200 by a manual override. Speed Short Calculations shown below, standard crystal speed is 16MHz.

$$Speed = \frac{CrystalSpeed}{(8 \times DesiredBaud)} - 1 \qquad ActualBaud = \frac{CrystalSpeed}{(8 \times (Speed + 1))}$$
Equation 1: Speed Byte Calculation 
$$Equation 2: Actual Baud Rate Calculation$$

$$\frac{|DesiredBaud - ActualBaud|}{DesiredBaud} < 0.03$$

Equation 3: Baud Rate Error Calculation

| 1.5 Set Flow                                                                                                                                                                                                                                 | Dec                                                                                                                                                            | 254 63                                                                                                                                                                                         | Mode                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        | v8.0                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------|
| Control Mode                                                                                                                                                                                                                                 | Hex                                                                                                                                                            | FE 3F                                                                                                                                                                                          | Mode                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
|                                                                                                                                                                                                                                              | ASCII                                                                                                                                                          | ■?                                                                                                                                                                                             | Mode                                                                                                                                                                           |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
| Toggles flow cont                                                                                                                                                                                                                            | rol betwee                                                                                                                                                     | en hardware                                                                                                                                                                                    | e, software a                                                                                                                                                                  | and off set                                                                                                                                                      | tings. Softw                                                                                                                                      | vare ar                                                                              | nd Hard                                                                                    | ware contr                                                                                          | ol can be fur                                                                          | ther                          |
| tuned using the se                                                                                                                                                                                                                           | ettings abo                                                                                                                                                    | ove. Defaul                                                                                                                                                                                    | t is Off, or 0                                                                                                                                                                 | •                                                                                                                                                                |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
| Mode Byte I                                                                                                                                                                                                                                  | Flow contr                                                                                                                                                     | ol setting as                                                                                                                                                                                  | s below.                                                                                                                                                                       |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
|                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
| Table 14: He                                                                                                                                                                                                                                 | ardware Flo                                                                                                                                                    | w Control Tr                                                                                                                                                                                   | igger Levels                                                                                                                                                                   |                                                                                                                                                                  |                                                                                                                                                   | Table :                                                                              | 15: Flow                                                                                   | Control Sett                                                                                        | tings                                                                                  |                               |
| E                                                                                                                                                                                                                                            | Bytes 1                                                                                                                                                        | 4 8 14                                                                                                                                                                                         | Ļ                                                                                                                                                                              |                                                                                                                                                                  | Flow Cor                                                                                                                                          | ntrol                                                                                | None                                                                                       | Software                                                                                            | Hardware                                                                               | <u>•</u>                      |
|                                                                                                                                                                                                                                              | Level 0                                                                                                                                                        | 1 2 3                                                                                                                                                                                          |                                                                                                                                                                                |                                                                                                                                                                  | Mod                                                                                                                                               | е                                                                                    | 0                                                                                          | 1                                                                                                   | 2                                                                                      |                               |
|                                                                                                                                                                                                                                              |                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
| 1.6 Set Hardware                                                                                                                                                                                                                             | Dec                                                                                                                                                            | 254 6                                                                                                                                                                                          | 52 Level                                                                                                                                                                       |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        | v8.0                          |
| Flow Control                                                                                                                                                                                                                                 | Hex                                                                                                                                                            | FE 3                                                                                                                                                                                           | BE Level                                                                                                                                                                       |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
| Trigger Level                                                                                                                                                                                                                                | ASCII                                                                                                                                                          | •                                                                                                                                                                                              | > Level                                                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                   |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
| Sets the hardware                                                                                                                                                                                                                            | o flow con                                                                                                                                                     | trol trigger l                                                                                                                                                                                 | aval Tha C                                                                                                                                                                     |                                                                                                                                                                  |                                                                                                                                                   | l ha da                                                                              | activat                                                                                    | ad anca the                                                                                         | e number of                                                                            |                               |
|                                                                                                                                                                                                                                              |                                                                                                                                                                | u oi tiiggei i                                                                                                                                                                                 | evel. The C                                                                                                                                                                    | lear to Ser                                                                                                                                                      | nd signal wil                                                                                                                                     | i be ue                                                                              | activat                                                                                    | eu once un                                                                                          | 0                                                                                      |                               |
| characters in the                                                                                                                                                                                                                            |                                                                                                                                                                |                                                                                                                                                                                                |                                                                                                                                                                                |                                                                                                                                                                  | -                                                                                                                                                 |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
|                                                                                                                                                                                                                                              |                                                                                                                                                                | ffer reaches                                                                                                                                                                                   |                                                                                                                                                                                |                                                                                                                                                                  | -                                                                                                                                                 |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
|                                                                                                                                                                                                                                              | display but                                                                                                                                                    | ffer reaches                                                                                                                                                                                   |                                                                                                                                                                                |                                                                                                                                                                  | -                                                                                                                                                 |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
|                                                                                                                                                                                                                                              | display but                                                                                                                                                    | ffer reaches                                                                                                                                                                                   |                                                                                                                                                                                |                                                                                                                                                                  | -                                                                                                                                                 |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
|                                                                                                                                                                                                                                              | display but                                                                                                                                                    | ffer reaches<br>as above.                                                                                                                                                                      |                                                                                                                                                                                | et; it will be                                                                                                                                                   | e reactivated                                                                                                                                     |                                                                                      |                                                                                            |                                                                                                     |                                                                                        |                               |
| Level Byte Tr<br>1.7 Turn                                                                                                                                                                                                                    | display but<br>igger level                                                                                                                                     | ffer reaches<br>as above.                                                                                                                                                                      | the level se                                                                                                                                                                   | et; it will be                                                                                                                                                   | e reactivated                                                                                                                                     |                                                                                      |                                                                                            |                                                                                                     |                                                                                        | d.                            |
| Level Byte Tr                                                                                                                                                                                                                                | display but<br>igger level<br>Dec                                                                                                                              | ffer reaches<br>as above.<br>254 58                                                                                                                                                            | Almost Fu                                                                                                                                                                      | et; it will be<br>ull Almost<br>ull Almost                                                                                                                       | Empty<br>Empty                                                                                                                                    |                                                                                      |                                                                                            |                                                                                                     |                                                                                        | d.                            |
| Level Byte Tr<br>1.7 Turn<br>Software Flow                                                                                                                                                                                                   | display but<br>igger level<br>Dec<br>Hex<br>ASCII                                                                                                              | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>• :                                                                                                                                            | Almost Fu<br>Almost Fu<br>Almost Fu                                                                                                                                            | at; it will be<br>all Almost<br>all Almost<br>all Almost                                                                                                         | Empty<br>Empty<br>Empty<br>Empty                                                                                                                  | d once                                                                               | all data                                                                                   | i in the buf                                                                                        | fer is handle                                                                          | d.                            |
| Level Byte Tr<br>1.7 Turn<br>Software Flow<br>Control On<br>Enables simple flo                                                                                                                                                               | display but<br>igger level<br>Dec<br>Hex<br>ASCII                                                                                                              | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>• :<br>. The displa                                                                                                                            | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu                                                                                                                               | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, >                                                                                          | Empty<br>Empty<br>Empty<br>Empty<br>Koff, byte to                                                                                                 | d once                                                                               | all data                                                                                   | n in the buf                                                                                        | fer is handle                                                                          | d.<br>v8.0                    |
| Level Byte Tr<br>1.7 Turn<br>Software Flow<br>Control On<br>Enables simple flo<br>almost full and a o<br>the largest data p                                                                                                                  | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>packet to but                                                               | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>E :<br>. The displa<br>Kon, byte w<br>e received w                                                                                             | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>y will return<br>hen the buf<br>without buff                                                                               | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflov                                                          | Empty<br>Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fi<br>w. No data s                                                                 | d once<br>the ho<br>ull valu<br>should                                               | all data<br>ost whe<br>ue shou<br>l be sen                                                 | n the buf<br>n the displ<br>ld provide<br>t to the dis                                              | fer is handle<br>ay buffer is<br>enough roor<br>play betwee                            | d.<br><b>v8.0</b><br>n for    |
| Level Byte Tr<br>1.7 Turn<br>Software Flow<br>Control On<br>Enables simple flo<br>almost full and a o<br>the largest data p                                                                                                                  | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>packet to be<br>nses to per                                                 | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>• :<br>. The displa<br>Kon, byte w<br>e received w<br>rmit process                                                                             | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>ay will return<br>hen the buff<br>without buff<br>sing. Buffer                                                             | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflow<br>size is 256                                           | Empty<br>Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No                                                  | d once<br>o the he<br>ull valu<br>should<br>ot avail                                 | all data<br>ost whe<br>ue shou<br>l be sen<br>able in l                                    | n the displ<br>n the displ<br>ld provide<br>t to the dis<br><sup>2</sup> C. Defaul                  | ifer is handle<br>ay buffer is<br>enough roor<br>play betwee<br>It off.                | d.<br>v8.0<br>n for<br>n full |
| Level Byte Tr<br>1.7 Turn<br>Software Flow<br>Control On<br>Enables simple flo<br>almost full and a of<br>the largest data p<br>and empty respon                                                                                             | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>packet to be<br>nses to per                                                 | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>• :<br>. The displa<br>Kon, byte w<br>e received w<br>rmit process                                                                             | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>ay will return<br>hen the buff<br>without buff<br>sing. Buffer                                                             | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflow<br>size is 256                                           | Empty<br>Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No                                                  | d once<br>o the he<br>ull valu<br>should<br>ot avail                                 | all data<br>ost whe<br>ue shou<br>l be sen<br>able in l                                    | n the displ<br>n the displ<br>ld provide<br>t to the dis<br><sup>2</sup> C. Defaul                  | fer is handle<br>ay buffer is<br>enough roor<br>play betwee                            | d.<br>v8.0<br>n for<br>n full |
| Level Byte Tr<br>1.7 Turn<br>Software Flow<br>Control On<br>Enables simple flo<br>almost full and a a<br>the largest data p<br>and empty respon<br>Almost Full                                                                               | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>backet to bunses to per<br>Byte Nit                                         | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>• :<br>. The displa<br>Kon, byte w<br>e received w<br>rmit process<br>umber of by                                                              | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>y will return<br>hen the buff<br>without buff<br>sing. Buffer<br>ytes remaini                                              | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflov<br>size is 256<br>ng before l                            | Empty<br>Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No                                                  | d once<br>the ho<br>ull valu<br>should<br>ot avail<br>mplete                         | all data<br>ost whe<br>ue shou<br>be sen<br>able in<br>ily full, (                         | n the displ<br>Id provide<br>t to the dis<br><sup>2</sup> C. Defaul<br>) < Full < Er                | fer is handle<br>ay buffer is<br>enough roor<br>play betwee<br>It off.<br>mpty < 256*. | d.<br>v8.0<br>n for<br>n full |
| Level Byte Tr<br>1.7 Turn<br>Software Flow<br>Control On<br>Enables simple flo<br>almost full and a a<br>the largest data p<br>and empty respon<br>Almost Full                                                                               | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>backet to bunses to per<br>Byte Nu<br>Byte Nu                               | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>The displa<br>Kon, byte w<br>e received w<br>rmit process<br>umber of by<br>umber of by                                                        | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>y will return<br>hen the buf<br>without buff<br>sing. Buffer<br>ytes remaini<br>ytes before l                              | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflov<br>size is 256<br>ng before l<br>ouffer can              | Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No<br>buffer is cor<br>be consider                           | d once<br>the ho<br>ull valu<br>should<br>ot avail<br>mplete<br>red em               | all data<br>ost whe<br>ue shou<br>l be sen<br>able in<br>ly full, (<br>pty eno             | n the displ<br>Id provide<br>t to the dis<br><sup>2</sup> C. Defaul<br>) < Full < Er                | fer is handle<br>ay buffer is<br>enough roor<br>play betwee<br>It off.<br>mpty < 256*. | d.<br>v8.0<br>n for<br>n full |
| LevelByteTr1.7 TurnSoftware FlowSoftware FlowControl OnEnables simple floalmost full and a dalmost full and a dthe largest data pand empty resportAlmost FullAlmost EmptyI                                                                   | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>backet to bunses to per<br>Byte Nu<br>Byte Nu                               | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>The displa<br>Kon, byte w<br>e received w<br>rmit process<br>umber of by<br>umber of by                                                        | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>y will return<br>hen the buf<br>without buff<br>sing. Buffer<br>ytes remaini<br>ytes before l                              | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflov<br>size is 256<br>ng before l<br>ouffer can              | Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No<br>buffer is cor<br>be consider                           | d once<br>the ho<br>ull valu<br>should<br>ot avail<br>mplete<br>red em               | all data<br>ost whe<br>ue shou<br>l be sen<br>able in<br>ly full, (<br>pty eno             | n the displ<br>Id provide<br>t to the dis<br><sup>2</sup> C. Defaul<br>) < Full < Er                | fer is handle<br>ay buffer is<br>enough roor<br>play betwee<br>It off.<br>mpty < 256*. | d.<br>v8.0<br>n for<br>n full |
| Level Byte Tr<br>1.7 Turn<br>Software Flow<br>Control On<br>Enables simple flo<br>almost full and a of<br>the largest data p<br>and empty respon<br>Almost Full I<br>Almost Empty I<br>*Note: Buffer size                                    | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>backet to bunses to per<br>Byte Nu<br>Byte Nu                               | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>The displa<br>Kon, byte w<br>e received w<br>rmit process<br>umber of by<br>umber of by                                                        | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>y will return<br>hen the buf<br>without buff<br>sing. Buffer<br>ytes remaini<br>ytes before l                              | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflov<br>size is 256<br>ng before l<br>ouffer can              | Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No<br>buffer is cor<br>be consider                           | d once<br>the ho<br>ull valu<br>should<br>ot avail<br>mplete<br>red em               | all data<br>ost whe<br>ue shou<br>l be sen<br>able in<br>ly full, (<br>pty eno             | n the displ<br>Id provide<br>t to the dis<br><sup>2</sup> C. Defaul<br>) < Full < Er                | fer is handle<br>ay buffer is<br>enough roor<br>play betwee<br>It off.<br>mpty < 256*. | v8.0<br>n for<br>n full       |
| LevelByteTr1.7 Turn<br>Software Flow<br>Control OnFlow<br>Control OnEnables simple flo<br>almost full and a a<br>the largest data p<br>and empty respond<br>Almost FullIAlmost FullIAlmost EmptyI*Note: Buffer size1.8 Turn<br>Software Flow | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>oacket to be<br>nses to per<br>Byte Nu<br>e was incre                       | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>The displa<br>Kon, byte w<br>e received w<br>rmit process<br>umber of by<br>umber of by<br>eased to 256                                        | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>y will return<br>hen the buf<br>without buff<br>sing. Buffer<br>ytes remaini<br>ytes before l                              | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflov<br>size is 256<br>ng before l<br>ouffer can              | Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No<br>buffer is cor<br>be consider                           | d once<br>the ho<br>ull valu<br>should<br>ot avail<br>mplete<br>red em               | all data<br>ost whe<br>ue shou<br>l be sen<br>able in<br>ly full, (<br>pty eno             | n the displ<br>Id provide<br>t to the dis<br><sup>2</sup> C. Defaul<br>) < Full < Er                | fer is handle<br>ay buffer is<br>enough roor<br>play betwee<br>It off.<br>mpty < 256*. | v8.0<br>n for<br>n full       |
| LevelByteTr1.7 Turn<br>Software Flow<br>Control OnEnables simple flo<br>almost full and a a<br>the largest data p<br>and empty respondent<br>Almost FullAlmost FullIAlmost EmptyIAlmost EmptyI*Note: Buffer size1.8 Turn                     | display but<br>igger level<br>Dec<br>Hex<br>ASCI<br>ow control<br>different, ><br>backet to bu<br>nses to per<br>Byte Nu<br>Byte Nu<br>e was incre             | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>FE 3A<br>The displa<br>(on, byte w<br>e received w<br>rmit process<br>umber of by<br>umber of by<br>eased to 256<br>254 59                     | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>y will return<br>hen the buf<br>without buff<br>sing. Buffer<br>ytes remaini<br>ytes before l                              | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflov<br>size is 256<br>ng before l<br>ouffer can              | Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No<br>buffer is cor<br>be consider                           | d once<br>the ho<br>ull valu<br>should<br>ot avail<br>mplete<br>red em               | all data<br>ost whe<br>ue shou<br>l be sen<br>able in<br>ly full, (<br>pty eno             | n the displ<br>Id provide<br>t to the dis<br><sup>2</sup> C. Defaul<br>) < Full < Er                | fer is handle<br>ay buffer is<br>enough roor<br>play betwee<br>It off.<br>mpty < 256*. | d.<br>v8.0<br>n for<br>n full |
| Level Byte Tr<br>1.7 Turn<br>Software Flow<br>Control On<br>Enables simple flo<br>almost full and a a<br>the largest data p<br>and empty respon<br>Almost Full I<br>Almost Empty I<br>*Note: Buffer size<br>1.8 Turn<br>Software Flow        | display but<br>igger level<br>Dec<br>Hex<br>ASCII<br>ow control<br>different, ><br>oacket to bu<br>nses to per<br>Byte Ni<br>Byte Ni<br>Byte Ni<br>e was incre | ffer reaches<br>as above.<br>254 58<br>FE 3A<br>• :<br>. The displation<br>(on, byte w<br>e received w<br>rmit process<br>umber of by<br>umber of by<br>eased to 256<br>254 59<br>FE 38<br>• ; | Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>Almost Fu<br>y will return<br>hen the buf<br>without buff<br>sing. Buffer<br>ytes remaini<br>ytes before I<br>5 bytes from | et; it will be<br>all Almost<br>all Almost<br>all Almost<br>a single, ><br>fer is almost<br>er overflow<br>size is 256<br>ng before l<br>ouffer can<br>128 bytes | Empty<br>Empty<br>Empty<br>Empty<br>Koff, byte to<br>st empty. Fr<br>w. No data s<br>* bytes. No<br>buffer is cor<br>be considered<br>at firmware | d once<br>o the ho<br>ull valu<br>should<br>ot avail<br>mplete<br>red em<br>e revisi | all data<br>ost whe<br>ue shou<br>l be sen<br>able in<br>ly full, (<br>pty eno<br>ion 8.3. | n the displ<br>ld provide<br>t to the dis<br><sup>2</sup> C. Defaul<br>) < Full < Er<br>ugh to acco | ifer is handle<br>enough roor<br>play betwee<br>It off.<br>mpty < 256*.<br>ept data.   | v8.0                          |

| 1.9 Set | t Software      | Dec         | 254 60      | Xon Xoff v8.                                                              |
|---------|-----------------|-------------|-------------|---------------------------------------------------------------------------|
| Flow C  | Control         | Hex         | FE 3C       | Xon Xoff                                                                  |
| Respo   | nse             | ASCII       | ■ <         | Xon Xoff                                                                  |
| Sets th | ne values retui | ned for al  | most full a | and almost empty messages when in flow control mode. This command         |
| permit  | ts the display  | o utilize s | tandard flo | ow control values of 0x11 and 0x13, note that defaults are 0xFF and 0xFE. |
| Xon     | Byte Value      | e returned  | l when disp | play buffer is almost empty, permitting transmission to resume.           |
| Xoff    | Byte Value      | e returned  | l when disp | play buffer is almost full, signaling transmission to halt.               |

•

| 1.10 Echo    | Dec                                                                                                             | 254 255    | Length Data                             | v8.3 |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|------|--|--|--|
|              | Hex                                                                                                             | FE FF      | Length Data                             |      |  |  |  |
|              | ASCII                                                                                                           |            | Length Data                             |      |  |  |  |
| Send data to | Send data to the display that it will echo. Useful to confirm communication or return information from scripts. |            |                                         |      |  |  |  |
| Length       | h Short Length of data array to be echoed.                                                                      |            |                                         |      |  |  |  |
| Data         | Data Byte(s) An arbitrary array of data that the module will return.                                            |            |                                         |      |  |  |  |
| Response     | Byte(s)                                                                                                         | The same a | rbitrary array of data originally sent. |      |  |  |  |

| 1.11 Del | ay D   | ec 254 251          | Time                                                       | v8.3 |
|----------|--------|---------------------|------------------------------------------------------------|------|
|          | H      | ex FE FB            | Time                                                       |      |
|          | A      | SCII ∎ V            | Time                                                       |      |
| Pause co | ommand | execution to and re | sponses from the display for the specified length of time. |      |
| Time     | Short  | Length of delay in  | ms, maximum 2000.                                          |      |

| 1.12 Software    | e Dec          | 254 253 77 79 117 110                              | v8.4                                 |
|------------------|----------------|----------------------------------------------------|--------------------------------------|
| Reset            | Hex            | FE FD 4D 4F 75 6E                                  |                                      |
|                  | ASCII          | ■ <sup>2</sup> M O u n                             |                                      |
| Reset the disp   | play as if pow | er had been cycled via a software command. No      | o commands should be sent while the  |
| unit is in the p | process of re  | setting; a response will be returned to indicate t | he unit has successfully been reset. |
| Response         | Short Suc      | cessful reset response, 254 212.                   |                                      |

# 6.2 Text

| 2.1 Clear     | Dec       | 254 88         |
|---------------|-----------|----------------|
| Screen        | Нех       | FE 58          |
|               | ASCII     | <b>X</b>       |
| Clears the co | ontents o | of the screen. |

| 2.2 Go     | Dec   | 254 72           | v8.0         |
|------------|-------|------------------|--------------|
| Home       | Hex   | FE 48            |              |
|            | ASCII | ■ H              |              |
| Doturne th |       | a tha tan laft a | fthe core on |

Returns the cursor to the top left of the screen.

| 2.3 Set Cu  | rsor     | Dec          | 254 71     | Column Row                                             | v8.0 |
|-------------|----------|--------------|------------|--------------------------------------------------------|------|
| Position    |          | Hex          | FE 47      | Column Row                                             |      |
|             |          | ASCII        | <b>G</b>   | Column Row                                             |      |
| Sets the cu | ursor to | a specific o | cursor pos | ition where the next transmitted character is printed. |      |
| Column      | Byte     | Value bet    | ween 1 ar  | nd number of character columns.                        |      |
| Row         | Byte     | Value bet    | ween 1 ar  | nd number of character rows.                           |      |

۲

18

| 2.4 | Set Curso  | or Dec         | 254 121       | ХҮ                                                  | v8.0 |
|-----|------------|----------------|---------------|-----------------------------------------------------|------|
| Coc | ordinate   | Нех            | FE 79         | ХҮ                                                  |      |
|     |            | ASCII          | ■ y           | XY                                                  |      |
| Set | s the curs | or to an exact | pixel positio | on where the next transmitted character is printed. |      |
| Х   | Byte       | Value betwee   | en 1 and scre | een width, represents leftmost character position.  |      |
| Υ   | Byte       | Value betwee   | en 1 and scre | een height, represents topmost character position.  |      |

| 2.5 Get Strin | g Dec       | 254 41           | Text                                                                       | v8.6 |
|---------------|-------------|------------------|----------------------------------------------------------------------------|------|
| Extents       | Не          | <b>FE 29</b>     | Text                                                                       |      |
|               | ASC         | CII 🔹 )          | Text                                                                       |      |
| Read the size | e of the re | ctangle that the | specified string would occupy if it was rendered with the current font.    |      |
| Text          | String      | String on which  | to preform extents calculation. A single line of text is assumed.          |      |
| Response      | Byte(s)     | Width and heig   | ht of the string in pixels. A width greater than the screen will return 0. |      |

| 2.6 Initialize | Dec   | 254 43     | ID X1 Y1 X2 Y2 Font CharSpace LineSpace Scroll | v8.3 |
|----------------|-------|------------|------------------------------------------------|------|
| Text Window    | Hex   | FE 2B      | ID X1 Y1 X2 Y2 Font CharSpace LineSpace Scroll |      |
|                | ASCII | <b>= +</b> | ID X1 Y1 X2 Y2 Font CharSpace LineSpace Scroll |      |

Designates a portion of the screen to which text can be confined. Font commands affect only the current window, default (entire screen) is window 0.

| ID        | Byte  | Unique text window identification number, value between 0 and 15. |
|-----------|-------|-------------------------------------------------------------------|
| X1        | Byte  | Leftmost coordinate.                                              |
| Y1        | Byte  | Topmost coordinate.                                               |
| X2        | Byte  | Rightmost coordinate.                                             |
| Y2        | Byte  | Bottommost coordinate.                                            |
| Font*     | Short | Unique font ID to use for this window, value between 0 and 1023.  |
| CharSpace | Byte  | Spacing between characters to use for this window.                |
| LineSpace | Byte  | Spacing between lines to use for this window.                     |
| Scroll    | Byte  | Number of pixel rows to write to before scrolling text.           |

\*Note: Font was changed from a Byte length at firmware revision 8.5

| 2.7 Set Text      | Dec       | 254 42       | ID v                                                                   | 8.3 |
|-------------------|-----------|--------------|------------------------------------------------------------------------|-----|
| Window            | Hex       | <b>FE 2A</b> | ID                                                                     |     |
|                   | ASCII     | *            | ID                                                                     |     |
| Sets the text win | dow to wh | ich subsequ  | ent text and commands will apply. Default (entire screen) is window 0. |     |

ID Byte Unique text window to use.

•

| 2.8 C | ear Text   | Dec           | 254 44         | ID                                        | v8.3 |
|-------|------------|---------------|----------------|-------------------------------------------|------|
| Wind  | ow         | Нех           | FE 2C          | ID                                        |      |
|       |            | ASCII         | ■,             | ID                                        |      |
| Clear | the conter | nts of a spee | cific text wir | dow, similar to the clear screen command. |      |
| ID    | Byte l     | Jnique text   | window to      | lear.                                     |      |

| 2.9 Initialize                                                                                                        | Dec   | 254 45                                                                                       | ID X1 | Y1 X2 | Y2 Ver | t Hor | Font | Background | CharSpace | v8.3 |
|-----------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------|-------|-------|--------|-------|------|------------|-----------|------|
| Label                                                                                                                 | Нех   | FE 2D                                                                                        | ID X1 | Y1 X2 | Y2 Ver | t Hor | Font | Background | CharSpace |      |
|                                                                                                                       | ASCII |                                                                                              | ID X1 | Y1 X2 | Y2 Ver | t Hor | Font | Background | CharSpace |      |
| Designates a portion of the screen that can be easily updated with one line of text, often used to display variables. |       |                                                                                              |       |       |        |       |      |            |           |      |
| ID                                                                                                                    | Byte  | Unique label identification number, value between 0 and 15.                                  |       |       |        |       |      |            |           |      |
| X1                                                                                                                    | Byte  | Leftmost coordinate.                                                                         |       |       |        |       |      |            |           |      |
| Y1                                                                                                                    | Byte  | Topmost coordinate.                                                                          |       |       |        |       |      |            |           |      |
| X2                                                                                                                    | Byte  | Rightmost coordinate.                                                                        |       |       |        |       |      |            |           |      |
| Y2                                                                                                                    | Byte  | Bottommost coordinate.                                                                       |       |       |        |       |      |            |           |      |
| Vert                                                                                                                  | Byte  | Vertical justification of the label text; 0 for top, 1 for middle, or 2 for bottom.          |       |       |        |       |      |            |           |      |
| Hor                                                                                                                   | Byte  | Horizontal justification of the label text; 0 for left, 1 for centre, or 2 for right.        |       |       |        |       |      |            |           |      |
| Font*                                                                                                                 | Short | Unique font ID to use for this label, value between 0 and 1023.                              |       |       |        |       |      |            |           |      |
| Background                                                                                                            | Byte  | State of the pixels in the label region that is not occupied by text; 0 for off or 1 for on. |       |       |        |       |      |            |           |      |
| CharSpace                                                                                                             | Byte  | Spacing between characters to use for this label.                                            |       |       |        |       |      |            |           |      |

\*Note: Font was changed from a Byte length at firmware revision 8.5

| 2.10 Initialize                                                                                                       | Dec   | 254 47 ID X1 Y1 X2 Y2 Vert Dir Font Background CharSpace Delay v8.6                          |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Scrolling Label                                                                                                       | Нех   | FE 2F ID X1 Y1 X2 Y2 Vert Dir Font Background CharSpace Delay                                |  |  |  |  |  |  |  |
|                                                                                                                       | ASCI  | I ID X1 Y1 X2 Y2 Vert Dir Font Background CharSpace Delay                                    |  |  |  |  |  |  |  |
| Designates a portion of the screen that can be easily updated with one line of text, often used to display variables. |       |                                                                                              |  |  |  |  |  |  |  |
| ID                                                                                                                    | Byte  | Unique label identification number, value between 0 and 15.                                  |  |  |  |  |  |  |  |
| X1                                                                                                                    | Byte  | Leftmost coordinate.                                                                         |  |  |  |  |  |  |  |
| Y1                                                                                                                    | Byte  | Topmost coordinate.                                                                          |  |  |  |  |  |  |  |
| X2                                                                                                                    | Byte  | Rightmost coordinate.                                                                        |  |  |  |  |  |  |  |
| Y2                                                                                                                    | Byte  | Bottommost coordinate.                                                                       |  |  |  |  |  |  |  |
| Vert                                                                                                                  | Byte  | Vertical justification of the label text; 0 for top, 1 for middle, or 2 for bottom.          |  |  |  |  |  |  |  |
| Dir                                                                                                                   | Byte  | Direction of the scrolling behavior; 0 for left, 1 for right, or 2 for bounce.               |  |  |  |  |  |  |  |
| Font                                                                                                                  | Short | Unique font ID to use for this label, value between 0 and 1023.                              |  |  |  |  |  |  |  |
| Background                                                                                                            | Byte  | State of the pixels in the label region that is not occupied by text; 0 for off or 1 for on. |  |  |  |  |  |  |  |
| CharSpace                                                                                                             | Byte  | Spacing between characters to use for this label.                                            |  |  |  |  |  |  |  |
| Delay                                                                                                                 | Short | Time in milliseconds to elapse between characters printed.                                   |  |  |  |  |  |  |  |

| 2.11 U                                                                                                             | pdate                                                | Dec 25                                                                                    | <b>446</b> ID Data <b>v8.3</b> |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------|--|--|--|--|
| Label                                                                                                              |                                                      | Hex F                                                                                     | E 2E ID Data                   |  |  |  |  |
|                                                                                                                    |                                                      | ASCII                                                                                     | ■. ID Data                     |  |  |  |  |
| Update a previously created label or scrolling label with new text. Send a null character (empty string) to clear. |                                                      |                                                                                           |                                |  |  |  |  |
| ID                                                                                                                 | Byte Unique label to update, value between 0 and 15. |                                                                                           |                                |  |  |  |  |
| Data                                                                                                               | String                                               | Information to display in the label, must be terminated with a null (value of zero) byte. |                                |  |  |  |  |

| 2.12 Auto Scroll  | Dec   | 254 81        |                                                    | v                      | /8.0 |
|-------------------|-------|---------------|----------------------------------------------------|------------------------|------|
| On                | Hex   | FE 51         |                                                    |                        |      |
|                   | ASCII | <b>Q</b>      |                                                    |                        |      |
| The entire conten | +     | a awa ahiftaa | lup and line when the and of the career is reached | Disales, defecult is a | -    |

The entire contents of screen are shifted up one line when the end of the screen is reached. Display default is on.