

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BGU7062

Analog high linearity low noise variable gain amplifier

Rev. 1 — 10 August 2012

Preliminary data sheet

1. Product profile

1.1 General description

The BGU7062 is a fully integrated analog-controlled variable gain amplifier module. Its low noise and high linearity performance makes it ideal for sensitive receivers in cellular base station applications. The BGU7062 is operating in the 1710 MHz to 1785 MHz frequency range and has a gain control range of 35 dB. At maximum gain the noise figure is 0.85 dB. The gain is analog-controlled having maximum gain at 0 V and minimum gain at 3.3 V. The LNA can be bypassed extending the dynamic range. The BGU7062 is internally matched to 50 ohm, meaning no external matching is required, enabling ease of use. It is housed in a 16 pins 8 mm \times 8 mm \times 1.3 mm leadless HLQFN16R package SOT1301.

1.2 Features and benefits

- Input and output internally matched to 50 Ω
- Low noise figure of 0.85 dB
- High input IP3 of 0.8 dBm
- High P_{i(1dB)} of –12.8 dBm
- Bypass mode of LNA giving high dynamic gain range
- Gain control range of 0 dB to 35 dB
- Single 5 V supply
- Single analog gain control of 0 V to 3.3 V
- Unconditionally stable up to 12.75 GHz
- Moisture sensitivity level 3
- ESD protection at all pins

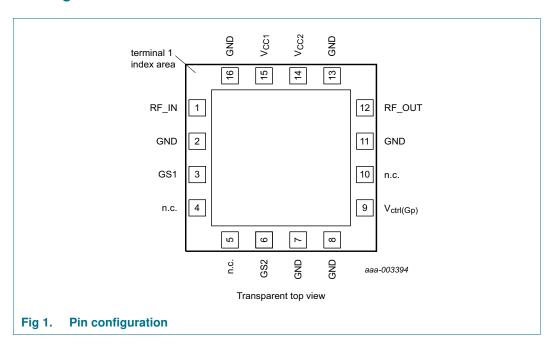
1.3 Applications

- Cellular base stations, remote radio heads
- 3G, LTE infrastructure
- Low noise applications with variable gain and high linearity requirements
- Active antenna

Analog high linearity low noise variable gain amplifier

1.4 Quick reference data

Table 1. Quick reference data


 V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz; T_{amb} = 25 °C; input and output 50 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$I_{CC(tot)}$	total supply current	high gain mode	<u>[1]</u>	190	220	250	mA
		low gain mode	[2]	165	190	215	mA
NF	noise figure	$V_{ctrl(Gp)} = 0 V $ (maximum power gain)	[1]	-	0.85	-	dB
		$G_p = 35 \text{ dB}$	[1]	-	0.95	1.1	dB
IP3 _I	input third-order intercept point	$G_p = 35 \text{ dB}$; 2-tone; tone-spacing = 1.0 MHz	[1]	0	8.0	-	dBm
P _{i(1dB)}	input power at 1 dB gain compression	$G_p = 35 \text{ dB}$	[1]	-14	-12.8	-	dBm

^[1] high gain mode: GS1 = LOW; GS2 = HIGH (see Table 9)

2. Pinning information

2.1 Pinning

2.2 Pin description

Table 2. Pin description

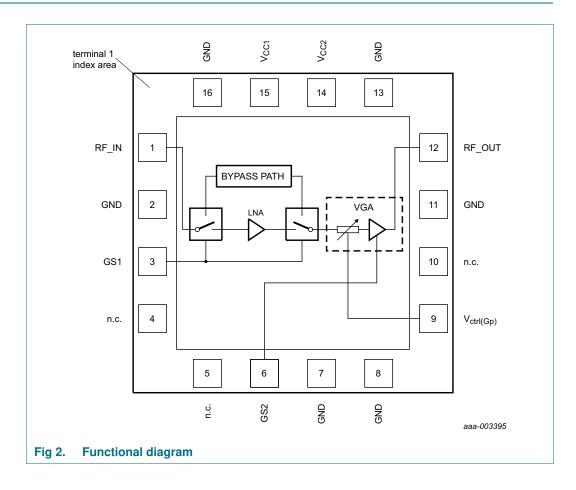
Symbol	Pin	Description
RF_IN	1	RF input
GND	2, 7, 8, 11, 13, 16	ground
GS1	3	gain switch control 1
n.c.	4, 5, 10	not connected
GS2	6	gain switch control 2

BGU7062

^[2] low gain mode: GS1 = HIGH; GS2 = LOW (see Table 9)

Analog high linearity low noise variable gain amplifier

 Table 2.
 Pin description ...continued


Symbol	Pin	Description
V _{ctrl(Gp)}	9	power gain control voltage
RF_OUT	12	RF output
V _{CC2}	14	supply voltage 2
V _{CC1}	15	supply voltage 1

3. Ordering information

Table 3. Ordering information

Type number	Package						
	Name	Description	Version				
BGU7062	HLQFN16R	plastic thermal enhanced low quad flat package; no leads; 16 terminals; body $8\times8\times1.3$ mm	SOT1301-1				

4. Functional diagram

Analog high linearity low noise variable gain amplifier

5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{CC}	supply voltage			0	6	V
$V_{\text{ctrl}(Gp)}$	power gain control voltage			-1	+3.6	V
$V_{I(GS1)}$	input voltage on pin GS1			-1	+3.6	V
$V_{I(GS2)}$	input voltage on pin GS2			-1	+3.6	V
$P_{i(RF)CW} \\$	continuous waveform RF input power	high gain mode; $V_{ctrl(Gp)} = 0 V$	[1]	-	10	dBm
		low gain mode; $V_{ctrl(Gp)} = 0 V$	[2]	-	15	dBm
Tj	junction temperature			-	150	°C
T _{stg}	storage temperature			-40	+150	°C
V _{ESD}	electrostatic discharge voltage	Human Body Model (HBM); according to ANSI/ESDA-JEDEC JS-001-2020-Device Testing, Human Body Model		-	±2	kV
		Charged Device Model (CDM); according to JEDEC standard 22-C101		-	±750	V

^[1] high gain mode: GS1 = LOW; GS2 = HIGH (see Table 9)

6. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC1}	supply voltage 1		4.75	5	5.25	V
V _{CC2}	supply voltage 2		4.75	5	5.25	V
V _{ctrl(Gp)}	power gain control voltage		0	-	3.3	V
V _{I(GS1)}	input voltage on pin GS1		0	-	3.3	V
V _{I(GS2)}	input voltage on pin GS2		0	-	3.3	V
Z ₀	characteristic impedance		-	50	-	Ω
T _{case}	case temperature		-40	-	+85	°C

7. Thermal characteristics

Table 6. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
$R_{th(j\text{-case})}$	thermal resistance from junction to case		<u>11</u> 42	K/W

^[1] The case temperature is measured at the ground solder pad.

^[2] low gain mode: GS1 = HIGH; GS2 = LOW (see Table 9)

Analog high linearity low noise variable gain amplifier

8. Characteristics

Table 7. Characteristics high gain mode

GS1 = LOW; GS2 = HIGH (see <u>Table 9</u>); V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz; T_{amb} = 25 °C; input and output 50 Ω ; unless otherwise specified. All RF parameters have been characterized at the device RF input and RF output terminals.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$I_{CC(tot)}$	total supply current		190	220	250	mA
G _{p(min)}	minimum power gain	$V_{ctrl(Gp)} = 3.3 \text{ V}$	-	13.5	-	dB
G _{p(max)}	maximum power gain	$V_{ctrl(Gp)} = 0 V$	-	37	-	dB
G _{p(flat)}	power gain flatness	$1710~MHz \leq f \leq 1785~MHz;~18~dB \leq G_p \leq 35~dB$	-	0.3	-	dB
NF	noise figure	$V_{ctrl(Gp)} = 0 V $ (maximum power gain)	-	0.85	-	dB
		$G_p = 35 \text{ dB}$	-	0.95	1.1	dB
		$G_p = 18 \text{ dB}$	-	5.80	-	dB
IP3 _I	input third-order intercept point	2-tone; tone-spacing = 1.0 MHz				
		$G_p = 35 \text{ dB}$	0	0.8	-	dBm
		$G_p = 30 \text{ dB}$	-	3.2	-	dBm
		$G_p = 29 \text{ dB}$	-	3.5	-	dBm
		G _p = 18 dB	-	5.0	-	dBm
P _{i(1dB)}	input power at 1 dB gain compression	$G_p = 35 \text{ dB}$	-14	-12.8	-	dBm
		$G_p = 30 \text{ dB}$	-	-7.5	-	dBm
		$G_p = 29 \text{ dB}$	-	-7.0	-	dBm
		$G_p = 18 \text{ dB}$	-	-5.9	-	dBm
RLin	input return loss	V _{ctrl(Gp)} = 0 V (maximum power gain)	-	30	-	dB
		$G_p = 35 \text{ dB}$	-	25	-	dB
RLout	output return loss	V _{ctrl(Gp)} = 0 V (maximum power gain)	-	17	-	dB
K	Rollett stability factor	$0 \text{ GHz} \le f \le 12.75 \text{ GHz}$	1	-	-	

Table 8. Characteristics low gain mode

GS1 = HIGH; GS2 = LOW (see <u>Table 9</u>); $V_{CC1} = 5$ V; $V_{CC2} = 5$ V; f = 1750 MHz; $T_{amb} = 25$ °C; input and output 50 Ω ; unless otherwise specified. All RF parameters have been characterized at the device RF input and RF output terminals.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{CC(tot)}	total supply current		165	190	215	mA
G _{p(min)}	minimum power gain	$V_{ctrl(Gp)} = 3.3 \text{ V}$	-	-6.6	-	dB
$G_{p(max)}$	maximum power gain	$V_{ctrl(Gp)} = 0 V$	-	18.6	-	dB
$G_{p(flat)}$	power gain flatness	1710 MHz \leq f \leq 1785 MHz; 3 dB \leq G_p \leq 17 dB	-	0.1	-	dB
NF	noise figure	$G_p = 17 \text{ dB}$	-	9.8	-	dB
		$G_p = 3 dB$	-	20.6	-	dB
IP3 _I	input third-order intercept point	2-tone; tone-spacing = 1.0 MHz			-	
		$G_p = 17 dB$	-	20	-	dBm
		$G_p = 12 dB$	-	24	-	dBm
		$G_p = 11 dB$	-	25	-	dBm
		$G_p = 3 dB$	-	28	-	dBm

Analog high linearity low noise variable gain amplifier

 Table 8.
 Characteristics low gain mode ...continued

GS1 = HIGH; GS2 = LOW (see <u>Table 9</u>); V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz; T_{amb} = 25 °C; input and output 50 Ω ; unless otherwise specified. All RF parameters have been characterized at the device RF input and RF output terminals.

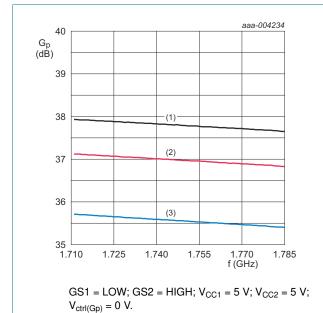
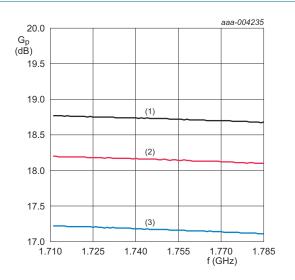

	•	•		•		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$P_{i(1dB)} \\$	input power at 1 dB gain compression	$G_p = 17 dB$	-	6.0	-	dBm
		$G_p = 12 \text{ dB}$	-	10.0	-	dBm
		$G_p = 11 \text{ dB}$	-	10.5	-	dBm
		$G_p = 3 dB$	-	10.5	-	dBm
RL_{in}	input return loss	$V_{ctrl(Gp)} = 0 V $ (maximum power gain)	-	30	-	dB
		$G_p = 17 \text{ dB}$	-	25	-	dB
RLout	output return loss	$V_{ctrl(Gp)} = 0 V $ (maximum power gain)	-	18	-	dB
K	Rollett stability factor	0 GHz ≤ f ≤ 12.75 GHz	1	-	-	

Table 9. Gain switch truth table

 $V_{CC1} = 5 \text{ V}; V_{CC2} = 5 \text{ V}; -10 \text{ }^{\circ}\text{C} \leq T_{amb} \leq +85 \text{ }^{\circ}\text{C}$

Gain mode	GS1		GS2			
	logic	V _{GS1}	logic	V _{GS2}		
high gain mode	LOW	0 V to 0.5 V	HIGH	2 V to 3.3 V		
low gain mode	HIGH	2 V to 3.3 V	LOW	0 V to 0.5 V		

8.1 Graphs



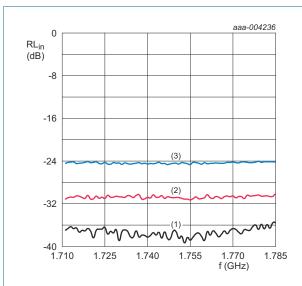
(1) $T_{amb} = -10 \, ^{\circ}C$

(2) $T_{amb} = +25 \, ^{\circ}C$

(3) $T_{amb} = +85 \, ^{\circ}C$

Fig 3. Power gain as a function of frequency in high gain mode; typical values

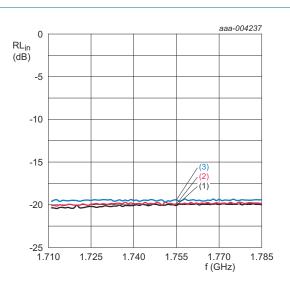
 $GS1 = HIGH; GS2 = LOW; V_{CC1} = 5 V; V_{CC2} = 5 V; V_{ctrl(Gp)} = 0 V.$


(1) $T_{amb} = -10 \, ^{\circ}C$

(2) $T_{amb} = +25 \, ^{\circ}C$

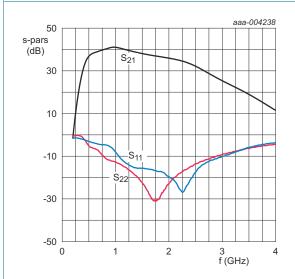
(3) $T_{amb} = +85 \, ^{\circ}C$

Fig 4. Power gain as a function of frequency in low gain mode; typical values


Analog high linearity low noise variable gain amplifier

GS1 = LOW; GS2 = HIGH; V_{CC1} = 5 V; V_{CC2} = 5 V; $V_{ctrl(GD)}$ = 0 V.

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$


Fig 5. Input return loss as a function of frequency in high gain mode; typical values

GS1 = HIGH; GS2 = LOW; V_{CC1} = 5 V; V_{CC2} = 5 V; $V_{ctrl(Gp)}$ = 0 V.

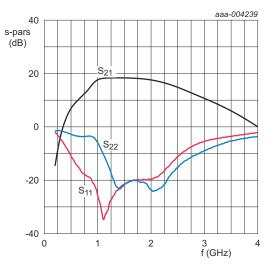
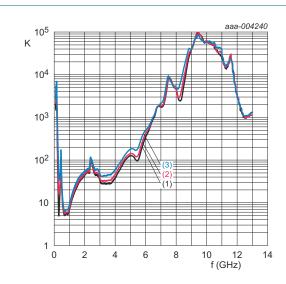

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

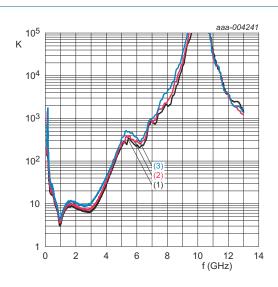
Fig 6. Input return loss as a function of frequency in low gain mode; typical values

GS1 = LOW; GS2 = HIGH; V_{CC1} = 5 V; V_{CC2} = 5 V; $V_{ctrl(Gp)}$ = 0 V; T_{amb} = 25 °C.


Fig 7. S-parameters as a function of frequency in high gain mode; typical values

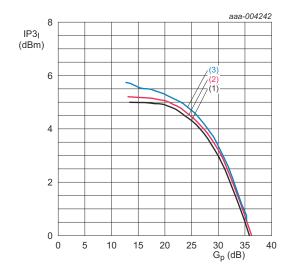
 $GS1 = HIGH; GS2 = LOW; V_{CC1} = 5 V; V_{CC2} = 5 V; V_{ctrl(Gp)} = 0 V; T_{amb} = 25 \, ^{\circ}C.$

Fig 8. S-parameters as a function of frequency in low gain mode; typical values


Analog high linearity low noise variable gain amplifier

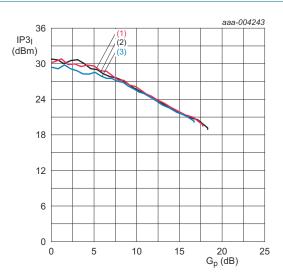
GS1 = LOW; GS2 = HIGH; V_{CC1} = 5 V; V_{CC2} = 5 V; $V_{ctrl(GD)}$ = 0 V.

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$


Fig 9. Rollet stability factor as a function of frequency in high gain mode; typical values

GS1 = HIGH; GS2 = LOW; V_{CC1} = 5 V; V_{CC2} = 5 V; $V_{ctrl(Gp)}$ = 0 V.

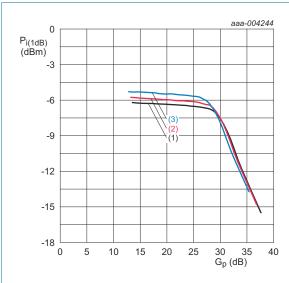
- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$


Fig 10. Rollet stability factor as a function of frequency in low gain mode; typical values

GS1 = LOW; GS2 = HIGH; $V_{CC1} = 5 \text{ V}$; $V_{CC2} = 5 \text{ V}$; f = 1750 MHz.

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

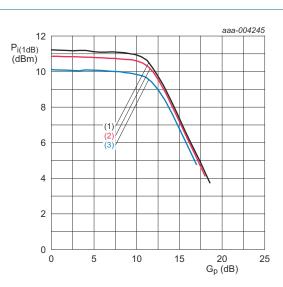
Fig 11. Input third-order intercept point as a function of power gain in high gain mode; typical values



GS1 = HIGH; GS2 = LOW; V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz.

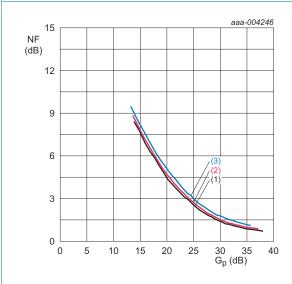
- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

Fig 12. Input third-order intercept point as a function of power gain in low gain mode; typical values


Analog high linearity low noise variable gain amplifier

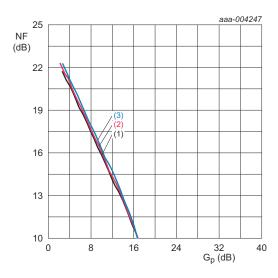
GS1 = LOW; GS2 = HIGH; V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz.

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$


Fig 13. Input power at 1 dB gain compression as a function of power gain in high gain mode; typical values

GS1 = HIGH; GS2 = LOW; V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz.

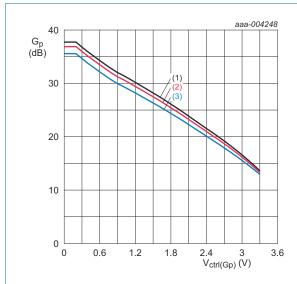
- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$


Fig 14. Input power at 1 dB gain compression as a function of power gain in low gain mode; typical values

GS1 = LOW; GS2 = HIGH; V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz.

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

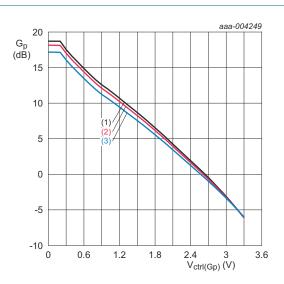
Fig 15. Noise figure as a function of power gain in high gain mode; typical values



GS1 = HIGH; GS2 = LOW; V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz.

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

Fig 16. Noise figure as a function of power gain in low gain mode; typical values


Analog high linearity low noise variable gain amplifier

GS1 = LOW; GS2 = HIGH; V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz.

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

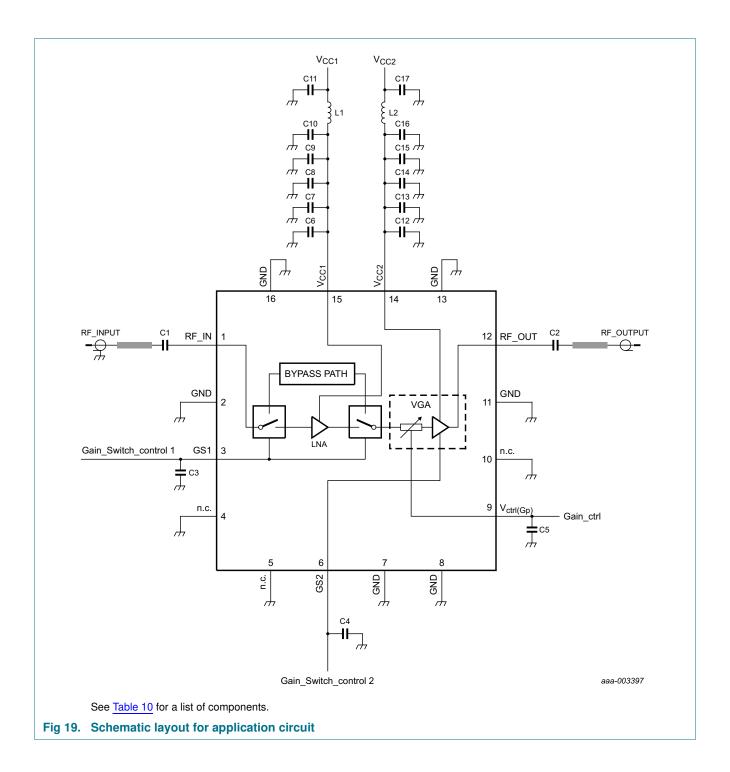
Fig 17. Power gain as a function of power gain control voltage in high gain mode; typical values

GS1 = HIGH; GS2 = LOW; V_{CC1} = 5 V; V_{CC2} = 5 V; f = 1750 MHz.

- (1) $T_{amb} = -10 \, ^{\circ}C$
- (2) $T_{amb} = +25 \, ^{\circ}C$
- (3) $T_{amb} = +85 \, ^{\circ}C$

Fig 18. Power gain as a function of power gain control voltage in low gain mode; typical values

9. Application information


Table 10. List of components For application circuit see Figure 19.

Component	Description	Value		Remarks
C1, C2	capacitor	1 nF	[1]	0402
C3, C4, C5, C6, C12	capacitor	100 pF	[1]	0402
C7, C8, C9, C10,	capacitor	optional		
C11, C17	capacitor	100 nF	[1]	0402
C13, C14, C15, C16	capacitor	optional		
L1, L2	inductor	10 nH	[2]	0402

^[1] Murata GRM1555 series.

^[2] Murata LQG15 series.

Analog high linearity low noise variable gain amplifier

Analog high linearity low noise variable gain amplifier

10. Package outline

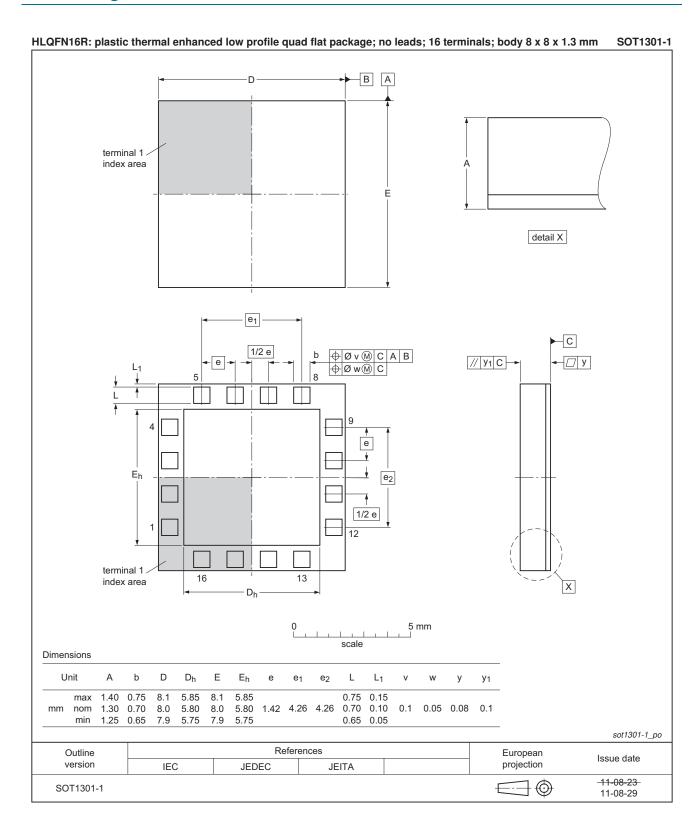


Fig 20. Package outline SOT1301-1 (HLQFN16R)

Analog high linearity low noise variable gain amplifier

11. Abbreviations

Table 11. Abbreviations

Acronym	Description
3G	3rd Generation
ESD	ElectroStatic Discharge
LNA	Low Noise Amplifier
LTE	Long Term Evolution

12. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BGU7062 v.1	20120810	Preliminary data sheet	-	-

Analog high linearity low noise variable gain amplifier

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

13.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BGU7062

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

Analog high linearity low noise variable gain amplifier

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

BGU7062 NXP Semiconductors

Analog high linearity low noise variable gain amplifier

15. Contents

1	Product profile	. 1
1.1	General description	. 1
1.2	Features and benefits	. 1
1.3	Applications	. 1
1.4	Quick reference data	. 2
2	Pinning information	. 2
2.1	Pinning	. 2
2.2	Pin description	
3	Ordering information	. 3
4	Functional diagram	. 3
5	Limiting values	. 4
6	Recommended operating conditions	
7	Thermal characteristics	
8	Characteristics	
8.1	Graphs	. 6
9	Application information	10
10	Package outline	
11	Abbreviations	13
12	Revision history	13
13	Legal information	14
13.1	Data sheet status	14
13.2	Definitions	14
13.3	Disclaimers	14
13.4	Trademarks	15
14	Contact information	15
15	Contents	16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.