

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BGY885A

860 MHz, 18.5 dB push-pull amplifier Rev. 7 — 19 September 2011

Product data sheet

Product profile

1.1 General description

Hybrid amplifier module for CATV systems operating over a frequency range of 40 MHz to 860 MHz with a supply voltage of 24 V (DC).

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features and benefits

- Excellent linearity
- Extremely low noise
- Silicon nitride passivation
- Rugged construction
- Gold metallization ensures excellent reliability

1.3 Quick reference data

Table 1. Quick reference data

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
G_p	power gain	f = 50 MHz	18	18.5	19	dB
		f = 860 MHz	18.5	19.5	-	dB
I _{tot}	total current consumption (DC)	$V_B = 24 V$	[1] -	225	240	mA

^[1] The module normally operates at $V_B = 24 \text{ V}$, but is able to withstand supply transients up to 30 V.

2. Pinning information

Table 2. Pinning

	3		
Pin	Description	Simplified outline	Symbol
1	input		
2	common	1 3 5 7 9	5
3	common		$\frac{1}{2}$
5	+V _B		2 3 7 8
7	common		sym095
8	common		,
9	output		

3. Ordering information

Table 3. Ordering information

Туре	Packag	е	
number	Name	Description	Version
BGY885A	-	rectangular single-ended package; aluminium flange; 2 vertical mounting holes; 2×6 -32 UNC and 2 extra horizontal mounting holes; 7 gold-plated in-line leads	SOT115J

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Vi	RF input voltage		-	65	dBmV
T _{stg}	storage temperature		-40	+100	°C
T _{mb}	mounting base temperature		-20	+100	°C

860 MHz, 18.5 dB push-pull amplifier

5. Characteristics

Table 5. Characteristics

Bandwidth 40 MHz to 860 MHz; V_B = 24 V; T_{mb} = 30 °C; Z_S = Z_L = 75 Ω ; unless otherwise specified.

	, 5 , 1110	,	,				
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Gp	power gain	f = 50 MHz		18	18.5	19	dB
		f = 860 MHz		18.5	19.5	-	dB
SL	slope cable equivalent	f = 40 MHz to 860 MHz		0	8.0	2	dB
FL	flatness of frequency response	f = 40 MHz to 860 MHz		-	±0.2	±0.3	dB
S ₁₁	input return losses	f = 40 MHz to 80 MHz		20	31	-	dB
		f = 80 MHz to 160 MHz		18.5	30	-	dB
		f = 160 MHz to 320 MHz		17	27.5	-	dB
		f = 320 MHz to 640 MHz		15.5	25	-	dB
		f = 640 MHz to 860 MHz		14	20.5	-	dB
S ₂₂	output return losses	f = 40 MHz to 80 MHz		20	29	-	dB
		f = 80 MHz to 160 MHz		18.5	27.5	-	dB
		f = 160 MHz to 320 MHz		17	24	-	dB
		f = 320 MHz to 640 MHz		15.5	21	-	dB
		f = 640 MHz to 860 MHz		14	21	-	dB
φs21	phase response	f = 50 MHz		-45	-	+45	deg
СТВ	composite triple beat	49 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 859.25 MHz		-	-65	-61	dB
X_{mod}	cross modulation	49 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 55.25 MHz		-	-65	-61	dB
CSO	composite second order distortion	49 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 860.5 MHz		-	-67	-61	dB
d_2	second order distortion		[1]	-	-78	-70	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	[2]	58	60	-	dBmV
F	noise figure	f = 50 MHz		-	4.5	5	dB
		f = 450 MHz		-	-	5.5	dB
		f = 550 MHz		-	-	5.5	dB
		f = 600 MHz		-	-	6	dB
		f = 650 MHz		-	-	6	dB
		f = 750 MHz		-	-	7	dB
		f = 860 MHz		_	6	8	dB
		1 = 000 MH IE			•	•	

^[1] $f_p = 55.25 \text{ MHz}$; $V_p = 44 \text{ dBmV}$; $f_q = 805.25 \text{ MHz}$; $V_q = 44 \text{ dBmV}$; measured at $f_p + f_q = 860.5 \text{ MHz}$.

^[2] Measured according to DIN45004B: $f_p = 851.25$ MHz; $V_p = V_o$; $f_q = 858.25$ MHz; $V_q = V_o - 6$ dB; $f_r = 860.25$ MHz; $V_r = V_o - 6$ dB; measured at $f_p + f_q - f_r = 849.25$ MHz.

^[3] The module normally operates at $V_B = 24 \ V$, but is able to withstand supply transients up to 30 V.

860 MHz, 18.5 dB push-pull amplifier

Table 6. Characteristics

Bandwidth 40 MHz to 750 MHz; V_B = 24 V; T_{mb} = 30 °C; Z_S = Z_L = 75 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
G_p	power gain	f = 50 MHz	18	18.5	19	dB
		f = 750 MHz	18.5	-	-	dB
SL	slope cable equivalent	f = 40 MHz to 750 MHz	0	-	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 750 MHz	-	-	±0.3	dB
S ₁₁	input return losses	f = 40 MHz to 80 MHz	20	31	-	dB
		f = 80 MHz to 160 MHz	18.5	30	-	dB
		f = 160 MHz to 320 MHz	17	27.5	-	dB
		f = 320 MHz to 640 MHz	15.5	25	-	dB
		f = 640 MHz to 750 MHz	14	20.5	-	dB
S ₂₂	output return losses	f = 40 MHz to 80 MHz	20	29	-	dB
		f = 80 MHz to 160 MHz	18.5	27.5	-	dB
		f = 160 MHz to 320 MHz	17	24	-	dB
		f = 320 MHz to 640 MHz	15.5	21	-	dB
		f = 640 MHz to 750 MHz	14	21	-	dB
Ψs21	phase response	f = 50 MHz	-45	-	+45	deg
СТВ	composite triple beat	110 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 745.25 MHz	-	-55	-53	dB
X_{mod}	cross modulation	110 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 55.25 MHz	-	-58	–57	dB
CSO	composite second order distortion	110 channels flat; V _o = 44 dBmV; measured at 746.5 MHz	-	-65	-53	dB
d_2	second order distortion		<u>[1]</u> -	-	-65	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	<u>[2]</u> 59	-	-	dBmV
F	noise figure	see <u>Table 5</u>	-	-	-	dB
I _{tot}	total current consumption (DC)		[3] _	225	240	mA

 $^{[1] \}quad f_p = 55.25 \text{ MHz}; \ V_p = 44 \text{ dBmV}; \ f_q = 691.25 \text{ MHz}; \ V_q = 44 \text{ dBmV}; \ measured \ at \ f_p + f_q = 746.5 \text{ MHz}.$

Table 7. Characteristics

Bandwidth 40 MHz to 600 MHz; V_B = 24 V; T_{mb} = 30 °C; Z_S = Z_L = 75 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Gp	power gain	f = 50 MHz	18	18.5	19	dB
		f = 600 MHz	18.5	-	-	dB
SL	slope cable equivalent	f = 40 MHz to 600 MHz	0	-	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 600 MHz	-	-	±0.3	dB
s ₁₁	input return losses	f = 40 MHz to 80 MHz	20	31	-	dB
		f = 80 MHz to 160 MHz	18.5	30	-	dB
		f = 160 MHz to 320 MHz	17	27.5	-	dB
		f = 320 MHz to 600 MHz	16	25	-	dB

BGY885A

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2011. All rights reserved.

^[2] Measured according to DIN45004B: $f_p = 740.25$ MHz; $V_p = V_o$; $f_q = 747.25$ MHz; $V_q = V_o - 6$ dB; $f_r = 749.25$ MHz; $V_r = V_o - 6$ dB; measured at $f_p + f_q - f_r = 738.25$ MHz.

^[3] The module normally operates at $V_B = 24 \text{ V}$, but is able to withstand supply transients up to 30 V.

860 MHz, 18.5 dB push-pull amplifier

 Table 7.
 Characteristics ...continued

Bandwidth 40 MHz to 600 MHz; $V_B = 24$ V; $T_{mb} = 30$ °C; $Z_S = Z_L = 75$ Ω ; unless otherwise specified.

			-			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
S ₂₂	output return losses	f = 40 MHz to 80 MHz	20	29	-	dB
		f = 80 MHz to 160 MHz	18.5	27.5	-	dB
		f = 160 MHz to 320 MHz	17	24	-	dB
		f = 320 MHz to 600 MHz	16	21	-	dB
φ _{s21}	phase response	f = 50 MHz	-45	-	+45	deg
СТВ	composite triple beat	85 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 595.25 MHz	-	-60	-57	dB
X_{mod}	cross modulation	85 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 55.25 MHz	-	-60.5	-59	dB
CSO	composite second order distortion	85 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 596.5 MHz	-	-64.5	-58	dB
d_2	second order distortion		[1] -	-79	-70	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	<u>2</u> 61	64.5	-	dBmV
F	noise figure	see <u>Table 5</u>	-	-	-	dB
I _{tot}	total current consumption (DC)		[3] _	225	240	mA

^[1] $f_p = 55.25 \text{ MHz}$; $V_p = 44 \text{ dBmV}$; $f_q = 541.25 \text{ MHz}$; $V_q = 44 \text{ dBmV}$; measured at $f_p + f_q = 596.5 \text{ MHz}$.

Table 8. Characteristics

Bandwidth 40 MHz to 550 MHz; V_B = 24 V; T_{mb} = 30 °C; Z_S = Z_L = 75 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Gp	power gain	f = 50 MHz	18	18.5	19	dB
		f = 550 MHz	18.5	-	-	dB
SL	slope cable equivalent	f = 40 MHz to 550 MHz	0	-	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 550 MHz	-	-	±0.3	dB
S ₁₁	input return losses	f = 40 MHz to 80 MHz	20	31	-	dB
		f = 80 MHz to 160 MHz	18.5	30	-	dB
		f = 160 MHz to 320 MHz	17	27.5	-	dB
		f = 320 MHz to 550 MHz	16	25	-	dB
S ₂₂	output return losses	f = 40 MHz to 80 MHz	20	29	-	dB
		f = 80 MHz to 160 MHz	18.5	27.5	-	dB
		f = 160 MHz to 320 MHz	17	24	-	dB
		f = 320 MHz to 550 MHz	16	21	-	dB
Ψs21	phase response	f = 50 MHz	-45	-	+45	deg
СТВ	composite triple beat	77 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 547.25 MHz	-	-61	-60	dB
X_{mod}	cross modulation	77 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 55.25 MHz	-	-61	-60	dB
CSO	composite second order distortion	77 channels flat; $V_0 = 44 \text{ dBmV}$; measured at 548.5 MHz	-	-69	-60	dB

BGY885/

^[2] Measured according to DIN45004B: $f_p = 590.25$ MHz; $V_p = V_o$; $f_q = 597.25$ MHz; $V_q = V_o - 6$ dB; $f_r = 599.25$ MHz; $V_r = V_o - 6$ dB; measured at $f_p + f_q - f_r = 588.25$ MHz.

^[3] The module normally operates at $V_B = 24 \ V$, but is able to withstand supply transients up to 30 V.

860 MHz, 18.5 dB push-pull amplifier

Table 8. Characteristics ... continued

Bandwidth 40 MHz to 550 MHz; V_B = 24 V; T_{mb} = 30 °C; Z_S = Z_L = 75 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
d_2	second order distortion		[1] -	-	-72	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	<u>[2]</u> 62	-	-	dBmV
F	noise figure	see <u>Table 5</u>	-	-	-	dB
I _{tot}	total current consumption (DC)		<u>[3]</u> _	225	240	mA

^[1] $f_p = 55.25 \text{ MHz}$; $V_p = 44 \text{ dBmV}$; $f_q = 493.25 \text{ MHz}$; $V_q = 44 \text{ dBmV}$; measured at $f_p + f_q = 548.5 \text{ MHz}$.

Table 9. Characteristics

Bandwidth 40 MHz to 450 MHz; V_B = 24 V; T_{mb} = 30 °C; Z_S = Z_L = 75 Ω ; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
G_p	power gain	f = 50 MHz	18	18.5	19	dB
		f = 450 MHz	18.5	-	-	dB
SL	slope cable equivalent	f = 40 MHz to 450 MHz	0	-	1.5	dB
FL	flatness of frequency response	f = 40 MHz to 450 MHz	-	-	±0.3	dB
S ₁₁	input return losses	f = 40 MHz to 80 MHz	20	31	-	dB
		f = 80 MHz to 160 MHz	18.5	30	-	dB
		f = 160 MHz to 320 MHz	17	27.5	-	dB
		f = 320 MHz to 450 MHz	16	25	-	dB
S ₂₂	output return losses	f = 40 MHz to 80 MHz	20	29	-	dB
		f = 80 MHz to 160 MHz	18.5	27.5	-	dB
		f = 160 MHz to 320 MHz	17	24	-	dB
		f = 320 MHz to 450 MHz	16	21	-	dB
Ψs21	phase response	f = 50 MHz	-45	-	+45	deg
СТВ	composite triple beat	60 channels flat; V _o = 46 dBmV; measured at 445.25 MHz	-	-	–61	dB
X_{mod}	cross modulation	60 channels flat; $V_0 = 46 \text{ dBmV}$; measured at 55.25 MHz	-	-	-60	dB
CSO	composite second order distortion	60 channels flat; V _o = 46 dBmV; measured at 446.5 MHz	-	-	-61	dB
d ₂	second order distortion		[1] -	-	-75	dB
Vo	output voltage	$d_{im} = -60 \text{ dB}$	2 64	-	-	dBmV
F	noise figure	see <u>Table 5</u>	-	-	-	dB
I _{tot}	total current consumption (DC)		[3]	225	240	mA

^[1] $f_p = 55.25$ MHz; $V_p = 46$ dBmV; $f_q = 391.25$ MHz; $V_q = 46$ dBmV; measured at $f_p + f_q = 446.5$ MHz.

^[2] Measured according to DIN45004B: $f_p = 540.25$ MHz; $V_p = V_o$; $f_q = 547.25$ MHz; $V_q = V_o - 6$ dB; $f_r = 549.25$ MHz; $V_r = V_o - 6$ dB; measured at $f_p + f_q - f_r = 538.25$ MHz.

^[3] The module normally operates at $V_B = 24 \text{ V}$, but is able to withstand supply transients up to 30 V.

^[2] Measured according to DIN45004B: $f_p = 440.25$ MHz; $V_p = V_o$; $f_q = 447.25$ MHz; $V_q = V_o - 6$ dB; $f_r = 449.25$ MHz; $V_r = V_o - 6$ dB; measured at $f_p + f_q - f_r = 438.25$ MHz.

^[3] The module normally operates at $V_B = 24 \text{ V}$, but is able to withstand supply transients up to 30 V.

6. Package outline

Rectangular single-ended package; aluminium flange; 2 vertical mounting holes; 2 x 6-32 UNC and 2 extra horizontal mounting holes; 7 gold-plated in-line leads

SOT115J

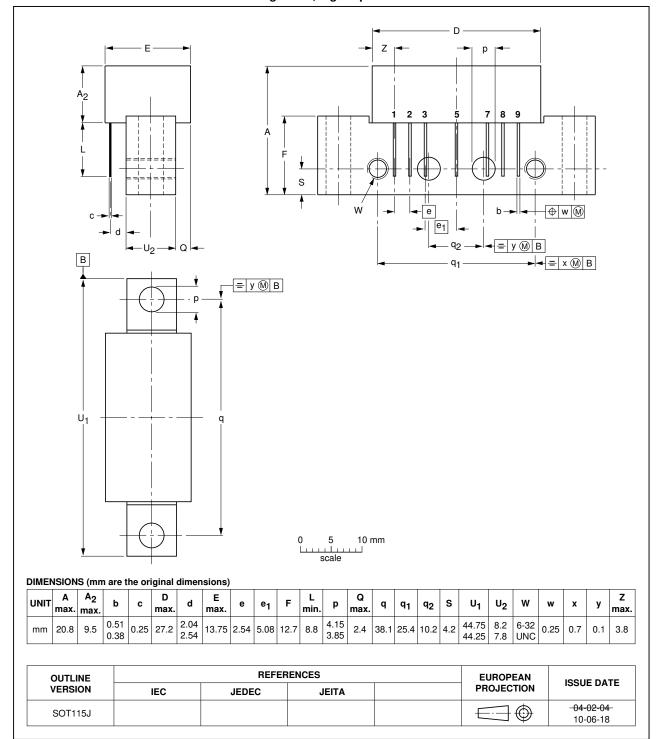


Fig 1. Package outline SOT115J

BGY885A

7. Revision history

Table 10. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BGY885A v.7	20110919	Product data sheet	-	BGY885A v.6
Modifications:		of this data sheet has been of NXP Semiconductors.	redesigned to comply v	vith the new identity
	 Legal texts 	have been adapted to the n	new company name whe	ere appropriate.
	 Package ou 	ıtline drawings have been u	pdated to the latest vers	sion.
BGY885A v.6 (9397 750 14434)	20050322	Product data sheet	-	BGY885A v.5
BGY885A v.5 (9397 750 08818)	20011022	Product specification	-	BGY885A v.4
BGY885A v.4 (9397 750 05444)	19990330	Product specification	-	BGY885A v.3
BGY885A v.3 (9397 750 02093)	19970407	Product specification	-	BGY885A v.2
BGY885A v.2	19950201	Product specification	-	n.a.

8. Legal information

8.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

8.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

8.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

BGY885A

860 MHz, 18.5 dB push-pull amplifier

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

8.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

9. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

10. Contents

1	Product profile
1.1	General description 1
1.2	Features and benefits
1.3	Quick reference data 1
2	Pinning information 2
3	Ordering information 2
4	Limiting values
5	Characteristics 3
6	Package outline
7	Revision history 8
8	Legal information 9
8.1	Data sheet status 9
8.2	Definitions 9
8.3	Disclaimers9
8.4	Trademarks 10
9	Contact information 10
10	Contents 11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.