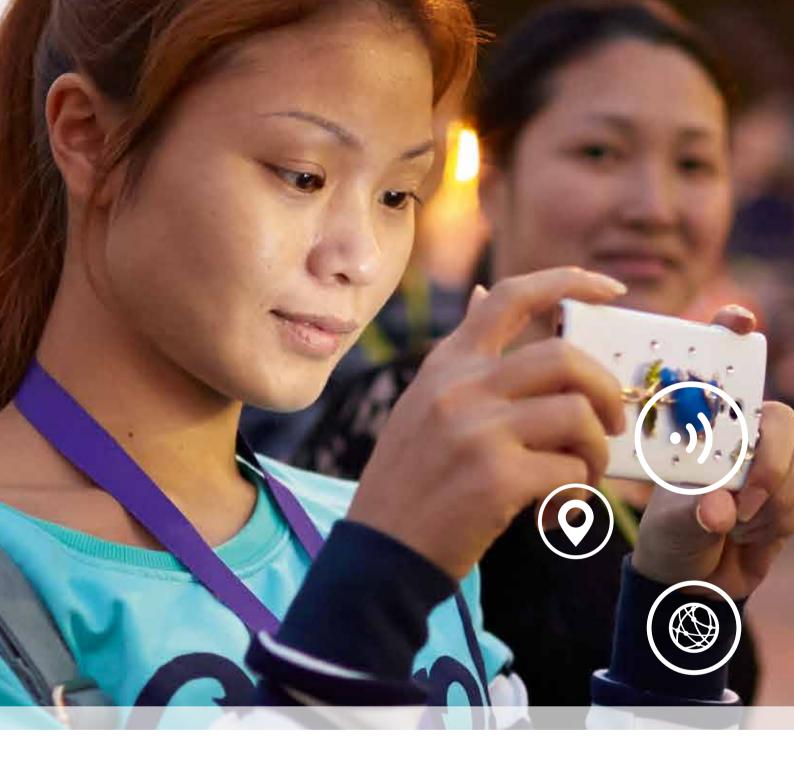
## imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.


We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





## **RF MANUAL 20<sup>TH</sup> EDITION**

Application and design manual for Smart Antenna Solutions

May 2017



## **RF** integration without compromise

At NXP, we are committed to ensuring you have the best mobile connection at all times.

With more than 3 Billion consumers online and over 50 Billion connected devices, the demand for always-on, always-connected devices continues to surge. With access to the internet by mobile device increasing by more than 200% every year, mobile device manufacturers and infrastructure network vendors now face unprecedented challenges to deliver the high performance voice and data services for all the downloading, streaming and cloud based services we have come to expect.

RF front-ends are becoming increasingly complex with the rapid deployment of LTE underway. More antennas are needed as well as support for an ever increasing number of cellular frequency bands. Just a few years ago only a handful of bands would need to be supported, whereas now 30+ bands are supported. To address all these RF challenges, while simultaneously achieving miniaturization and cost reduction, a new approach is needed.

The 20th edition of the RF Manual provides you with a comprehensive overview of our Smart Antenna Solutions with the highest level of integration without compromise; High performance, fully integrated combinations of multiple RF functions close to the antennas, delivering the highest, flawless performance, reliability, flexibility, quality or costof-ownership.

#### How to use the RF Manual

This document is a resource that lets you explore our RF portfolio.

#### Chapter 1 – Products by application

Discusses trends and requirements for particular applications, and lists the products we recommend for target systems.

#### Chapter 2 – NXP technologies

Describes the special process and packaging technologies that position us as a leader in RF.

#### Chapter 3 – Products by category

Presents products by function, with detailed specs for easy comparison.

#### Chapter 4 – Design resources

Summarizes the design-support resources that help make it easier to work with our products and reduce time-to-market.

#### RF Manual web page www.nxp.com/rfmanual

Chapter 5 – Replacement for discontinued parts Provides an overview of recently discontinued parts and their (close) replacements from NXP.

Chapter 6 – Packaging information Gives an overview of the packages and the marking codes.

#### Chapter 7 – Products by NXP type number

Gives all the NXP type numbers mentioned in this manual, in alphanumeric order, so you can quickly find the details for a specific product.

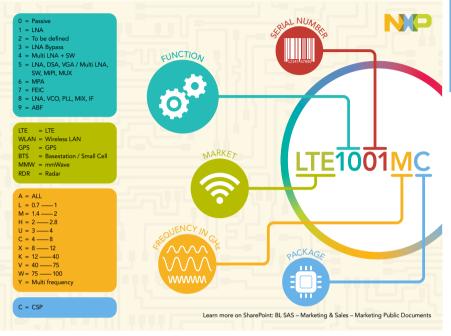
## Contents

| 1   | Products by application                                                                                      | 8        |
|-----|--------------------------------------------------------------------------------------------------------------|----------|
| 1.1 | New products                                                                                                 | 8        |
| 1.2 | Vireless connectivity mobile & wearable                                                                      | 9        |
|     | 1.2.1 WLAN for mobile & wearable application                                                                 | 9        |
|     | 1.2.2 LTE LNA                                                                                                | 10       |
|     | 1.2.3 GPS for smartphones, tablets and wearables                                                             | 11       |
| 1.3 | Wireless communication infrastructure                                                                        | 14       |
|     | 1.3.1 Base stations (all cellular standards and frequencies)                                                 | 14       |
|     | 1.3.2 Repeater                                                                                               | 16       |
|     | 1.3.3 Small cells                                                                                            | 17       |
| 1.4 | Broadband communication infrastructure and TV                                                                | 18       |
|     | 1.4.1 WLAN: access points and routers, fixed consumer electronics                                            | 18       |
|     | 1.4.2 Cable modem and set-top boxes based on DOCSIS 3.0 & 3.1                                                | 19       |
|     | 1.4.3 Network Interface Module (NIM) for TV reception                                                        | 20       |
|     | 1.4.4 Optical mini- and midi-node line-up                                                                    | 21       |
|     | 1.4.5 Broadband line extenders                                                                               | 22       |
| 1.5 | Satellite                                                                                                    | 23       |
|     | 1.5.1 Satellite outdoor unit, QUAD LNB with integrated mixer/oscillator/downconverter/switch matrix          | 23       |
|     | 1.5.2 Satellite outdoor unit, twin LNB with integrated mixer/oscillator/downconverter                        | 24       |
|     | 1.5.3 Satellite outdoor unit, twin LNB with discrete components                                              | 25       |
|     | 1.5.4 Satellite multi-switch box - 4 x 4 (up to 16 x 16)/DiSEqC/SMATV                                        | 26       |
|     | 1.5.5 VSAT with integrated mixer/oscillator/downconverter                                                    | 27       |
| 1.6 | Generic RF front-end for IOT                                                                                 | 29       |
| 1.7 |                                                                                                              | 31       |
|     | 1.7.1 Remote Keyless Entry (RKE), RF generic front-end with dedicated antenna for reception and transmission | 31<br>32 |
|     | 1.7.2  Tire-pressure monitoring system    1.7.3  SDARS and HD radio                                          | 33       |
|     |                                                                                                              | 55       |
| 2   | Technologies                                                                                                 | 35       |
| 2.1 | Looking for a leader in SiGe:C? You just found us!                                                           | 35       |
| 2.2 | High-performance, small-size packaging                                                                       | 36       |
| 3   | Products by function                                                                                         | 39       |
| 3.1 | REICs                                                                                                        | 39       |
| 0.1 | 3.1.1 RF MMIC amplifiers and mixers                                                                          | 39       |
|     | 3.1.2 Wideband amplifiers                                                                                    | 42       |
|     | 3.1.3 Variable gain and discrete step amplifiers                                                             | 43       |
|     | 3.1.4 Power amplifiers                                                                                       | 44       |
|     | 3.1.5 Modulators, mixers, PLL and downconverters                                                             | 44       |
| 3.2 | RF Bipolar transistors                                                                                       | 46       |
|     | 3.2.1 Wideband transistors                                                                                   | 46       |
| 3.3 | RF diodes                                                                                                    | 49       |
| 5.5 | 3.3.1 Varicap diodes                                                                                         | 49       |
|     | 3.3.2 PIN diodes                                                                                             | 50       |
|     | 3.3.3 Band-switch diodes                                                                                     | 52       |
| 3.4 | RF MOS transistors                                                                                           | 53       |
|     | 3.4.1 JFETs                                                                                                  | 53       |
|     | 3.4.2 MOSFETs                                                                                                | 54       |

| 4          | Design support                                                        | 57       |
|------------|-----------------------------------------------------------------------|----------|
| 4.1        | Explore NXP's RF portfolio                                            | 57       |
| 4.2        | Product selection on NXP.com                                          | 57       |
| 4.3        | Product evaluation                                                    | 57       |
| 4.4        | Additional design-in support                                          | 58       |
| 4.5        | Application notes                                                     | 58       |
| 4.6        | Simulation models                                                     | 64       |
| 5          | Replacement for discontinued parts                                    | 68       |
| 5.1        | Cross-references: NXP discontinued types versus NXP replacement types | 68       |
| 6          | Posting and postoning information                                     | 70       |
|            | Packing and packaging information                                     | 70       |
| 6.1        | Packing quantities per package with relevant ordering codes           | 70<br>70 |
| 6.1<br>6.2 |                                                                       |          |

# LEADING IN ADVANCED RF SOLUTIONS

We're **trusted** by the world's top businesses. That's why 9 out of the top 10 smartphone OEMs use NXP GPS LNAs.


### In Focus: BL SAS new type naming convention

As one of the industry's leading technology company, NXP is constantly looking for ways to improve our products and our accessibility to those evaluating our products. One way that we've improved accessibility is by creating a new naming convention for the Smart Antenna Solutions portfolio. The parts you're already ordering will not change. However, new part numbers will follow a simple and consistent structure to make it easier for you to identify and order in the future.

- The first set of letters in the new part numbers represent the market: LTE, WLAN, GPS, BTS for Basestation and small cell, MMW for millimeter Wave, and RDR for our line of Radar products.
- 2. The next two numerical digits identify the product's function, like LNA, MPA, etc, see picture.
- 3. The last two numerical digits are like a serial number used e.g. to indicate revision history.
- As the frequency is one of the most important aspects in the smart antenna domain, the next alpha digit indicates frequency of the part, like H for 2 – 2.8 GHz, K for 12 - 40 GHz, etc, see below.
- 5. And lastly, if the part comes in a CSP package, it will be indicated by the letter C.

To get used to this new type naming methodology more quickly, we selected our 55 most important products and 'translated' them according the new naming convention. You will see them often be communicated next to each other (dual branding). We're confident this will not only be easier to understand but will make ordering simple.

| New Name | Current Type | New Name  | Current Type | New Name  | Current Type |
|----------|--------------|-----------|--------------|-----------|--------------|
| BTS1001H | BGU8053      | GPS1102M  | BGU7007      | LTE3301HC | BGS8H5UK     |
| BTS1001L | BGU8051      | GPS1103M  | BGU7004      | LTE3301L  | BGS8L5       |
| BTS1001M | BGU8052      | GPS1104M  | BGU7008      | LTE3301LC | BGS8L5UK     |
| BTS3001H | BGU8063      | GPS1201M  | BGU8009      | LTE3301U  | BGS8U5       |
| BTS3001L | BGU8061      | GPS1202M  | BGU8019      | LTE4101YC | BGS613L5UK   |
| BTS3001M | BGU8062      | GPS1203M  | BGU8019W/N2  | LTE4102YC | BGS613H5UK   |
| BTS5001H | BGU7075      | GPS1301M  | BGU8103      | LTE4201YC | BGS8LL5UK    |
| BTS5001M | BGU7073      | GPS1401M  | BGU8309      | LTE4202YC | BGS8LH5UK    |
| BTS5002M | BGU7078      | LTE1001H  | BGU8H1       | LTE4203YC | BGS8HH5UK    |
| BTS5101M | BGU8812      | LTE1001L  | BGU8L1       | LTE5001HC | BGS829H6UK   |
| BTS5201H | BGU8823      | LTE1001M  | BGU8M1       | LTE5001LC | BGS829L6UK   |
| BTS5201L | BGU8821      | LTE1001MC | BGU8M1UK     | LTE5001MC | BGS829M6UK   |
| BTS5201M | BGU8822      | LTE3001H  | BGS8H2       | LTE5101HC | BGS839H6UK   |
| BTS6001A | BGA7210      | LTE3001L  | BGS8L2       | WLAN3001C | BGS8358      |
| BTS8001A | BGX7101HN/1  | LTE3001M  | BGS8M2       | WLAN3001H | BG\$8324     |
| GPS1001M | BGU6005/N2   | LTE3101MC | BGS8M4UK     | WLAN3101C | BGS8458      |
| GPS1002M | BGU6009/N2   | LTE3201HC | BGS6H5UK     | WLAN3101H | BGS8424      |
| GPS1101M | BGU7005      | LTE3301C  | BGS8C5       | WLAN7001C | BGF8458      |
|          |              | LTE3301H  | BGS8H5       | WLAN7002C | BGF8658      |



## 1. Products by application

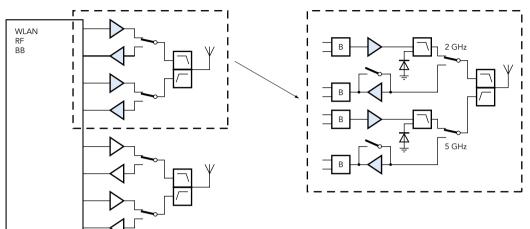
#### NXP RF product catalog:

http://www.nxp.com/rf

#### 1.1 New products

#### DEV = in DEVelopment

CQS = Customer Qualification Samples


RFS = Released For Supply

| Туре                 | New name           | Application/description                                          | Expected<br>status<br>June 2015 | Planned<br>release | Section |
|----------------------|--------------------|------------------------------------------------------------------|---------------------------------|--------------------|---------|
| NEW: SiGe:C LNAs (fo | or e.g. GPS)       |                                                                  |                                 |                    |         |
| BGU8103              | GPS1301M           | GPS LNA, low current 1 mA                                        | RFS                             | released           | 3.1.1   |
| BGU8309              | GPS1401M           | GPS LNA, small package (0.8 x 0.8 mm2)                           | RFS                             | released           | 3.1.1   |
| NEW: LNAs for LTE    |                    |                                                                  |                                 |                    |         |
| BGS8L5               | LTE3301L           | LTE LNA with bypass from 0.7 to 1 GHz, 0.7 dB NF, 15 dB gain     | DEV                             | Q2-2017            | 3.1.1   |
| BGS8M5               | LTE3301H           | LTE LNA with bypass from 1.5 to 2.7 GHz, 0.8 dB NF, 14 dB gain   | DEV                             | Q2-2017            | 3.1.1   |
| BGS8C5               | LTE3301C           | LTE LNA with bypass from 3.4 to 3.8 GHz, 1.0 dB NF, 16 dB gain   | DEV                             | Q2-2017            | 3.1.1   |
| BGS8U5               | LTE3301U           | LTE LNA with bypass from 5.1 to 5.95 GHz, 1.25 dB NF, 15 dB gain | DEV                             | Q2-2017            | 3.1.1   |
| -                    | LTE3401L           | LTE LNA with bypass from 0.7 to 1 GHz, 0.85 dB NF, 18 dB gain    | DEV                             | Q2-2017            | 3.1.1   |
| NEW: LNAs for WLAN   | 1                  |                                                                  |                                 |                    |         |
| BGS8324              | WLAN3001H          | 2.4 GHz LNA for WLAN, 802.11b/g/n                                | RFS                             | released           | 3.1.1   |
| BGS8358              | WLAN3001C          | 5 GHz LNA for WLAN, 802.11a/n/ac                                 | RFS                             | released           | 3.1.1   |
| BGS8424              | WLAN3101H          | 2.4 GHz LNA for WLAN, 802.11b/g/n, small package                 | RFS                             | released           | 3.1.1   |
| BGS8458              | WLAN3101C          | 5 GHz LNA for WLAN, 802.11a/n/ac, small package                  | RFS                             | released           | 3.1.1   |
| BGF8458              | WLAN7001C          | 5 GHz FEIC for WLAN, 802.11a/n/ac                                | DEV                             | Q2-2017            | 3.1.1   |
| NEW: LNAs for wirele | ss infrastructures |                                                                  |                                 |                    |         |
| BGU7078              | BTS5101H           | Variable gain high-linearity LNA 2.3-2.6 GHz, 1.1 dB NF          | RFS                             | released           | 3.1.1   |
| BGU8061              | BTS3001L           | High-linearity LNA with bypass 0.3-1.5 GHz, 1.1 dB NF            | RFS                             | released           | 3.1.1   |
| BGU8062              | BTS3001M           | High-linearity LNA with bypass 1.5-2.5 GHz, 1.3 dB NF            | RFS                             | released           | 3.1.1   |
| BGU8063              | BTS3001H           | High-linearity LNA with bypass 2.5-4.0 GHz, 1.6 dB NF            | RFS                             | released           | 3.1.1   |
| NEW: DOCSIS Cable I  | Modem              |                                                                  |                                 |                    |         |
| BGA3131              | -                  | DOCSIS 3.1 upstream amplifier                                    | RFS                             | released           | 3.1.3   |

#### 1.2 Wireless connectivity mobile & wearable

#### 1.2.1 WLAN for mobile & wearable application

#### Application diagram for WLAN



14 @ 8 mA

aaa-007042

SOT1436

#### **Recommended products**

5 GHz FEIC

| Function             | Product | gain (dB)      | NF (dB) | IIP3 (dB) | Package | Туре    | New name  |
|----------------------|---------|----------------|---------|-----------|---------|---------|-----------|
| 2.4 GHz LNA + switch | MMIC    | 16 @ 8.3 mA    | 2.0     | 7         | SOT1261 | BGS8324 | WLAN3001H |
|                      |         | 15.5 @ 8.4 mA  | 2.0     | 6         | SOT1261 | BGS8424 | WLAN3101H |
| 5 GHz LNA + switch   | MMIC    | 12.5 @ 9.5 mA  | 2.3     | 10        | SOT1260 | BGS8358 | WLAN3001C |
|                      |         | 13.5 @ 10.7 mA | 2.4     | 9         | SOT1234 | BGS8458 | WLAN3101C |
|                      |         |                |         |           |         |         |           |
| Function             | Product | gain (dB)      | NF (dB) | Pout (dB) | Package | Туре    | New name  |

2.3

For the complete product selection please see section 3.1.1

MMIC

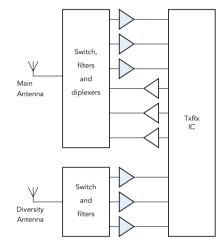


#### Product highlight: WLAN LNAs plus switch BGS8424 [WLAN3101H] and BGS8458 [WLAN3101C]

These fully integrated LNAs plus switch are optimized for mobile IEEE 802.11b/g/n/ac WLAN applications in the 2.4 and 5 GHz bands. Manufactured in our high-performance QUBiC4 GEN8 technology, they combine best-in-class gain, noise figure, linearity for the LNA and an integrated RX/TX(/BT) switch with the process stability and ruggedness that SiGe technology is known for.

#### Features

- Fully integrated, high-performance LNA and switch (no external matching or DC blocking required)
- LNA Noise Figure (NF) of 2.0 dB (2.4 GHz) and 2.4 dB (5 GHz), with low current consumption of 8.4 resp. 10.7 mA
- Integrated TX-RX(-BT) switch with low losses (0.7 dB)
- Low bypass current of 8 resp. 4 μA
- Single-supply operation covering full Li-ion battery range from 2.7 to 5.25 V
- Small QFN-style package (1.5 x 1.5 x 0.3 resp. 1.2 x 1.4 x 0.3 mm, 0.4 mm pitch)


WLAN7001C

BGF8458

#### 1.2.2 LTE LNA

While LTE/4G offers consumers much higher data rates (up to 300 Mbits/s) compared to UMTS/3G, LTE smartphones are more complex because they need more antennas, are used for multiple cellular and connectivity frequencies, and require additional switches and duplexers. BGS8x2 and BGU8x1 LTE LNAs increase the receive sensitivity of LTE main and diversity receivers by offering system-optimized gain, low noise figure, and high third-order linearity. As a result, LTE smartphone users enjoy higher and more consistent data rates. These features also mean RF designers have more options, as they can amplify the LTE signal close to the antenna and decrease line losses - something that is especially important for large tablet and combination phone/tablet ("phablet") form factors. The BGU8x1 and BGS8x2 LTE LNAs are available for Low (BGU8L1, BGS8L2), Mid (BGU8M1, BGS8M2) and High (BGU8H1, BGS8H2) cellular bands. The difference between the BGS8x2 and the BGU8x1 is that the BGS8x2 has a switch to bypass the LNA. This is beneficial when high RF signal levels are available at the input and there is no need for additional gain, because the LNA can be bypassed and switched off to lower the power consumption.

#### Application diagram of an LTE LNA in a mobile phone



#### **Recommended products**

| Function    | Product | Frequency (MHz) | Gain (dB) | NF (dB) | Package | Туре    | New name |
|-------------|---------|-----------------|-----------|---------|---------|---------|----------|
|             | MMIC    | 728 - 960       | 14        | 0.7     |         | BGU8L1* | LTE1001L |
| LNA         |         | 1805 - 2200     | 13        | 0.8     |         | BGU8M1* | LTE1001M |
|             |         | 2300 - 2690     | 13        | 0.9     | SOT1232 | BGU8H1* | LTE1001H |
|             | 1010    | 728 - 960       | 13        | 0.85    |         | BGS8L2  | LTE3001L |
|             |         | 1805 - 2200     | 14.4      | 0.85    |         | BGS8M2* | LTE3001M |
|             |         | 2300 - 2690     | 12.5      | 1.0     |         | BGS8H2* | LTE3001H |
| LNA         |         | 703 - 960       | 13.6      | 0.7     |         | BGS8L5* | LTE3301L |
| +<br>bypass | MMIC    | 1425-2690       | 13.1      | 0.75    |         | BGS8H5* | LTE3301H |
| bypass      |         | 3400 - 3800     | 15.5      | 1.0     |         | BGS8U5  | LTE3301U |
|             |         | 5150 - 5850     | 15        | 1.25    |         | BGS8C5  | LTE3301C |
|             |         | 703-960         | 18        | 0.85    |         | -       | LTE3401L |

\* also available in CSP package, contact NXP for detailed information on specifications For the complete product selection please see section 3.1.1

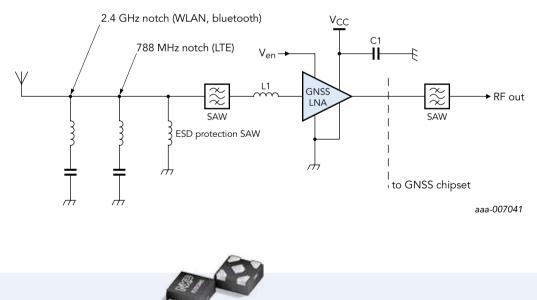


#### LTE LNAs with bypass BGS8x5 [LTE3301x]

**Product highlight:** 

The BGS8x5 delivers a full range of LTE LNAs covering the full LTE(-U) frequency range from 700 MHz up 6 GHz with products, each optimized for a sub-range of frequencies. The BGS8x5 can be applied in both primary and diversity path of LTE receivers to deliver better sensitivity under severe co-existence conditions (e.g. simultaneous cellular TX in FDD systems). The bypass switch allows to switch off the LNA under higher input signal conditions, thereby reducing the current consumption to less than 1 uA. The BGS8x2 requires only one external matching inductor.

- Smallest 6-pin leadless package (1.1 mm x 0.7 mm x 0.37mm)
- Cover all bands with a Low (from 700 to 960 MHz), High (from 1425 to 2700 MHz), Ultra High (from 3400 to 3800 MHz) and C-band (from 5150 to 5850 MHz)
- Noise figure (NF) between 0.7 and 1.25 dB at a gain between 13 and 15.5 dB
- Current consumption of 4.5 mA in gain mode, < 1 uA in bypass mode
- High linearity (1 dB compression point and IIP3)
- Supply voltage from 1.5 to 3.1 V
- Require only one input matching inductor


#### 1.2.3 GPS for smartphones, tablets and wearables

BGU600x/700x/800x LNAs are designed to improve the linearity, noise figure, and reception of GPS signals, including GloNass and Compass, while offering the smallest footprint in the market. As the industry's first GPS LNAs to dynamically suppress strong cellular, Bluetooth, and WLAN transmit signals, the NXP BGU600x/700x/800x series offers the best reception for weak GPS signals, delivering an improvement of 10 dB or better IP3 under -40 to -20 dBm jamming conditions, while the noise figure remains below 1 dB. Requiring only one external component, the BGU600x/700x/800x LNAs save up to 70% in PCB size and 10% in component cost.

GPS is a standard feature in a wide range of consumer products, from smartphones, wearables, and tablets to digital still cameras, watches, electric cars, and more. GPS signal power levels are weak and below the noise floor at -155 dBm. In many of these products, especially smartphones and tablets, strong transmitters such as Bluetooth, WLAN, and cellular can drive the GPS LNA into compression. When the GPS LNA is in compression, it has lower gain, which causes poor GPS reception; it also generates inter-modulation products and harmonics from the transmitter signals, capable of overpowering weak signals and leading to loss of GPS reception.

The BGU600x/700x/800x series use adaptive biasing to immediately detect any output power from jammers, and compensate by temporarily increasing the current. As a result, optimal GPS signal reception is maintained for as long as possible. Each device in the BGU700x/800x series requires only one input-matching inductor and an optional one supply decoupling capacitor to complete the design. This creates a very compact design and lowers the bill of materials.

Application diagram of a GNSS LNA with pre- and post-SAWs and notches, implemented as discretes, for 788 MHz (LTE) and 2.4 GHz (WLAN) suppression



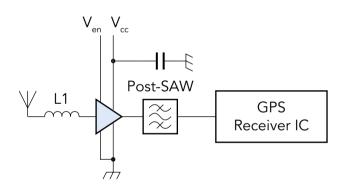


#### GPS LNA in diamond package BGU8309 [GPS1401M]

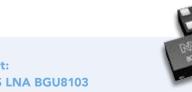
The BGU8309 [GPS1401M] has all the features of its predecessors put into smaller diamond shaped package. It features adaptive biasing to have optimal linearity versus current consumption performance in co-existence scenarios with radios in mobile phones. In nominal, non-jamming conditions it delivers 17dB gain at a noise figure of 0.7 dB. The BGU8309 requires only one external matching inductor.

- Smallest 5-pin leadless package (0.8 x 0.8 x 0.35 mm)
- Covers full GNSS L1 band, from 1559 to 1610 MHz
- Noise figure = 0.7 dB at a gain of 17 dB
- ▶ High 1 dB compression point of -9 dBm and out-of-band IP3i of 5 dBm
- Supply voltage 1.5 to 3.1 V, supply current 3.6 mA
- Power-down mode current consumption < 1 uA</p>
- Integrated, temperature-stabilized bias for easy design

#### **Recommended products**


| Function             | Product | lcc (mA) | Gain (dB) | NF (dB) | Package | Туре     | New name |
|----------------------|---------|----------|-----------|---------|---------|----------|----------|
|                      | MMIC    | 5.2      | 17.5      | 0.85    | SOT886  | BGU6005  | GPS1001M |
| value LNA            |         | 5.1      | 17.0      | 0.9     | SOT1230 | BGU6009  | GPS1002M |
| mid end LNA          |         | 4.5      | 16.5      | 0.85    | SOT886  | BGU7005  | GPS1101M |
| mid end LINA         |         | 4.8      | 18.5      | 0.85    | SOT886  | BGU7007  | GPS1102M |
|                      |         | 4.2      | 18.0      | 0.65    | SOT1230 | BGU8009* | GPS1201M |
| high end LNA         |         | 4.6      | 18.5      | 0.55    | SOT1232 | BGU8019  | GPS1202M |
|                      |         | 4.0      | 17.0      | 0.7     | SOT1226 | BGU8309  | GPS1401M |
| low current LNA      |         | 1.2      | 17.5      | 0.8     | SOT1232 | BGU8103* | GPS1301M |
| automotive qualified |         | 4.5      | 16.5      | 0.85    | SOT886  | BGU7004  | GPS1103M |
| LNA                  |         | 4.8      | 18.5      | 0.85    | SOT886  | BGU7008  | GPS1104M |

\* also available in CSP package, contact NXP for detailed information on specifications


For the complete product selection please see section 3.1.1

In wearable health and fitness applications like smart watches, low current is critical, but linearity requirements can be relaxed since the only relevant on-board jammers are Bluetooth and 2.4 GHz WLAN. For these low-current applications, NXP offers the BGU8010, which uses 3 mA of current and has a gain of 16 dB, the BGU8020, which uses 2 mA of current and has a gain of 16.5 dB, and the BGU8103, which uses 1.2 mA of current and has a gain of 17 dB.

Application diagram of wearable health and fitness device, showing the input-match inductor (L1) and a post-SAW



This application consists of the input match inductor L1 and a post SAW. Because no strong jammer signals are present, a pre-SAW is unnecessary.



Product highlight: Low-current GPS LNA BGU8103 [GPS1301M]

Designed for extremely low power consumption, the BGU8103 delivers optimal performance even when exposed to jammers from coexisting cellular and connectivity transmitters.

- Covers full GNSS L1 band, from 1559 to 1610 MHz
- Noise figure (NF) = 0.85 dB
- Gain 17.3 dB
- Input 1 dB compression point of -16 dBm
- ▶ Out-of-band IP3ंi of -8 dḃm
- Supply voltage 1.5 to 3.1 V
- > Optimized performance at low supply current of 1.2 mA
- Power-down mode current consumption < 1 μA</p>



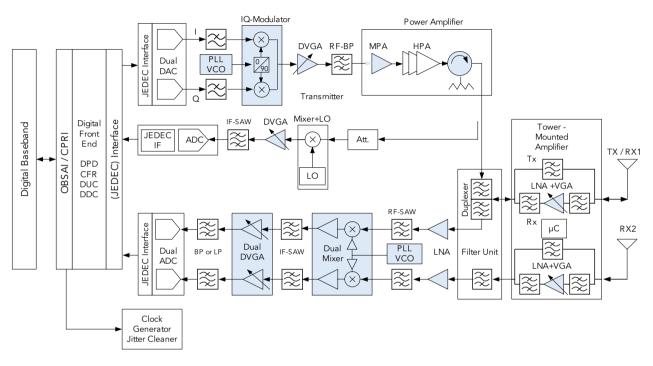
1-0

## **ENHANCING** RF PERFORMANCE

NXP is committed to providing **best-in-class** RF solutions that help you reach new levels of performance for a smarter world.






#### 1.3 Wireless communication infrastructur

#### 1.3.1 Base stations (all cellular standards and frequencies)

#### RF components for transmit line-ups and receive chains

As a global leader in RF technology and component design, NXP Semiconductors offers a complete portfolio of RF products, from low- to medium-power signal conditioning, that delivers advanced performance and helps simplify your design and the development process. Our solutions range from discretes and amplifiers (LNA, VGA, MPA) to mixers/oscillators.

#### Application diagram of base station showing Tx, Rx, and Tx feedback functions



Tx functions are in the upper region, Rx in the lower, and Tx feedback in the middle.

#### Product highlight: Base-station LNAs with ultra-low noise BGU805x [BTS1001x]



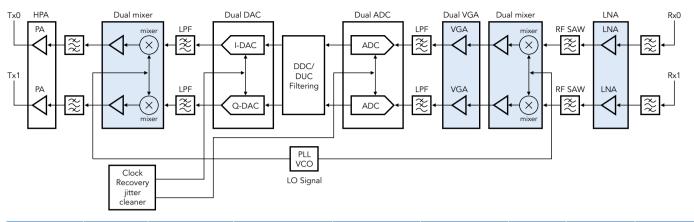
The BGU8051, BGU8052, and BGU8053 SiGe:C BiCMOS LNAs are designed to support high-performance communications systems from 300 up to 6000 MHz. Key enablers of maintaining sensitivity, even in adverse signal conditions, are high linearity (37 dB OIP3), ultra-low noise figures (e.g. 0.4 dB), and wideband S11<20 dB behavior. These ultra-low noise amplifiers enable 2G/3G/4G macro and micro base-station performance at unsurpassed value.

- Three versions to cover low frequency (300 1500 MHz), mid frequency (1500 – 2500 MHz) and high frequency (2500 – 6000 MHz) ranges
- Very low Noise Figure 0.43 0.57 dB at a gain of 18 dB
- Very high linearity (1 dB compression point of 19dBm and IIP3 of 39 dBm) at 50 mA current consumption
- Supply voltage from 3.0 to 5.25 V
- Adjustable bias current through external resistor

#### **Recommended products**

| Recommended<br>Function                   | Product                            | Frequency                                                                                                         | C_ (pF)                                                                                                                                                       | R (Ω)                                                                                                                 | IP3_ (dBm)                                                                                                                                           | Package                                          | Type name                                                                                                            | New name                                                                                    |
|-------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Function                                  | Froduct                            | Frequency                                                                                                         | 0.23                                                                                                                                                          | 2                                                                                                                     | 40dBm                                                                                                                                                |                                                  |                                                                                                                      | New name                                                                                    |
|                                           |                                    | 2011                                                                                                              |                                                                                                                                                               |                                                                                                                       |                                                                                                                                                      | SOT753                                           | BAP64Q                                                                                                               | -                                                                                           |
| attenuator                                | PIN diode                          | <3GHz                                                                                                             | 0.25                                                                                                                                                          | 5.4                                                                                                                   | 45dBm                                                                                                                                                | SOT753                                           | BAP70Q                                                                                                               | -                                                                                           |
|                                           |                                    |                                                                                                                   | 0.23                                                                                                                                                          | 2                                                                                                                     | -                                                                                                                                                    | Various*                                         | BAP64                                                                                                                | -                                                                                           |
| Evention                                  | Dreduct                            | Eroguerey renge                                                                                                   |                                                                                                                                                               | Gain (dP)                                                                                                             |                                                                                                                                                      | Dookogo                                          | Turne norme                                                                                                          | Newneme                                                                                     |
| Function                                  | Product                            | Frequency range                                                                                                   | NF (dB)                                                                                                                                                       | Gain (dB)                                                                                                             | IP3 <sub>o</sub> (dBm)                                                                                                                               | Package                                          |                                                                                                                      | New name                                                                                    |
|                                           |                                    | <6 GHz                                                                                                            | 0.65 @1.8 GHz                                                                                                                                                 | 20.5 @1.8 GHz                                                                                                         | 34 @ 1.8 GHz                                                                                                                                         |                                                  | BFU690F                                                                                                              | -                                                                                           |
|                                           | transistor                         | <12 GHz                                                                                                           | 1.3 @ 12 GHz                                                                                                                                                  | 12.5 @ 12 GHz                                                                                                         | 11 @ 12 GHz                                                                                                                                          | SOT343F                                          | BFU730F                                                                                                              | -                                                                                           |
|                                           |                                    | <12 GHz                                                                                                           | 0.5 @ 2.4 GHz                                                                                                                                                 | 22 @ 2.4 GHz                                                                                                          | 32 @ 2.4 GHz                                                                                                                                         |                                                  | BFU760F                                                                                                              | -                                                                                           |
| LNA                                       |                                    | <12 GHz                                                                                                           | 0.4 @ 1.8 GHz                                                                                                                                                 | 19.5 @ 1.8 GHz                                                                                                        | 33 @ 1.8 GHz                                                                                                                                         |                                                  | BFU790F                                                                                                              | -                                                                                           |
|                                           |                                    | 0.3-1.5 GHz                                                                                                       | 0.43 @ 900 MHz                                                                                                                                                | 18.1                                                                                                                  | 38.9                                                                                                                                                 |                                                  | BGU8051                                                                                                              | BTS1001L                                                                                    |
|                                           | MMIC                               | 1.5-2.5 GHz                                                                                                       | 0.54 @ 1900 MHz                                                                                                                                               | 18.4                                                                                                                  | 35.7                                                                                                                                                 | SOT1327                                          | BGU8052                                                                                                              | BTS1001M                                                                                    |
|                                           |                                    | 2-6 Ghz                                                                                                           | 0.57 @ 2500 MHz                                                                                                                                               | 18.4                                                                                                                  | 36.0                                                                                                                                                 |                                                  | BGU8053                                                                                                              | BTS1001H                                                                                    |
|                                           |                                    | 0.3-1.5 GHz                                                                                                       | 1.1 @ 900 MHz                                                                                                                                                 | 20.5                                                                                                                  | 36.5                                                                                                                                                 |                                                  | BGU8061                                                                                                              | BTS3001L                                                                                    |
| LNA + bypass                              | MMIC                               | 1.5-2.5 GHz                                                                                                       | 1.3 @ 1500 MHz                                                                                                                                                | 18.5                                                                                                                  | 36                                                                                                                                                   | SOT650                                           | BGU8062                                                                                                              | BTS3001M                                                                                    |
|                                           |                                    | 2.7-4 GHz                                                                                                         | 1.6 @ 2500 MHz                                                                                                                                                | 19                                                                                                                    | 34.5                                                                                                                                                 |                                                  | BGU8063                                                                                                              | BTS3001H                                                                                    |
|                                           |                                    |                                                                                                                   |                                                                                                                                                               |                                                                                                                       |                                                                                                                                                      |                                                  |                                                                                                                      |                                                                                             |
| Function                                  | Product                            | Frequency range                                                                                                   | NF (dB)                                                                                                                                                       | Gain range (dB)                                                                                                       | IP3 <sub>,</sub> (dBm)                                                                                                                               | Package                                          | Type name                                                                                                            | New name                                                                                    |
|                                           |                                    | 0.699-0748 GHz                                                                                                    | 0.7 @ 700 MHz                                                                                                                                                 |                                                                                                                       | 0 @ 700 MHz                                                                                                                                          |                                                  | BGU7060                                                                                                              | -                                                                                           |
| LNA + VGA                                 |                                    | 0.770-0.915 GHz                                                                                                   | 0.75 @ 900 MHz                                                                                                                                                |                                                                                                                       | 2 @ 900 MHz                                                                                                                                          |                                                  | BGU7061                                                                                                              | -                                                                                           |
|                                           |                                    | 1.71-1.785 GHz                                                                                                    | 0.77 @1750 MHz                                                                                                                                                |                                                                                                                       | 1 @ 1750 MHz                                                                                                                                         |                                                  | BGU7062N2                                                                                                            | -                                                                                           |
|                                           | MMIC                               | 1.92-1.98 GHz                                                                                                     | 0.9 @ 1950 MHz                                                                                                                                                | 0 - 35                                                                                                                | 0.9 @ 1950 MHz                                                                                                                                       | SOT1301                                          | BGU7063                                                                                                              | -                                                                                           |
|                                           |                                    | 1.85-2.01 GHz                                                                                                     | 0.9 @ 1950 MHz                                                                                                                                                |                                                                                                                       | 1 @ 1950 MHz                                                                                                                                         |                                                  | BGU7073                                                                                                              | BTS5001M                                                                                    |
|                                           |                                    | 2.305-2.57 GHz                                                                                                    | 1.1 @ 2535 MHz                                                                                                                                                |                                                                                                                       | 0.8 @ 2535 MHz                                                                                                                                       |                                                  | BGU7075                                                                                                              | BTS5001H                                                                                    |
|                                           |                                    | 1.71-1.785 GHz                                                                                                    | 0.8 @ 1750 MHz                                                                                                                                                |                                                                                                                       | 1.9 @ 1750 MHz                                                                                                                                       |                                                  | BGU7078                                                                                                              | BTS5002M                                                                                    |
|                                           |                                    |                                                                                                                   |                                                                                                                                                               |                                                                                                                       |                                                                                                                                                      |                                                  |                                                                                                                      |                                                                                             |
| Function                                  | Product                            | Frequency range                                                                                                   | Gain (dB)                                                                                                                                                     | IP3 <sub>o</sub> (dBm)                                                                                                | Gain range (dB)                                                                                                                                      | Package                                          | Type name                                                                                                            | New name                                                                                    |
|                                           |                                    | 0.7-3.8 GHz                                                                                                       | 30 dB                                                                                                                                                         | 39dBm 0.7-1.4GHz                                                                                                      | 31.5 dB step 0.5dB                                                                                                                                   | COT4/7                                           | BGA7210                                                                                                              | BTS6001A                                                                                    |
| Single VGA                                | MMIC                               | 0.4-2.75 GHz                                                                                                      | 18.5 dB                                                                                                                                                       | 38dBm 0.4-0.7GHz                                                                                                      |                                                                                                                                                      | SOT167                                           | BGA7204                                                                                                              |                                                                                             |
|                                           |                                    | 0.1 2.7 0 0112                                                                                                    | 10.5 00                                                                                                                                                       | 500DIII 0.4-0.7 GI12                                                                                                  | 31.5 dB step 0.5dB                                                                                                                                   |                                                  | DUA/204                                                                                                              | -                                                                                           |
| Dual IF VGA                               |                                    | 50-250 MHz                                                                                                        | 18.5 dB                                                                                                                                                       | 43dBm @ 172MHz                                                                                                        | 24 dB step 1dB                                                                                                                                       |                                                  | BGA7204<br>BGA7350                                                                                                   | -                                                                                           |
|                                           | MMIC                               |                                                                                                                   |                                                                                                                                                               |                                                                                                                       |                                                                                                                                                      | SOT167                                           |                                                                                                                      | -                                                                                           |
|                                           | MMIC                               | 50-250 MHz                                                                                                        | 18.5 dB                                                                                                                                                       | 43dBm @ 172MHz                                                                                                        | 24 dB step 1dB                                                                                                                                       | SOT167                                           | BGA7350                                                                                                              | -                                                                                           |
| Function                                  | MMIC<br>Product                    | 50-250 MHz                                                                                                        | 18.5 dB                                                                                                                                                       | 43dBm @ 172MHz                                                                                                        | 24 dB step 1dB                                                                                                                                       | SOT167<br>Package                                | BGA7350                                                                                                              | -<br>-<br>New name                                                                          |
|                                           |                                    | 50-250 MHz<br>50-500 MHz                                                                                          | 18.5 dB<br>22 dB                                                                                                                                              | 43dBm @ 172MHz<br>46 dBm @ 172MHz                                                                                     | 24 dB step 1dB<br>28 dB step 1dB                                                                                                                     | Package                                          | BGA7350<br>BGA7351                                                                                                   | -<br>-<br>-<br>New name<br>-                                                                |
|                                           |                                    | 50-250 MHz<br>50-500 MHz<br>Power (W)                                                                             | 18.5 dB<br>22 dB<br>P <sub>L, 1dB</sub> (dBm)                                                                                                                 | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>Gain (dB)                                                                        | 24 dB step 1dB<br>28 dB step 1dB<br>IP3 <sub>o</sub> (dBm)                                                                                           |                                                  | BGA7350<br>BGA7351<br>Type name                                                                                      | -<br>-<br>New name<br>-                                                                     |
|                                           |                                    | 50-250 MHz<br>50-500 MHz<br>Power (W)<br>0.25                                                                     | 18.5 dB<br>22 dB<br>P <sub>L, 1dB</sub> (dBm)<br>25.5 @ 2140 MHz                                                                                              | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>Gain (dB)<br>15                                                                  | 24 dB step 1dB<br>28 dB step 1dB<br>IP3 <sub>o</sub> (dBm)<br>38.5                                                                                   | Package                                          | BGA7350<br>BGA7351<br>Type name<br>BGA7024                                                                           | -<br>-<br>New name<br>-<br>-                                                                |
| Function                                  | Product                            | 50-250 MHz<br>50-500 MHz<br>Power (W)<br>0.25<br>0.5                                                              | 18.5 dB<br>22 dB<br>P <sub>L, 1dB</sub> (dBm)<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz                                                                             | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>Gain (dB)<br>15<br>11                                                            | 24 dB step 1dB<br>28 dB step 1dB<br>IP3 <sub>o</sub> (dBm)<br>38.5<br>42.5                                                                           | Package                                          | BGA7350<br>BGA7351<br><b>Type name</b><br>BGA7024<br>BGA7027                                                         | -<br>-<br>New name<br>-<br>-<br>-                                                           |
| Function                                  | Product                            | 50-250 MHz<br>50-500 MHz<br>Power (W)<br>0.25<br>0.5<br>0.25                                                      | 18.5 dB<br>22 dB<br>P <sub>L, 1dB</sub> (dBm)<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz<br>25 @ 940 MHz                                                             | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>Gain (dB)<br>15<br>11<br>16                                                      | 24 dB step 1dB<br>28 dB step 1dB<br>IP3 <sub>o</sub> (dBm)<br>38.5<br>42.5<br>37.5                                                                   | Package<br>SOT89                                 | BGA7350<br>BGA7351<br>Type name<br>BGA7024<br>BGA7027<br>BGA7124                                                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                    |
| Function                                  | Product                            | 50-250 MHz<br>50-500 MHz<br>0.25<br>0.5<br>0.25<br>0.5<br>0.5                                                     | 18.5 dB<br>22 dB<br>P <sub>L,1d8</sub> (dBm)<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz<br>25 @ 940 MHz<br>28 @ 2140 MHz                                             | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>15<br>11<br>16<br>12<br>20                                                       | 24 dB step 1dB<br>28 dB step 1dB<br>IP3 <sub>o</sub> (dBm)<br>38.5<br>42.5<br>37.5<br>42                                                             | Package<br>SOT89                                 | BGA7350<br>BGA7351<br>Type name<br>BGA7024<br>BGA7027<br>BGA7124<br>BGA7127                                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                   |
| Function                                  | Product                            | 50-250 MHz<br>50-500 MHz<br>0.25<br>0.5<br>0.25<br>0.5<br>0.5                                                     | 18.5 dB<br>22 dB<br>P <sub>L,1d8</sub> (dBm)<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz<br>25 @ 940 MHz<br>28 @ 2140 MHz                                             | 43dBm @ 172MHz<br>46 dBm @ 172MHz                                                                                     | 24 dB step 1dB<br>28 dB step 1dB<br>IP3 <sub>o</sub> (dBm)<br>38.5<br>42.5<br>37.5<br>42                                                             | Package<br>SOT89                                 | BGA7350<br>BGA7351<br>Type name<br>BGA7024<br>BGA7027<br>BGA7124<br>BGA7127                                          | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| Function<br>MPA<br>Function               | Product<br>MMIC<br>Product         | 50-250 MHz<br>50-500 MHz<br>0.25<br>0.5<br>0.25<br>0.5<br>1                                                       | 18.5 dB<br>22 dB<br>P <sub>L, 1dB</sub> (dBm)<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz<br>25 @ 940 MHz<br>28 @ 2140 MHz<br>30.5 @ 740 MHz                          | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>15<br>11<br>16<br>12<br>20                                                       | 24 dB step 1dB<br>28 dB step 1dB<br>IP3 <sub>o</sub> (dBm)<br>38.5<br>42.5<br>37.5<br>42<br>42<br>42.5                                               | Package<br>SOT89<br>SOT908<br>Package            | BGA7350<br>BGA7351<br><b>Type name</b><br>BGA7024<br>BGA7027<br>BGA7124<br>BGA7127<br>BGA7127                        | -<br>-<br>-<br>-<br>-                                                                       |
| Function<br>MPA                           | Product<br>MMIC                    | 50-250 MHz<br>50-500 MHz<br>0.25<br>0.5<br>0.25<br>0.5<br>1<br>Frequency range                                    | 18.5 dB<br>22 dB<br>P <sub>L,1dB</sub> (dBm)<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz<br>25 @ 940 MHz<br>28 @ 2140 MHz<br>30.5 @ 740 MHz                           | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>15<br>15<br>11<br>16<br>12<br>20<br>P <sub>L, 1dB</sub> (dBm)                    | 24 dB step 1dB<br>28 dB step 1dB<br>IP3 <sub>o</sub> (dBm)<br>38.5<br>42.5<br>37.5<br>42<br>42.5<br>IP3, (dBm)                                       | Package<br>SOT89<br>SOT908                       | BGA7350<br>BGA7351<br><b>Type name</b><br>BGA7024<br>BGA7027<br>BGA7124<br>BGA7127<br>BGA7127<br>BGA7130             | -<br>-<br>-<br>-<br>-                                                                       |
| Function<br>MPA<br>Function               | Product<br>MMIC<br>Product         | 50-250 MHz<br>50-500 MHz<br>0.25<br>0.5<br>0.5<br>0.5<br>1<br>Frequency range<br>0.7 - 0.95 GHz                   | 18.5 dB<br>22 dB<br>22 dB<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz<br>28 @ 2140 MHz<br>28 @ 2140 MHz<br>30.5 @ 740 MHz<br>30.5 @ 740 MHz<br>8 @ 900MHz<br>8 @ 2GHz | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>15<br>15<br>11<br>16<br>12<br>20<br>P <sub>L_1dB</sub> (dBm)<br>13 dBm<br>13 dBm | 24 dB step 1dB<br>28 dB step 1dB<br>1P3 <sub>o</sub> (dBm)<br>38.5<br>42.5<br>37.5<br>42<br>42.5<br><b>IP3<sub>o</sub> (dBm)</b><br>26 dBm<br>26 dBm | Package<br>SOT89<br>SOT908<br>Package<br>SOT1092 | BGA7350<br>BGA7351<br>Type name<br>BGA7024<br>BGA7027<br>BGA7124<br>BGA7127<br>BGA7127<br>BGA7130<br>Type<br>BGX7220 | -<br>-<br>-<br>-<br>-                                                                       |
| Function<br>MPA<br>Function               | Product<br>MMIC<br>Product         | 50-250 MHz<br>50-500 MHz<br>0.25<br>0.5<br>0.5<br>0.5<br>1<br>Frequency range<br>0.7 - 0.95 GHz                   | 18.5 dB<br>22 dB<br>P <sub>L,1dB</sub> (dBm)<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz<br>25 @ 940 MHz<br>30.5 @ 740 MHz<br>Conversion Gain<br>8 @ 900MHz           | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>15<br>15<br>11<br>16<br>12<br>20<br>P <sub>L.1dB</sub> (dBm)<br>13 dBm           | 24 dB step 1dB<br>28 dB step 1dB<br>1P3 <sub>o</sub> (dBm)<br>38.5<br>42.5<br>37.5<br>42<br>42.5<br>1P3 <sub>o</sub> (dBm)<br>26 dBm                 | Package<br>SOT89<br>SOT908<br>Package            | BGA7350<br>BGA7351<br>Type name<br>BGA7024<br>BGA7027<br>BGA7124<br>BGA7127<br>BGA7127<br>BGA7130<br>Type<br>BGX7220 | -<br>-<br>-<br>-<br>-                                                                       |
| Function<br>MPA<br>Function<br>Dual mixer | Product<br>MMIC<br>Product<br>MMIC | 50-250 MHz<br>50-500 MHz<br>0.25<br>0.5<br>0.25<br>0.5<br>1<br>Frequency range<br>0.7 - 0.95 GHz<br>1.4 - 2.7 GHz | 18.5 dB<br>22 dB<br>22 dB<br>25.5 @ 2140 MHz<br>28 @ 2140 MHz<br>28 @ 2140 MHz<br>28 @ 2140 MHz<br>30.5 @ 740 MHz<br>30.5 @ 740 MHz<br>8 @ 900MHz<br>8 @ 2GHz | 43dBm @ 172MHz<br>46 dBm @ 172MHz<br>15<br>15<br>11<br>16<br>12<br>20<br>P <sub>L_1dB</sub> (dBm)<br>13 dBm<br>13 dBm | 24 dB step 1dB<br>28 dB step 1dB<br>1P3 <sub>o</sub> (dBm)<br>38.5<br>42.5<br>37.5<br>42<br>42.5<br><b>IP3<sub>o</sub> (dBm)</b><br>26 dBm<br>26 dBm | Package<br>SOT89<br>SOT908<br>Package<br>SOT1092 | BGA7350<br>BGA7351<br>Type name<br>BGA7024<br>BGA7027<br>BGA7124<br>BGA7127<br>BGA7130<br>Type<br>BGX7220<br>BGX7221 | -<br>-<br>-<br>-<br>-<br>New name<br>-<br>-                                                 |

For the complete product selection please see section 3.1.1, 3.1.2, 3.1.4 and 3.1.5




These 6-bit digital VGAs offer high linearity (35 dBm @ 2.2-2.8 GHz) and high output power (23 dBm @ 2.2-2.8 GHz) across a large bandwidth without external matching. Smart routing with no connection crosses simplifies design and decreases footprint by 25%. The unique power-save mode can effectively reduce the current consumption in TDD systems by up to 45%. The BGA7210 adds flexible current distribution across its two amplifiers, depending on the attenuation state, to save current.

- Internally matched for 50  $\Omega$ 
  - BGA7204 = 0.4 to 2.75 GHz
  - BGA7210 = 0.7 to 3.8 GHz
- High maximum power gain
  - BGA7204 = 18.5 dB
  - BGA7210 = 30 dB
- Attenuation range of 31.5 dB, 0.5 dB step size (6 bit)
- Fast-switching power-save mode (power-down pin)
- Simple control interfaces (SPI)
- ESD protection on all pins (HBM 4 kV; CDM 2 kV)

#### 1.3.2 Repeater

#### Application diagram of the components used in a repeater system



| Function   | Product | Frequency range | NF (dB)         | Gain (dB) | IP3 <sub>o</sub> (dBm) | Package | Type name | New name |
|------------|---------|-----------------|-----------------|-----------|------------------------|---------|-----------|----------|
|            |         | 0.3-1.5 GHz     | 0.43 @ 900 MHz  | 18.1      | 38.9                   | SOT1327 | BGU8051   | BTS1001L |
| LNA        | MMIC    | 1.5-2.5 GHz     | 0.54 @ 1900 MHz | 18.4      | 35.7                   | SOT1327 | BGU8052   | BTS1001M |
|            |         | 2-6 Ghz         | 0.57 @ 2500 MHz | 18.4      | 36.0                   | SOT1327 | BGU8053   | BTS1001H |
|            | MMIC    | 0.3-1.5 GHz     | 1.1 @ 900 MHz   | 20.5      | 36.5                   | SOT650  | BGU8061   | BTS3001L |
| LNA+bypass |         | 1.5-2.5 GHz     | 1.3 @ 1500 MHz  | 18.5      | 36                     | SOT650  | BGU8062   | BTS3001M |
|            |         | 2.7-4 GHz       | 1.6 @ 2500 MHz  | 19        | 34.5                   | SOT650  | BGU8063   | BTS3001H |

| Function   | Product | Frequency range | Conversion Gain (dB) | P <sub>L, 1dB</sub> (dBm) | IP3 <sub>i</sub> (dBm) | Package | Type name | New name |
|------------|---------|-----------------|----------------------|---------------------------|------------------------|---------|-----------|----------|
|            | MANALC  | 0.7 - 0.95 GHz  | 8 @ 900MHz           | 13 dBm                    | 26 dBm                 | SOT1092 | BGX7220   | -        |
| Dual mixer | MMIC    | 1.4 - 2.7 GHz   | 8 @ 2GHz             | 13 dBm                    | 26 dBm                 | SOT1092 | BGX7221   | -        |

| Function    | Product  | Frequency range | NF (dB)        | Gain range (dB)        | IP3 <sub>i</sub> (dBm) | Package | Type name | New name |
|-------------|----------|-----------------|----------------|------------------------|------------------------|---------|-----------|----------|
|             |          | 0.699-0748 GHz  | 0.7 @ 700 MHz  | 0 - 35                 | 0 @ 700 MHz            |         | BGU7060   | -        |
|             |          | 0.770-0.915 GHz | 0.75 @ 900 MHz | 0 - 35                 | 2 @ 900 MHz            |         | BGU7061   | -        |
|             |          | 1.71-1.785 GHz  | 0.77 @1750 MHz | 0 - 35                 | 1 @ 1750 MHz           |         | BGU7062N2 | -        |
| LNA + VGA   | MMIC     | 1.92-1.98 GHz   | 0.9 @ 1950 MHz | 0 - 35                 | 0.9 @ 1950 MHz         | SOT1301 | BGU7063   | -        |
|             |          | 1.85-2.01 GHz   | 0.9 @ 1950 MHz | 0 - 35                 | 1 @ 1950 MHz           |         | BGU7073   | BTS5001M |
|             |          | 2.305-2.57 GHz  | 1.1 @ 2535 MHz | 0 - 35                 | 0.8 @ 2535 MHz         |         | BGU7075   | BTS5001H |
|             |          | 1.71-1.785 GHz  | 0.8 @ 1750 MHz | 0 - 35                 | 1.9 @ 1750 MHz         |         | BGU7078   | BTS5002M |
|             |          |                 |                |                        |                        |         |           |          |
| Function    | Product  | Frequency range | Gain (dB)      | IP3 <sub>o</sub> (dBm) | Gain range (dB)        | Package | Type name | New name |
| Dual IF VGA | MMIC     | 50-250 MHz      | 18.5 dB        | 43dBm @ 172MHz         | 24 dB step 1dB         | SOT167  | BGA7350   | -        |
| Duar if VGA | IVIIVIIC | 50-500 MHz      | 22 dB          | 46 dBm @ 172MHz        | 28 dB step 1dB         | 30116/  | BGA7351   | -        |
|             |          |                 |                |                        |                        |         |           |          |
| Function    | Product  | Power (W)       | P (dBm)        | Gain (dB)              | IP3_ (dBm)             | Package | Type name | New name |

For the complete product selection please see section 3.1.1, 3.1.2, 3.1.4 and 3.1.5

0.25

0.5

#### Product highlight: MMIC dual down-mixer BGX7221

MMIC

MPA



25.5 @ 2140 MHz

28 @ 2140 MHz

The BGX7221 combines a pair of high-performance, high-linearity down-mixers for use in receivers that have a common local oscillator used with, for example, main and diversity paths. The device covers frequency bands from 1700 to 2700 MHz with an extremely flat behavior.

#### Features

15

11

▶ 8.5 dB conversion gain over all bands

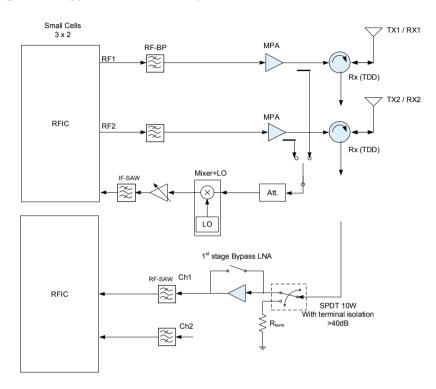
38.5

42.5

- > 13 dBm input, 1 dB compression point
- 25.5 dBm input third-order intercept point
- ▶ 10 dB (typ) small-signal noise figure
- Integrated active biasing
- Single +5 V supply operation
- Power-down per mixer with hardware control pins
- Low bias current in power-down mode
- $\blacktriangleright$  Matched 50  $\Omega$  single-ended RF and LO input impedances

BGA7024

BGA7027


SOT89

ESD protection at all pins

#### 1.3.3 Small cells

With the explosion of cellular data usage and the limited number of sites available for new macro base stations, operators have to find new ways of offering high data rates and excellent quality of service. One of the options is to complement the macro network with small cells, known as picocells (1 to 2 W average) and femtocells (0.25 to 0.5 W average). NXP offers and develops several types of solutions to the small-cell PAs designer, optimized for performance, integration, or cost.

#### Application diagram of a typical small-cell line-up



#### **Recommended product**

| Function   | Product | Frequency range | NF (dB)         | Gain (dB) | IP3 <sub>o</sub> (dBm) | Package | Type name | New name |
|------------|---------|-----------------|-----------------|-----------|------------------------|---------|-----------|----------|
|            |         | 0.3-1.5 GHz     | 0.43 @ 900 MHz  | 18.1      | 38.9                   |         | BGU8051   | BTS1001L |
| LNA        | MMIC    | 1.5-2.5 GHz     | 0.54 @ 1900 MHz | 18.4      | 35.7                   | SOT1327 | BGU8052   | BTS1001M |
|            |         | 2-6 Ghz         | 0.57 @ 2500 MHz | 18.4      | 36.0                   |         | BGU8053   | BTS1001H |
|            |         | 0.3-1.5 GHz     | 1.1 @ 900 MHz   | 20.5      | 36.5                   | SOT650  | BGU8061   | BTS3001L |
| LNA+bypass | MMIC    | 1.5-2.5 GHz     | 1.3 @ 1500 MHz  | 18.5      | 36                     |         | BGU8062   | BTS3001M |
|            |         | 2.7-4 GHz       | 1.6 @ 2500 MHz  | 19        | 34.5                   |         | BGU8063   | BTS3001H |

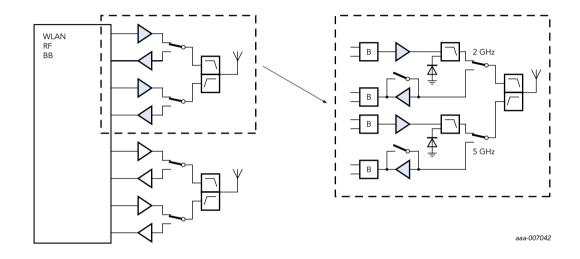
For the complete product selection please see section 3.1.1

#### Product highlight:



#### Integrated low-noise, high-linearity amplifier with bypass BGU806x [BTS3001x]

Building on the success of the ultra-low noise BGU805x series, the BGU8062x is a series of SiGe:C BiCMOS LNAs with integrated bypass and fast shutdown. The BGU806x is a perfect 3rd stage gain block in the Rx chain in wireless infrastructure applications. The highperformance bypass function enables high dynamic range, while the fast shutdown function makes it well suited for TDD applications. The BGU806x is housed in a 10-pin package that measures 3 x 3 mm.


- Three versions to cover low frequency (700 1500 MHz), mid frequency (1500 – 2700 MHz) and high frequency (2500 – 4000 MHz) ranges
- ▶ Low Noise Figure ranging from 1.1 to 1.4 dB at a gain of 18.5 20.5 dB
- Very high linearity (1 dB compression point of ~20dBm and IIP3 of ~36 dBm) at 70-75 mA current consumption
- Performance optimized for a supply voltage of 5 V
- ESD protected on all pins
- 3 x 3 x 0.85 mm package with MSL = 1

### 1.4 Broadband communication infrastructure and TV

The increasing demand for bandwidth is very visible in broadband communication: fibers are moving closer to the home, and RF requirements are changing, due to the increased use of digital communication protocols. NXP offers a wide range of products which can be used in the network and in the home. For the network, we support fiber-optics with products for down- and upstream communication. For the home, we focus on down- and upstream communication for TVs, set-top boxes and access points-routers.

#### 1.4.1 WLAN: access points and routers, fixed consumer electronics

#### **Application diagram for WLAN**



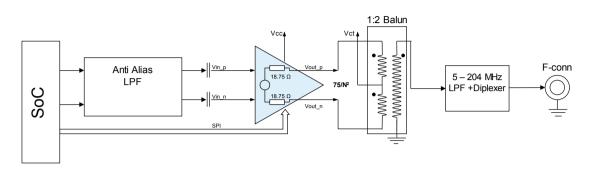
#### **Recommended products**

| Function | Product       | Gain @ 2.4GHz (dB) | Gain @ 5.5 GHz (dB) | NF (dB)   | IIP3 (dBm) | Package | Type name |
|----------|---------------|--------------------|---------------------|-----------|------------|---------|-----------|
|          |               | 20                 | 16                  | 0.8 - 1.1 | -5 - =10   | SOT343F | BFU730F   |
|          | DE transistan | 15                 | 11                  | 1 - 1.2   | -1 - =15   | 501343F | BFU768F   |
| LNA      | RF transistor | 17                 | 12                  | 0.8 - 1.2 | 3 - +8     | SOT883C | BFU730LX  |
|          |               | 15                 | -                   | 1         | +6.5       | COT1100 | BGU7224   |
|          | MMIC          | -                  | 13.5                | 1.6       | +8         | SOT1189 | BGU7258   |

For the complete product selection please see section 3.1.1 and 3.2.1



#### Product highlight: WLAN LNAs with bypass BGU7224 and BGU7258


These fully integrated LNAs enable IEEE 802.11b/g/n/ac WLANs and ISM applications in the 2.4 and 5 GHz bands. Manufactured in our high-performance QUBiC4x SiGe:C technology, they combine bestin-class gain, noise figure, linearity, and efficiency with the process stability and ruggedness that SiGe technology is known for.

- Fully integrated, high-performance LNA with built-in bypass (no external matching or DC blocking required)
- Noise figure (NF) of 1.0 dB (2.4 GHz) and 1.6 dB (5 GHz), with low current consumption of 13 mA
- Low bypass current of 2 μA
- Single-supply operation from 3.0 to 3.6 V
- Integrated, temperature-stabilized bias network
- High ESD protection of 2 kV HBM on all pins
- ▶ Ultrasmall QFN-style package (1.6 x 1.6 x 0.5 mm, 0.5 mm pitch), MSL 1 at 260 °C

#### 1.4.2 Cable modem and set-top boxes based on DOCSIS 3.0 & 3.1

DOCSIS, the cable-modem standard from the CableLabs research consortium, supports IP traffic over digital cable-TV channels. For the upstream path NXP offers two solutions: the BGA3131 for the new DOCSIS 3.0 standard and the requirements set by their respective standards. The BGA3131 has a very low power consumption which eliminates the need for a costly external heatsink.

#### Application diagram of a DOCSIS cable modem with the BGA3031 upstream amplifier



#### **Recommended products**

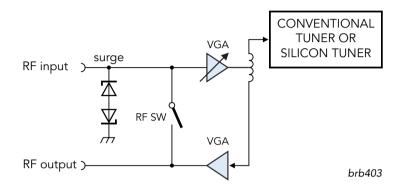
| Function                    | Product | Frequency range (MHz) | Gain (dB) | P <sub>L, 1dB</sub> (dBmV) | Package | Type name |
|-----------------------------|---------|-----------------------|-----------|----------------------------|---------|-----------|
| Upstream VGA for DOCSIS 3.0 | MMIC    | 5 - 85                | 34        | 74                         | SOT662  | BGA3031   |
| Upstream VGA for DOCSIS 3.1 | MMIC    | 5 - 205               | 37        | 78                         | SOT662  | BGA3131   |

For the complete product selection please see section 3.1.3



#### Product highlight: DOCSIS 3.1 upstream amplifier BGA3131 [BTS6031]

The BGA3131 MMIC is an upstream amplifier designed for the Data Over Cable Service Interface Specifications (DOCSIS 3.1) operating from 5 to 205 MHz. It meets the DOCSIS 3.1 specification at a bestin-class current consumption of 660 mA, eliminating the need for an expensive heatsink. The device provides can amplify DOCSIS 3.0 (QAM modulated signals) and DOCSIS 3.1 (OFDM modulated signals) up to an output level of 68 dBmV while meeting all the IMD, harmonics, ACLR and transient requirements.


- 3-wire SPI control interface
- ▶ 58 dB gain control range, 1 dB steps with 0.4 dB gain step accuracy
- ▶ 5 MHz to 205 MHz frequency operating range
- Maximum voltage gain 37 dB, 6.5 dB noise figure
- Excellent linearity at 68 dBmV output power (IMD3 = 60 dBc, second & third harmonic level = 60 dBc, ACLR = 64 dBc)
- 5 V single supply operation
- ESD protection at all pins

#### 1.4.3 Network Interface Module (NIM) for TV reception

#### Make a high-performance active splitter in a NIM tuner with the BGU703x/BGU704x

Today's TV tuners require complicated signal handling and benefit from flexibility in design. The front-end of a TV signal receiver is no longer just a tuned receiver, but has evolved into an RF network interface module (NIM) with tuned demodulators, active splitters, and remodulators. The active splitter requires an LNA with excellent linearity. NXP has two series of LNA/VGA MMICs (BGU703x/BGU704x), designed especially for high linearity (IP3O of 29 dBm) in low-noise applications such as an active splitter in a NIM tuner. The BGU703x family operates at a supply voltage of 5 V and is intended for use with conventional can tuners. The BGU704x family operates at 3.3 V and works seamlessly with Si tuner ICs, which also operate at 3.3 V.

#### Application diagram of an STB input stage with improved NF performance using the BGU703x and BGU704x



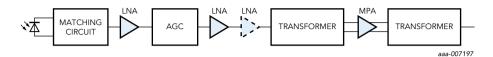
#### **Recommended products**

| Function | Product | Supply voltage (V) | Gain (dB) | NF (dB) | Package    | type name |
|----------|---------|--------------------|-----------|---------|------------|-----------|
|          |         |                    | 10        | 4.5     | SOT363     | BGU7031   |
|          |         |                    | 10        | 4.5     | COT242     | BGU7032   |
|          |         | 5                  | -2        | 2.5     | 2.5 SOT363 | BG07032   |
|          |         | J                  | 10        | 4.5     |            | BGU7033   |
|          |         |                    | 5         | 6       | SOT363     |           |
| VGA      | MMIC    |                    | -2        | 2.5     |            |           |
| VGA      |         |                    | 10        | 4       | SOT363     | BGU7041   |
|          |         |                    | 10        | 4       | SOT363     | BGU7042   |
|          |         | 3.3                | -2        | 2.5     | 301363     | BG07042   |
|          |         | 5.5                | 14        | 2.8     | SOT363     | BGU7044   |
|          |         |                    | 14        | 2.8     | SOT363     | BGU7045   |
|          |         |                    | -2        | 2.5     | 301303     | 6007043   |

For the complete product selection please see section 3.1.1



#### **Product highlight:** VGAs for TVs/STBs BGU703x and BGU704x


Designed for high linearity and low noise, these 3.3 and 5 V wideband VGAs support multi-tuner applications in TVs, DVR/PVRs, and STBs operating between 40 MHz and 1 GHz. A unique programmable gain with bypass mode compensates for tuner switch signal loss (important in multi-tuner systems), and improves overall system performance by 7 to 10 dB.

- Flat gain between 40 MHz and 1 GHz
- Output power at 1 dB gain compression ( $P_{L(1 \text{ dB})}$ ) ranging from 9 to 14 dBm
- Noise figure as low as 2.8 dB
- High linearity with an OIP3 of 29 dBm
- 75  $\Omega$  input and output impedance
- Power-down during bypass mode ESD protection >2 kV HBM, >1.5 kV CDM on all pins

#### 1.4.4 Optical mini- and midi-node line-up

We provide a complete system solution for optical mini- and midi-node line-ups, for use in systems that take the broadband TV signal from an optical network and amplify the signal onto a coaxial distribution network. Depending on the placement of the node, this might go straight into a home (FTTH), an apartment building (FTTB), or deeper in the network (FTTC).

#### Application diagram of an MMIC broadband amplifier for TV and distribution systems



#### NXP delivers all the components for optical mini- and midi-node line-ups, for FTTx applications:

- ▶ BGA301x input stages are LNAs that keep overall noise low
- ▶ BGA302x MPAs deliver high output power with excellent overall performance
- ▶ The BAP70Q PIN diode enables an adjustable-gain control circuit

#### **Recommended products**

**Product highlight:** 

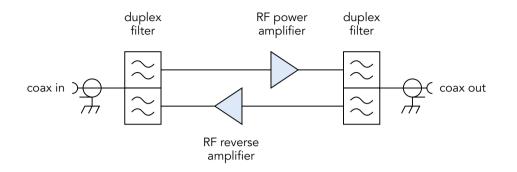
| Function | Product   | V <sub>R</sub> max (V)   | IF max (mA)  | r <sub>D</sub> (Ω)<br>@ IF=10 mA | Package | Type name          |
|----------|-----------|--------------------------|--------------|----------------------------------|---------|--------------------|
| AGC      | PIN diode | 50                       | 100          | 5.4                              | SOT753  | BAP70Q             |
|          |           |                          |              |                                  |         |                    |
| Function | Product   | Frequency<br>range (MHz) | Gain<br>(dB) | NF<br>(dB)                       | Package | Type name          |
|          |           |                          | 12           | 3.1                              |         | BGA3012            |
|          |           |                          | 12           | 3.1                              |         | DUAJUIZ            |
| LNA      | MMIC      | 40 - 1006                | 12           | 2.5                              | SOT89   | BGA3012<br>BGA3015 |
| LNA      | MMIC      | 40 - 1006                | . –          |                                  | SOT89   |                    |
| LNA      | MMIC      | 40 - 1006                | 15           | 2.5                              | SOT89   | BGA3015            |

| Function | Product | Frequency<br>range (MHz) | Gain<br>(dB) | IP3<br>(dBm) | IP2<br>(dBm) | P1dB<br>(dBm) | Package  | Type name |
|----------|---------|--------------------------|--------------|--------------|--------------|---------------|----------|-----------|
|          |         | 40 - 1200                | 16           | 46           | 75           | 30            | SOT786-2 | BGA3021   |
| MPA      | MMIC    |                          | 18           |              |              |               |          | BGA3022   |
|          |         |                          | 20           |              |              |               |          | BGA3023   |

For the complete product selection please see section 3.1.2 and 3.3.2



#### MMIC wideband amplifiers with internal biasing BGA302x


These are MPAs, specifically designed as the output stage for highlinearity CATV optical mini- and midi-nodes. They operate over a frequency range of 40 to 1200 MHz, and are housed in a lead-free HSO8 package.

- Internally biased
- Flat gain between 40 and 1200 MHz
- ▶ High linearity with an IP3o of 46 dBm and an IP2o of 75 dBm
- High gain output 1dB compression point of 30 dBm
- $\blacktriangleright$  75  $\Omega$  input and output impedance
- Icc (total) can be controlled between 175 and 350 mA

#### 1.4.5 Broadband line extenders

Larger coaxial distribution networks often require longer distances and additional amplification. Our broadband solutions are ideally suited for use in bidirectional line extenders.

#### Application diagram of a bidirectional line extender

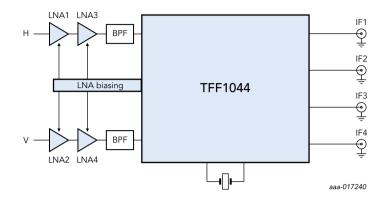


#### **Recommended products**

| Function                | Product           | Frequency (MHz)       | Gain (dB) | NF(dB)     | Package | Type name |
|-------------------------|-------------------|-----------------------|-----------|------------|---------|-----------|
|                         | _                 | 1006                  | 12        | 3.1        | SOT89   | BGA3012   |
| RF forward<br>amplifier | Drop<br>amplifier |                       | 15        | 2.5        | SOT89   | BGA3015   |
| ampinier                | ampinier          |                       | 18        | 2.2        | SOT89   | BGA3018   |
|                         |                   |                       |           |            |         |           |
| Function                | Product           | Frequency range (MHz) | Gain (dB) | P1dB (dBm) | Package | Type name |
| 25                      | _                 |                       | 12        | 22.5       | SOT89   | BGA3012   |
| RF reverse<br>amplifier | Drop<br>amplifier | 5 - 300               | 15        | 23.5       | SOT89   | BGA3015   |
| ampimer                 | ampimer           |                       | 18        | 24.5       | SOT89   | BGA3018   |

For the complete product selection please see section 3.1.2




#### Product highlight: Extreme-broadband amplifiers BGA301x

The BGA3012, BGA3015, and BGA3018 are extreme-broadband amplifiers that deliver 12, 15, and 18 dB of gain from 40 to 1006 MHz, while providing outstanding linearity performance. These amplifiers can also be used as a return path amplifier from 5 to 300 MHz, or in a combined TV and satellite system from 40 to 2600 MHz. At the low end of the frequency band, these amplifiers outperform competing GaAs devices in noise figure performance by 5 dB and in input power rating by more than 20 dB, while offering a superior ESD rating of 2 kV and a larger supply voltage operating range of 5 to 8 V. These amplifiers are very well suited for various broadband TV distribution system applications, such as FFTH, home gateways, and set-top boxes.

#### 1.5 Satellite

#### 1.5.1 Satellite outdoor unit, QUAD LNB with integrated mixer/oscillator/downconverter/ switch matrix

#### Application diagram of a QUAD LNB

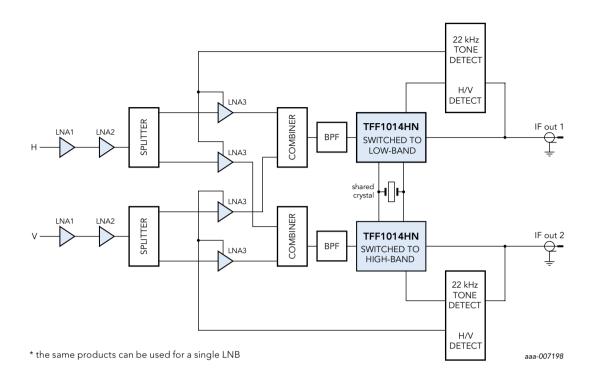


#### **Recommended products**

| Function                           | Product       | Maximum gain (dB) | NF <sub>min</sub> (dB) | l <sub>cc, nom</sub> (mA) | Package | Type name |
|------------------------------------|---------------|-------------------|------------------------|---------------------------|---------|-----------|
| 1 <sup>st</sup> stage LNA          | RF transistor | 14.2              | 0.65                   | 6                         | SOT343F | BFU910F   |
|                                    |               | 14                | 1.45                   | 2                         |         | BFU710F   |
| 2 <sup>nd</sup> stage LNA          | RF transistor | 12.5              | 1.3                    | 5                         | SOT343F | BFU730F   |
|                                    |               | 14.2              | 0.65                   | 6                         |         | BFU910F   |
|                                    |               |                   |                        |                           |         | _         |
| Function                           | Product       | Gain (dB)         | NF <sub>min</sub> (dB) | I <sub>cc, nom</sub> (mA) | Package | Type name |
| Mixer/Oscillator/<br>downconverter | MMIC          | 30/33/36          | 8                      | 145                       | HVLGA   | TFF1044HN |

For the complete product selection please see section 3.1.5 and 3.2.1




#### Product highlight: World's first fully integrated Quad Ku-band to L-band downconverter IC TFF1044HN

This universal Quad DVB-S/DVB-S2 compliant Ku-band downconverter enables significant size reduction for Quad or Quattro LNB's. It reduces total costs, since it enables alignment-free production, and significantly decreases manufacturing time, since it's fully tested.

- Integrated voltage/tone detection, 4 x 4 matrix switch
- Low current consumption (Icc = 170 mA for 4 users active)
- Low Phase Noise (1.6 degrees RMS PJ typ)
- Selectable gain (30, 33, 36 dB)
- Small PCB footprint HVLGA36 (5.0 x 5.0 x 0.72 mm) low external component count

#### 1.5.2 Satellite outdoor unit, twin LNB with integrated mixer/oscillator/downconverter

Application diagram of a twin LNB based on the TFF101x\*



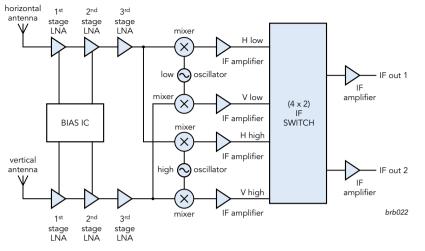
#### **Recommended products**

| Function                                         | Product       | Package | Maximum<br>gain (dB) | NF <sub>min</sub> [dB] | I <sub>cc nom</sub> [mA] | Type name |
|--------------------------------------------------|---------------|---------|----------------------|------------------------|--------------------------|-----------|
| 1 <sup>st</sup> stage LNA                        | RF transistor | SOT343F | 14,2                 | 0,65                   | 6                        | BFU910F   |
|                                                  |               | SOT343F | 14                   | 1,45                   | 2                        | BFU710F   |
| 2 <sup>nd</sup> and 3 <sup>rd</sup><br>stage LNA | RF transistor |         | 12,5                 | 1,3                    | 5                        | BFU730F   |
| stage LINA                                       |               |         | 14,2                 | 0,65                   | 6                        | BFU910F   |

| Function              | Product | Package | Gain (dB) | NF <sub>min</sub> [dB] | l <sub>cc nom</sub> [mA] | Type name |
|-----------------------|---------|---------|-----------|------------------------|--------------------------|-----------|
|                       |         | SOT763  | 30        | 9                      | 52                       | TFF1012HN |
|                       |         |         | 33        | 9                      | 52                       | TFF1013HN |
| Mixer/<br>Oscillator/ | DEIC    |         | 36        | 7                      | 52                       | TFF1014HN |
| downconverter         | RFIC    | 501763  | 39        | 7                      | 52                       | TFF1015HN |
| downconverter         |         |         | 42        | 7                      | 52                       | TFF1017HN |
|                       |         |         | 45        | 7                      | 52                       | TFF1018HN |

For the complete product selection please see section 3.1.5 and 3.2.1




### Product highlight: Industry's lowest-power integrated Ku-band downconverters TFF101xHN

These Universal DVB-S compliant Ku-band downconverters consume about 50% less current (52 mA) than other integrated solutions. They are fully integrated (PLL synthesizer/mixer/IF gain block) and RF tested – which results in significantly decreased manufacturing time. Stability of the local oscillator is guaranteed, which improves overall system reliability over temperature and time, and eliminates the need for manual alignment in production.

- Ultralow current consumption (I<sub>cc</sub> = 52 mA)
- Low phase noise (1.5° RMS typ)
- Integration bandwidth from 10 kHz to 13 MHz
- Small PCB footprint
  DHVQFN16 package (2.5 x 3.5 x 0.85 mm)
- Only seven external components
- No inductors necessary

#### 1.5.3 Satellite outdoor unit, twin LNB with discrete components

#### Application diagram of a twin LNB with discrete components\*



\* the same products can be used for a single LNB

#### **Recommended products**

| Function                  | Product          | Gmax<br>[dB] | NF <sub>min</sub><br>[dB] | I<br>[mA] | Package | Туре    |
|---------------------------|------------------|--------------|---------------------------|-----------|---------|---------|
| 1 <sup>st</sup> stage LNA | RF<br>transistor | 14.2         | 0.65                      | 6         | SOT343F | BFU910F |
| 2 <sup>nd</sup> stage     | RF               | 14           | 1.45                      | 2         |         | BFU710F |
| LNA                       | transistor       | 12.5         | 1.3                       | 5         | SOT343F | BFU730F |
| LINA                      | transistor       | 14.2         | 0.65                      | 6         |         | BFU910F |

| Function   | Product    | Gmax<br>[dB] | NF <sub>min</sub><br>[dB] | I <sub>cc nom</sub><br>[mA] | Package | Туре    |
|------------|------------|--------------|---------------------------|-----------------------------|---------|---------|
| 0.111.1    | RF         | 12.5         | 1.2                       | 30                          | COT2425 | BFU660F |
| Oscillator | transistor | 14           | 1.45                      | 2                           | SOT343F | BFU710F |
|            |            | 12.5         | 1.3                       | 5                           |         | BFU730F |

| Function | Product    | Gmax<br>[dB] | NF <sub>min</sub><br>[dB] | I <sub>cc nom</sub><br>[mA] | Package | Туре    |
|----------|------------|--------------|---------------------------|-----------------------------|---------|---------|
| Mixer    | RF         | 14           | 1.45                      | 2                           | SOT343F | BFU710F |
|          | transistor | 12.5         | 1.3                       | 5                           |         | BFU730F |

\* Also available in ultrasmall leadless package SOD882D

For the complete product selection please see section 3.1.2, 3.2.1 and 3.3.2

| Function                                         | Product             | V <sub>R max</sub><br>(V)   | 0                                                            | C <sub>d</sub> [pF]                                            | R <sub>d</sub> [Ω]<br>@10 mA                                                                                                                                                    | Package                       | Туре                                                                                                                                        |
|--------------------------------------------------|---------------------|-----------------------------|--------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| IF switch                                        | PIN diode           | 175<br>50<br>50             | 0.2                                                          | 3 @ 20 V<br>2 @ 20 V<br>2 @ 5 V                                | 2<br>1,5<br>3                                                                                                                                                                   | Various<br>Various<br>Various | BAP64*<br>BAP51*<br>BAP50*                                                                                                                  |
| Function                                         | Produc              | t Ga<br>[dl                 |                                                              | P <sub>1dB</sub><br>[dBm]                                      | V <sub>cc/lcc</sub> [V/<br>mA]                                                                                                                                                  | Package                       | Туре                                                                                                                                        |
| <sup>1≉t</sup> or outpu<br>stage IF<br>amplifier | ıt IF gain<br>block | 29.<br>24<br>32<br>23<br>27 | .4<br>5<br>.3<br>.3<br>.3<br>.8<br>4<br>.8<br>.2<br>.9<br>.1 | -1<br>2<br>1<br>-6<br>5<br>5<br>6<br>-1<br>-3.5<br>8<br>4<br>7 | 3.3 / 10.5<br>3.3 / 14.3<br>3.3 / 12.5<br>3.0 / 5.8<br>3.3 / 18.2<br>3.3 / 22.2<br>3.3 / 22.2<br>3.3 / 20<br>3.3 / 19.9<br>5 / 9.1<br>5 / 7<br>5 / 26.4<br>5 / 17.4<br>5 / 21.7 | SOT363                        | BGA2800<br>BGA2801<br>BGA2802<br>BGA2803<br>BGA2815<br>BGA2816<br>BGA2817<br>BGA2818<br>BGA2850<br>BGA2851<br>BGA2865<br>BGA2866<br>BGA2867 |
|                                                  | RF transis          | 31.<br>tor 12.              |                                                              | 10                                                             | 5 / 24<br>5.5 / 30                                                                                                                                                              | SOT343F                       | BGA2869<br>BFU660F                                                                                                                          |



#### Product highlight:

#### NPN wideband SiGe RF transistor BFU910F

The BGU910F is a wideband RF transistor produced in the QUBIC GEN9 process for K-band applications (10 – 20 GHz). QUBiC GEN9 has been optimized towards extremely low noise figures in this frequency range. Typical applications are first, second or third stage amplifiers in satellite LNBs. The BFU910 can be used to replace GaAs devices giving the benefits of more robustness, single biasing and low current consumption in combination with an excellent RF performance.

- Low noise, high gain microwave transistor with 90 GHz fT
- ▶ High maximum stable gain of 14.2 dB at 12 GHz
- Minimum noise figure (NF) of 0.65 dB at 12 GHz
- Current consumption 10 mA typical