Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ### Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ### BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC ### **Data Sheet** Revision 3.2, 2016-01-20 Final # RF & Protection Devices Edition 2016-01-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG All Rights Reserved. #### **Legal Disclaimer** The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. #### Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). #### Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. | BGT24A | BGT24AR4 Silicon Germanium 24 GHz Quad Receiver MMIC | | | | | | | | | | |---------|--|--|--|--|--|--|--|--|--|--| | Revisio | n History: 2016-01-20, Revision 3.2 | | | | | | | | | | | Previou | s Revision:2015-01-26, Revision 3.1 | | | | | | | | | | | Page | Subjects (major changes since last revision) | #### Trademarks of Infineon Technologies AG AURIXTM, BlueMoonTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, COMNEONTM, EconoPACKTM, CoolMOSTM, CoolSETTM, CORECONTROLTM, CROSSAVETM, DAVETM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPIMTM, EiceDRIVERTM, eupecTM, FCOSTM, HITFETTM, HybridPACKTM, I2RFTM, ISOFACETM, IsoPACKTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OmniTuneTM, OptiMOSTM, ORIGATM, PRIMARIONTM, PrimePACKTM, PrimeSTACKTM, PRO-SILTM, PROFETTM, RASICTM, ReverSaveTM, SatRICTM, SIEGETTM, SINDRIONTM, SIPMOSTM, SMARTITM, SmartLEWISTM, SOLID FLASHTM, TEMPFETTM, thinQ!TM, TRENCHSTOPTM, TriCoreTM, X-GOLDTM, X-PMUTM, XMMTM, XPOSYSTM. #### Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2010-10-26 #### **Table of Contents** ### **Table of Contents** | | Table of Contents | 4 | |-----|----------------------------|------| | | List of Figures | 5 | | | List of Tables | 6 | | 1 | Features | 7 | | 2 | Electrical Characteristics | 9 | | 2.1 | Absolute Maximum Ratings | | | 2.2 | ESD Integrity | | | 2.3 | Power Supply | | | 2.4 | RX Characteristics | . 11 | | 2.5 | LO Characteristics | . 13 | | 2.6 | IF Saturation Detector | . 13 | | 2.7 | Sensor Multiplexer | . 14 | | 2.8 | Temperature Sensor | . 14 | | 3 | Pin Description | | | 4 | SPI | . 18 | | 5 | Sensor Multiplexer | . 21 | | 6 | Package Dimensions | . 22 | #### **List of Figures** ### **List of Figures** | Figure 1 | BGT24AR4 Block Diagram | . 8 | |----------|---|-----| | Figure 2 | Timing Diagram of the SPI | 20 | | Figure 3 | Package Outline (Top, Side and Bottom View) of VQFN32-9 | 22 | | Figure 4 | Marking Layout VQFN32-9 (example) | 22 | | Figure 5 | Tape of VQFN32-9, Ø Reel: 330 mm, Pieces / Reel: 3000, Reels / Box: 1 | 22 | Final Data Sheet 5 Revision 3.2, 2016-01-20 **List of Tables** ### **List of Tables** | Table 1 | Absolute Maximum Ratings, $T_A = -40 ^{\circ}\text{C}$ to 125 $^{\circ}\text{C}$; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) 9 | |----------|---| | Table 2 | ESD Integrity | | Table 3 | Electrical Characteristics, T_A = -40 °C 125 °C, positive current flowing into pin (unless otherwise specified). 10 | | Table 4 | Electrical Characteristics , $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.25 GHz including a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) 11 | | Table 5 | Electrical Characteristics, $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C , all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.25 GHz include a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) 13 | | Table 6 | Electrical Characteristics, $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C , all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.25 GHz include a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) 13 | | Table 7 | Electrical Characteristics, $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN358, all voltages with respect to ground (unless otherwise specified) 14 | | Table 8 | Electrical Characteristics, $V_{\rm CC}$ = 3.3 V, $T_{\rm A}$ = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN358, all voltages with respect to ground (unless otherwise specified). 14 | | Table 9 | Pin Definition and Function | | Table 10 | I/O internal circuits | | Table 11 | SPI Data Bit Description | | Table 12 | SPI Interface | | Table 13 | Specification for SPI pins | | Table 14 | Truth Table AMUX | | Table 15 | Sensor Configuration | | | | #### **BGT24AR4** #### 1 Features - Gilbert based quad homodyne 24 GHz downconverter with integrated IF filters and programmable gain base band amplifiers - Single ended RF terminals - Low single side band noise figure: NF_{ssb} = 10 dB typ. - · High downconverter P1dB input compression point: -6 dBm typ. - Low LO input power required: -6 dBm - On chip LO level and temperature sensors - · Muliplexed output of analog sensor signals - Integrated saturation detectors for downconverters and IF amplifiers - Disable mode for downconverter and base band amplifiers via SPI - IF chain testability - Single supply voltage: 3.3 V typ. - Low power consumption: 610 mW typ. - 200 GHz bipolar SiGe:C technology b7hf200 - Fully ESD protected device - VQFN-32-9 leadless plastic package including lead-tip-inspection (LTI) feature - · Pb-free (RoHS compliant) package - · AEC Q100 qualified #### Description The BGT24AR4 is a Silicon Germanium MMIC, accommodating four separate homodyne receiver chains. Each receiver consists of a downconverter operating in the 24 GHz ISM band. LO buffer amplifiers are included to relax LO drive requirements. IF signal filtering and amplification is provided on chip. Saturation detectors for downconverter- and IF output signals as well as an IF chain test feature are integrated for monitoring purposes. A temperature- and LO power sensor signal is accessible through a multiplexed analog output. The following functionalities can be controlled via the 32 bit SPI bus: - · Enabling of downconverter and base band amplifiers - Selection of base band amplifiers' gain - Selection of the sensor signal being available through the analog output | Product Name | Package | Chip | Marking | |--------------|----------|-------|----------| | BGT24AR4 | VQFN32-9 | T1825 | BGT24AR4 | **Features** The MMIC is manufactured in a 200GHz, 0.18µm SiGe:C technology and is packaged in a 32 pin leadless RoHs compliant VQFN package with lead-tip-inspection (LTI) feature. Figure 1 BGT24AR4 Block Diagram **Electrical Characteristics** #### 2 Electrical Characteristics #### 2.1 Absolute Maximum Ratings **Table 1 Absolute Maximum Ratings,** T_A = -40 °C to 125 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) | Parameter | Symbol | Values | | | Unit | Test | Note / Test Condition | | |---|--------------|-----------|---|----------------------|------|------|--|--| | | | Min. Typ. | | Max. | Max. | | | | | Supply voltage | $V_{\sf CC}$ | -0.3 | _ | V _{cc} +0.3 | V | | _ | | | DC voltage at RF pins | VDC_{RF} | - | - | 0 | V | • | MMIC provides short circuit to GND for LO_IN and RX1 to RX4 pins | | | RF input power | P_{RF} | _ | _ | 0 | dBm | | - | | | LO input power | P_{LO} | _ | _ | 12 | dBm | | - | | | Voltage applied to none-RF pins ¹⁾ | V_{IO} | -0.3 | _ | V _{cc} +0.3 | V | | - | | | Total power dissipation | P_{DISS} | _ | _ | 1200 | mW | | _ | | | Junction temperature | T_{J} | -40 | _ | 170 | °C | | _ | | | Ambient temperature range | T_{A} | -40 | _ | 125 | °C | • | T_{A} = temperature at package soldering point | | | Storage temperature range | T_{STG} | -50 | _ | 125 | °C | | - | | ¹⁾ For SPI_EN, SPI_DI, SPI_CLK the applied voltage may exceed given ratings als long as current into these pins is limited to I_{SPI} = 1 mA Attention: Stresses exceeding the maximum values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods of time may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Attention: Integrated protection functions are designed to prevent IC destruction under fault conditions as described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. Note: No permanent damage of the device is possible due to an undefined SPI state **Electrical Characteristics** #### 2.2 ESD Integrity Table 2 ESD Integrity | Parameter | Symbol | | Values | | | Test | Note / Test Condition | | |-----------------------------------|----------------------|------|--------|------|----|------|-----------------------|--| | | | Min. | Тур. | Max. | | | | | | ESD robustness HBM ¹⁾ | $V_{ESD-HBM}$ | -1 | _ | 1 | kV | - | All pins | | | ESD robustness, CDM ²⁾ | $V_{ESD\text{-CBM}}$ | -500 | _ | 500 | V | - | All pins | | | | | -750 | _ | 750 | | - | Package corner pins | | ¹⁾ According to ANSI/ESDA/JEDEC JS-001 (R = 1.5kOhm, C = 100pF) for Electrostatic Discharge Sensitivity Testing, Human Body Model (HBM)-Component Level Please note that this result is subject to: Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. #### 2.3 Power Supply **Table 3 Electrical Characteristics,** $T_A = -40 \, ^{\circ}\text{C} \dots 125 \, ^{\circ}\text{C}$, positive current flowing into pin (unless otherwise specified). | Parameter | Symbol | | Value | s | Unit | Test | Note / | | |-----------------------------|---------------------|-------|-------|-------|------|------|---|--| | | | Min. | Тур. | Max. | | | Test Condition | | | Supply voltage | $V_{\sf CC}$ | 3.135 | 3.3 | 3.465 | V | | _ | | | Supply current | $I_{\rm CC}$ | _ | 185 | 220 | mA | | SPI state: 0025 CC25
Hex no RF signal
present | | | Supply current standby mode | $I_{\rm CCstandby}$ | _ | - | 35 | mA | | SPI state:0000 CC00
Hex | | ²⁾ According to JEDEC JESD22-C101 Field-Induced Charged Device Model (CDM), Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components ⁻ lot variations within the manufacturing process as specified by Infineon ⁻ changes in the specific test setup **Electrical Characteristics** #### 2.4 RX Characteristics **Table 4 Electrical Characteristics**, $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.25 GHz including a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) | Parameter | Symbol | | Values | | Unit | Test | Note / | | |--|--------------------|------------|------------|------------|-----------------|------|---|--| | | | Min. Typ. | | Max. | | | Test Condition | | | RF frequency range | f_{RF} | 24.00 | 24.125 | 24.250 | GHz | | _ | | | RF input impedance | Z_{RF} | _ | 50 | _ | Ω | • | Single ended inclu -
ding off chip compen-
sation | | | Input return loss RF port
RX1, RX4
RX2, RX3 | RL_{RF} | 12
9 | _
_ | _
_ | dB | • | $V_{\rm CC}$ = 3.3 V,
$T_{\rm A}$ = 25 °C,
$P_{\rm LO}$ = 0 dBm | | | RF/RF isolation (channel separation) | $I_{RF,RF}$ | 35 | - | _ | dB | | not valid for RX1/ RX2 | | | RF _{RX1} / RF _{RX2} isolation (channel separation) | $I_{RF_RX1,RF_}$ | 32 | - | _ | dB | | - | | | LO/RF leakage | $L_{LO,RF}$ | _ | - | -27 | dBm | | $P_{\rm LO}$ = 0 dBm | | | Mixer's P1dB @ RF inputs | $P_{1dB\ IN}$ | -7 | -6 | _ | dBm | | - | | | RX channel gain:
power gain
voltage gain | G_{P} G_{V} | 39.2
47 | 42.2
50 | 47.2
55 | dB
dB | | At IF load
300 Ω differential | | | RX channel gain variation | ΔG | -1 | 0 | 1 | dB | | Channel to channel | | | RX channel phase variation | Δφ | -3 | 0 | 3 | deg | | Channel to channel | | | RX channel noise figure | NF | _ | 10.0 | 14.1 | dB | | At IF load
300 Ω differential | | | RX channel output full scale | V_{RX} | 1.2 | _ | _ | V _{PP} | | At IF load
300 Ω differential | | | RX channel spurious free range at output full scale | a_{RX} | 50 | _ | _ | dBc | | - | | | IF VGA gain adjustment range | R _{VGA} | -18 | - | 0 | dB | | With 6 dB gain steps | | | IF high pass filter's cut off frequency | $f_{cut\ off}$ | 525 | 600 | 675 | kHz | | 3 dB definition | | | IF high pass filter's lower slope order | | _ | 2nd | _ | - | | - | | | IF output impedance | Z_{IF} | 250 | 300 | 350 | Ω | • | - | | | IF test signal frequency | f_{IF} | 100 | _ | 5000 | kHz | | _ | | | IF test signal level | V_{IF} | 2 | 4 | 6 | mV_{RMS} | • | _ | | | IF test signal input impedance | $Z_{IF,test}$ | 500 | 1000 | 1400 | Ω | | - | | **Electrical Characteristics** **Table 4 Electrical Characteristics** (cont'd), $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.25 GHz including a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) | Parameter | Symbol | Values | | | Unit | Test | Note / | | |---|------------------------|-----------------------------|----|--------------------------|------|------|--|--| | | | Min. Typ. | | Max. | | | Test Condition | | | IF output common mode voltage | V_{IF_CM} | 1.4 | - | 2.4 | V | | At IF load
300 Ω differential,
steady state | | | IF test voltage conversion gain | G_{IF_TEST} | 34 | 39 | 43 | dB | | At f = 2 MHz, IF load
300 Ω differential,
max. gain settings | | | Step response
characteristics: Maximum
overshoot voltage at single
IF line in reference to GND | $V^{\sf max}$ IF_CM | _ | _ | V _{IF_CM} +0.76 | V | | At IF load 300 Ω differential | | | Step response characteristics: Minimum overshoot voltage at single IF line in reference to GND | V ^{min} IF_CM | V _{IF_CM}
-0.93 | _ | - | V | • | At IF load 300 Ω differential | | | Step response characteristics: Maximum slew rate | SR | - | _ | 106 | V/µs | • | At IF load
300 Ω differential | | | Step response characteristics: Settling time | T_{S} | _ | - | 5.5 | μs | • | At $V_{\rm IF_CM}$ = ±10 mV,
$P_{\rm RFmax}$ = -20 dBm, IF
load 300 Ω differential | | | Standby to ON mode transition slew rate at single IF line in reference to GND | SR_ON | _ | - | 55 | V/µs | - | At IF load
300 Ω differential | | | IF power supply ripple rejection | PSRR _{IF} | 40 | - | - | dB | • | $f_{\rm IF} \le 5 \ {\rm MHz}$ $V_{\rm CC}$ = 3.3 V, $T_{\rm A}$ = 25 °C | | Note:- Test signal can be switched off (via SPI) - Test signal can be switched to one RX channel (via SPI) - Test signal can be switched to all RX channels (via SPI) **Electrical Characteristics** #### 2.5 LO Characteristics **Table 5 Electrical Characteristics,** $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C , all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.25 GHz include a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) | Parameter | Symbol | | | Unit | Test | Note / Test Condition | | |---------------------------|-----------|-------|--------|--------|------|-----------------------|---| | | | Min. | Тур. | Max. | | | | | LO frequency range | f_{LO} | 24.00 | 24.125 | 24.250 | GHz | | - | | LO input power | P_{LO} | -6 | _ | 3 | dBm | | - | | Input return loss LO port | RL_{LO} | 8 | _ | _ | dB | • | $V_{\rm CC}$ = 3.3 V,
$T_{\rm A}$ = 25 °C,
$P_{\rm LO}$ = 0 dBm | | LO input impedance | Z_{LO} | _ | 50 | _ | Ω | | Single ended including off chip compensation | Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. #### 2.6 IF Saturation Detector **Table 6 Electrical Characteristics,** $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C , all voltages with respect to ground, positive current flowing into pin (unless otherwise specified), parameters specified in the frequency range from 24 GHz to 24.25 GHz include a matching structure and package footprint provided by Infineon using the high frequency laminate Rogers 4350B (see AN358) | Parameter | Symbol | | Values | | Unit | Test | Note / | |--|----------------------------|-------------------------|-------------------------|---------------|-----------------|------|-------------------------------| | | | Min. | Тур. | Max. | | | Test Condition | | Input RX (RF) activation power level of mixer output saturation flag | P_{SAT} | P _{1dB IN} - 8 | P _{1dB IN} - 4 | $P_{1dB\ IN}$ | dBm | | _ | | VGA output activation voltage level of VGA saturation flag | V_{SAT} | _ | 1.3 | 1.55 | V _{PP} | | At IF load 300 Ω differential | | Low level output | Sat-Flag _{low} | _ | _ | 0.8 | ٧ | | - | | High level output | Sat-Flag _{high} | 2.4 | _ | _ | V | | _ | | Load capacitance | $CL_{Sat ext{-}Flag}$ | _ | _ | 30 | pF | | _ | | | $RL_{Sat ext{-}Flag}$ | 10 | _ | _ | kΩ | | _ | | IF saturation flag setup time | $T_setup_{Sat-Flag}$ | _ | _ | 22.5 | ns | | _ | | IF saturation flag hold time | $T_hold_{Sat ext{-}Flag}$ | _ | _ | 22.5 | ns | - | - | Note: All saturation detection signals are logical OR combined to one discrete output signal. **Electrical Characteristics** ### 2.7 Sensor Multiplexer **Table 7 Electrical Characteristics,** $V_{\rm CC}$ = 3.135 V to 3.465 V, $T_{\rm A}$ = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN358, all voltages with respect to ground (unless otherwise specified) | Parameter | Symbol | Values | | Values Unit | | Test | Note / Test Condition | |------------------|--------------|--------|------|-------------|---|------|---| | | | Min. | Тур. | Max. | | | | | Output impedance | R_{OUTmux} | _ | 20 | 40 | Ω | - | at pin ANA_OUT;
multiplexer output activated | Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. #### 2.8 Temperature Sensor **Table 8 Electrical Characteristics**, $V_{\rm CC}$ = 3.3 V, $T_{\rm A}$ = -40 °C to 125 °C, application and MMIC external circuit acc. to Application Note AN358, all voltages with respect to ground (unless otherwise specified). | Parameter | eter Symbol Values | | Unit | Test | Note / Test Condition | | | |--|--------------------|------|------|------|-----------------------|---|---| | | | Min. | Тур. | Max. | | | | | Temperature sensor operating range ¹⁾ | T_{TSENS} | -40 | _ | 125 | °C | - | - | | Output voltage | $V_{SENSE25}$ | 1.4 | 1.5 | 1.6 | V | | at $T_{\rm Si}$ = 25°C | | Sensitivity ¹⁾ | $S_{\sf TSENS}$ | 4.3 | 4.7 | 5.1 | mV/K | - | _ | | Setup time ¹⁾ | $t_{\sf TSENS}$ | _ | _ | 20 | μS | - | $C_{Load} \le 30 \; pF, R_{Load} \ge 10 \; k\Omega$ | | Power supply rejection ratio | PSRR | 10 | 24 | - | dB | | measured at $T_{\rm Si}$ = 25°C and $V_{\rm CC,MIN}/V_{\rm CC,MAX}$ | ¹⁾ Guaranteed by device design, not subject to production test **Pin Description** ### 3 Pin Description Table 9 Pin Definition and Function | rable 9 | Pin Delinition and F | -unction | |---------|----------------------|--| | Pin No. | Name | Function | | 1 | IF_TEST | IF test signal | | 2 | VCC | Supply voltage | | 3 | n.c | connected to ground acc. to AN358 | | 4 | LO_IN | LO input signal | | 5 | n.c. | connected to ground acc. to AN358 | | 6 | SPI_DO | SPI data output | | 7 | SPI_EN | SPI enable | | 8 | SPI_CLK | SPI clock | | 9 | SPI_DI | SPI data input | | 10 | ANA_OUT | Analog output signal / saturation flag | | 11 | VEE | Ground | | 12 | RX1 | RF input receiver 1 | | 13 | n.c. | connected to ground acc. to AN358 | | 14 | IF2X | Complementary IF output receiver 2 | | 15 | IF2 | IF output receiver 2 | | 16 | IF1X | Complementary IF output receiver 1 | | 17 | IF1 | IF output receiver 1 | | 18 | n.c. | connected to ground acc. to AN358 | | 19 | RX2 | RF input receiver 2 | | 20 | n.c. | connected to ground acc. to AN358 | | 21 | VEE. | Ground | | 22 | IFX_TEST | Complementary IF test signal | | 23 | n.c. | connected to ground acc. to AN358 | | 24 | RX3 | RF input receiver 3 | | 25 | n.c. | connected to ground acc. to AN358 | | 26 | IF4 | IF output receiver 4 | | 27 | IF4X | Complementary IF output receiver 4 | | 28 | IF3 | IF output receiver 3 | | 29 | IF3X | Complementary IF output receiver 3 | | 30 | VEE | Ground | | 31 | RX4 | RF input receiver 4 | | 32 | n.c. | connected to ground acc. to AN358 | | | | | **Pin Description** Table 10 I/O internal circuits | Pin No. | Name | I/O internal circuits | |-----------------------------------|--|------------------------------------| | 4, 12, 19, 24, 31 | LO_IN, RX1, RX2, RX3, RX4 | RX1-RX4,
LO_IN VEE | | 14, 15, 16, 17,
26, 27, 28, 29 | IF2X, IF2, IF1X, IF1, IF4, IF4X, IF3, IF3X | VCC IF1-IF4, IF1X-IF4X 10kΩ VEE | | 9 | SPI_DI | VCC
4kΩ 94kΩ
VEE | | 7, 8 | SPI_EN, SPI_CLK | SPI_EN SPI_CLK 2kΩ 47kΩ VEE | **Pin Description** Table 10 I/O internal circuits | Pin No. | Name | I/O internal circuits | |---------|-------------------|---| | 10 | ANA_OUT | to SAT SAT_FLAG_HIZ to SAT SOΩ ANA_OUT FLAG circuit 20Ω VEE SAT_FLAG_HIZ to sensors | | 1, 22 | IF_TEST, IFX_TEST | VCC 100 VCC 15kΩ VCC 10kΩ | | 6 | SPI_DO | VCC
80Ω SPI_DO
VEE | | 2 | VCC | VCC
58.2pF
VEE | **SPI** #### **SPI** 4 Communication to the receiver is done via a Serial-Peripheral-Interface (SPI). The 32 bit SPI has a hardwired Power-On reset, which sets the output bits to a defined state after turning on the supply voltage. Data transmission is started by a negative edge on SPI_EN. Data at SPI_DI is then read at the falling edge of SPI_CLK. The most significant bit (MSB) is read first. Table 11 **SPI Data Bit Description** | Data Bit | Name | Description (Logic High) | Power ON Reset State | | |----------|---------|---|----------------------|--| | 0 (LSB) | EN_34 | Enables mixer and base band amplifier output stage and supporting functions (for RX3 and RX4) | Low | | | 1 | LG1_ | Activates 6dB gain stage of base band amplifier 1 (for RX3 and RX4 | Low | | | 2 | HG1_34 | Activates 12dB gain stage of base band amplifier 1 (for RX3 and RX4) | Low | | | 3 | LG2_34 | Activates 6dB gain stage of base band amplifier 2 (for RX3 and RX4) | Low | | | 4 | MG2_34 | Activates 12dB gain stage of base band amplifier 2 (for RX3 and RX4) | Low | | | 5 | HG2_34 | Activates 18dB gain stage of base band amplifier 2 (for RX3 and RX4) | Low | | | 6 | IFTEST4 | Activates test signal for IF channel 4 | Low | | | 7 | IFTEST3 | Activates test signal for IF channel 3 | Low | | | 8 | IFTEST2 | Activates test signal for IF channel 2 | Low | | | 9 | IFTEST1 | Activates test signal for IF channel 1 | Low | | | 10 | PC1 | Test bit | High | | | 11 | PC2 | Test bit | High | | | 12 | EN_RF14 | Test bit | Low | | | 13 | EN_RF23 | Test bit | Low | | | 14 | DIS_DIV | Test bit | High | | | 15 | DIS_LO | Test bit | High | | | 16 | EN_12 | Enables mixer and base band amplifier output stage and supporting functions (for RX1 and RX2 | Low | | SPI Table 11 SPI Data Bit Description (cont'd) | Data Bit | Name | Description (Logic High) | Power ON Reset State | |----------|--------------|--|----------------------| | 17 | LG1_12 | Activates 6dB gain stage of base band amplifier 1 (for RX1 and RX2) | Low | | 18 | HG1_12 | Activates 12dB gain stage of base band amplifier 1 (for RX1 and RX2) | Low | | 19 | LG2_12 | Activates 6dB gain stage of base band amplifier 2 (for RX1 and RX2 | Low | | 20 | MG2_12 | Activates 12dB gain stage of base band amplifier 2 (for RX1 and RX2) | Low | | 21 | HG2_12 | Activates 18dB gain stage of base band amplifier 2 (for RX1 and RX2) | Low | | 22 | AMUX_SEL0 | Sets analog multiplexer | Low | | 23 | AMUX_SEL1 | Sets analog multiplexer | Low | | 24 | AMUX_SEL2 | MSB to set analog multiplexer | Low | | 25 | SAT_FLAG_HIZ | Sets sat flag output into high impedance state and enables multiplexer output to be active | Low | | 26 | DCO_3 | Test bit | Low | | 27 | SENSOR_SEL0 | Selects power sensor signal | Low | | 28 | SENSOR_SEL1 | MSB to select power sensor signal | Low | | 29 | DCO_0 | Test bit | Low | | 30 | DCO_1 | Test bit | Low | | 31 (MSB) | DCO_2 | Test bit | Low | **SPI** Figure 2 Timing Diagram of the SPI Table 12 SPI Interface | Parameter | Symbol | | Values | | Unit | Test | |--|-----------------------|-----------------------|----------------------|-----------------------|------|------| | | | Min. | Тур. | Max. | | | | SPI_CLK period | t_{SPI} | 50 | _ | _ | ns | | | SPI_CLK low time | t_{SCKL} | 0.40 t _{SPI} | 0.5 t _{SPI} | 0.60 t _{SPI} | ns | • | | SPI_CLK high time | t _{SCKH} | 0.40 t _{SPI} | 0.5 t _{SPI} | 0.60 t _{SPI} | ns | • | | Chip select lead time | $t_{\text{CS(lead)}}$ | 20 | _ | _ | ns | - | | Time between falling edge of SPI_CLK and SPI_DO valid | t_{SDOV} | _ | _ | 30 | ns | • | | Setup time of SPI_DI before falling edge of SPI_CLK | t _{SDIS} | 10 | _ | _ | ns | | | Hold time of SPI_DI after falling edge of SPI_CLK | t_{SDIH} | 10 | _ | _ | ns | • | | Hold time of SPI_DO with respect to subsequent falling edge of SPI_CLK | t_{SDOH} | 0 | _ | _ | ns | | | Hold time of SPI_EN after last falling edge of SPI_CLK | $t_{\rm CS(lag)}$ | 20 | _ | _ | ns | | | Delay between rising edge of SPI_EN and SPI_DO tristate (leakage current < 12μA) | t_{SDOtri} | _ | _ | 100 | ns | • | | Delay between falling edge of SPI_EN and MSB at SPI_DO valid | t_{CSDV} | _ | _ | 90 | ns | • | | Minimum time between two SPI commands | t _{min2SPI} | 5 | _ | _ | μS | | **Sensor Multiplexer** Table 13 Specification for SPI pins | Parameter | Symbol | | Value | s | Unit | Test | |--|----------------------------|------|-------|------|------|------| | | | Min. | Тур. | Max. | | | | High level input voltage | $V_{ m l_high}$ | 2.0 | _ | _ | V | - | | Low level input voltage | V_{I_low} | _ | _ | 0.8 | V | | | Input voltage hysteresis | V_{hys} | 50 | _ | _ | mV | | | Input current | I_{IN} | -150 | _ | 150 | μΑ | | | Input capacitance (EN, CLK, DI) | CS_{IN} | _ | _ | 2 | pF | | | SPI_DO output high voltage (VCC=3.3V,I _{SDO} =1mA) | $V_{ m O_high}$ | 2.4 | - | _ | V | | | SPI_DO output low voltage (VCC=3.3V,I _{SDO} =1mA) | $V_{ m O_low}$ | _ | - | 0.8 | V | | | SPI_DO load capacitance | CSL DO | _ | _ | 30 | pF | | | SPI_DO load resistance | RSL DO | 10 | _ | _ | kΩ | | | Pull Up resistor (SPI_DI) T _A = 25 °C | RPL_SPI_DI | 78 | 98 | 118 | kΩ | - | | Pull Up resistor (SPI_CLK, SPI_EN) T_A = 25 °C | RPL_SPI_CLK,
RPL_SPI_EN | 39 | 49 | 59 | kΩ | - | | Leakage current @ SPI_DO in high Z state (Testvoltage 2.4 V) | IL DO | _ | - | 12 | μΑ | | Attention: Test ■ means that the parameter is not subject to production test. It was verified by design / characterization. ### 5 Sensor Multiplexer Output signals of the temperature and LO output level sensor are provided multiplexed at the output pin ANA_OUT using an analog multiplexer (AMUX) circuit. Additionally, a MMIC internal band gap reference voltage can be read out. Table 14 Truth Table AMUX 1) | Output signal ANA_OUT | AMUX1_SEL2 | AMUX1_SEL1 | AMUX1_SEL0 | |-----------------------------------|------------|------------|------------| | Temperature sensor output voltage | 0 | 0 | X | | Sensor Output (see Table 15) | 0 | 1 | 0 | | Band gap voltage | 1 | 0 | 0 | ¹⁾ No valid output for deviating states Table 15 Sensor Configuration 1) | Sensor Output | Sensor_SEL1 | Sensor_SEL0 | |-----------------|-------------|-------------| | LO Power sensor | 0 | 0 | ¹⁾ No valid output for deviating states **Package Dimensions** ### 6 Package Dimensions Figure 3 Package Outline (Top, Side and Bottom View) of VQFN32-9 Figure 4 Marking Layout VQFN32-9 (example) Figure 5 Tape of VQFN32-9, Ø Reel: 330 mm, Pieces / Reel: 3000, Reels / Box: 1 w w w .in fineon.com