

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Class-AB Speaker Amplifiers

1W+1W Stereo Speaker / Headphone Amplifier

No.10077EAT06

Description

BH7884EFV

The BH7884EFV is a low voltage, low noise, high output speaker and headphone amplifier drive, in which a Bi-CMOS process is used. This IC supports: headphone amplifier gain adjustment, active/suspend switching, speaker amplifier stereo/monaural switching, and amplifier mute switching. All functions are controllable from a microcontroller. Built-in digital noise reduction circuits eliminate digital noise and BEEP sounds.

Features

- 1) Built-in 1W+1W stereo speaker amplifier (Vcc=5V, RL=8Ω, THD=10%)
- 2) Built-in stereo headphone amplifier
- 3) Built-in bass boost function for speaker amplifier
- 4) Built-in low noise VCA (electronic volume) for headphone
- 5) Built-in mute circuit
- 6) Built-in standby circuit
- 7) Low current consumption specifications (9 mA TYP. in ACTIVE mode, 0.2 µA TYP. in SUSPEND mode)

Applications

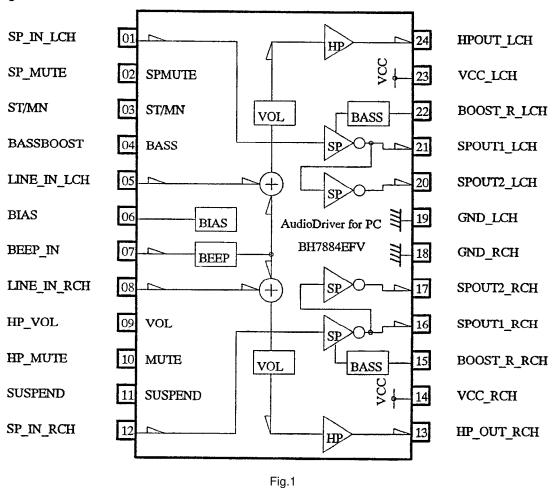
Notebook computers, LCD TVs, etc.

● Absolute maximum ratings(Ta=25°C)

Parameter	Ratings	Unit
Supply voltage	+6.0	V
Power dissipation	1100 *1	mW
Storage temperature	-55 ~ +125	°C
Operating temperature	-10 ~ +70	°C

^{*1} Reduced by 11 mW/°C at 25°C or higher, when mounting on a 70mmX70mmX1.6mm PCB board).

● Operating Conditions (Ta=25°C)


Parameter	Ratings	Unit
Supply voltage	+3.0~+5.5	V

^{*} This IC is not designed to be radiation-resistant.

● Electrical characteristics (Unless otherwise noted, V_{CC}=3.3V, Ta=25°C, f=1kHz)

ectrical characteristics (Unl Parameter	Symbol	lee neteu, t	Limits		Unit	Condition
■1 CHIP	Symbol	Min.	Тур.	Max.	Ullit	Condition
Circuit current ACTV	IA	-	9.0	18.0	mA	No signal ACTIVE
Circuit current SPND	ls	-	0.2	10.0	μА	No signal SUSPEND
■SP AMP						
Voltage gain1	G _{SP} 1	9.0	12.0	15.0	dB	SE, Vin=-18dBV,RL=8Ω
Voltage gain2	G _{SP} 2	15.2	18.2	21.2	dB	BTL, Vin=-18dBV
Distortion	D _{SP}	-	0.1	1.0	%	BTL, Vin=-18dBV
Maximum output level	V _{OSP}	2.2	5.2	-	dBV	BTL, DSP=1%
Output noise level	V _{NSP}	-	-97	-80	dBV	SE, DIN-Audio
Cross talk	CT _{SP}	-	-90	-80	dBV	SE, Vin=-18dBV, DIN-Audio
Output level on mute	MT _{SP}	-	-102	-80	dBV	BTL, Vin=-18dBV
Voltage gain 3	G _{HP}	2.6	5.6	8.6	dB	VOL:MAX, R _L =10kΩ,Vin=-12dBV
Voltage gain 4	G _{HP}	-10	-7	-4	dB	VOL:MAX, R _L =32Ω,Vin=-12dBV
Distortion	D _{HP}	-	0.025	0.1	%	VOL:MAX, R _L =32Ω,Vin=-8dBV
Variable width of volume	ΔG _{HP}	70	100	-	dB	VOL:MIN ~ MAX, RL=32Ω
Maximum output level	V _{OHP}	-2.0	1.0	-	dBV	VOL:MAX, DHP=1%, RL=10kΩ
Output noise level	V _{NHP}	-	-98	-80	dBV	VOL:MAX, R _L =32Ω, DIN-Audio
Cross talk	СТнр	-	-98	-80	dBV	VOL:MAX, R _L =32Ω,Vin=-12dBV DIN-Audio
Output level on mute	MT _{HP}	-	-110	-80	dBV	VOL:MAX, R _L =32Ω,Vin=-12dBV DIN-Audio
■BEEP AMP						DITY / (dalo
Output voltage level	V_{BP}	0.8	1.25	-	Vpp	Vin=1.3dBV, f=1kHz, 20MHzLPF
■BIAS	Γ	T			1	
Output voltage level	V _{BIAS}	1.4	1.7	2.0	V	No Signal
ACTIVE mode	V _{11H}	V _{CC} -0.3	-	V _{CC}	V	Active mode. Hold Voltage of 11pin.
SUSPEND mode	V _{11L}	GND	-	0.3	V	Suspend mode. Hold Voltage of 11pin.
SP/ON mode	V _{2H}	V _{CC} -0.3	-	V _{CC}	V	SP / ON mode. Hold Voltage of 2pin.
SP/OFF mode	V _{2L}	GND	-	0.3	V	SP/OFF mode. Hold Voltage of 2pin.
BASS-BOOST/ON mode	V _{4H}	V _{CC} -0.7	-	V _{CC}	V	SP / Bass Boost mode. Hold Voltage of 4pin.
BASS-BOOST/OFF mode	V _{4L}	GND	-	0.7	V	SP / Non Boost mode. Hold Voltage of 4pin.
STEREO mode	V _{3H}	V _{CC} -0.7	-	V _{CC}	V	SP / STEREO mode. Hold Voltage of 3pin.
MONO mode	V _{3L}	GND	-	0.7	V	SP / MONO mode. Hold Voltage of 3pin.
ACTIVE mode	V _{10H}	V _{CC} -0.7	-	V _{CC}	V	HP / Active mode. Hold Voltage of 10pin.
MUTE mode	V _{10L}	GND	-	0.7	V	HP / MUTE mode. Hold Voltage of 10pin.
■PSRR						
Ripple rejection ratio	G_{PR}	-	-64	-	dBV	f=100Hz, 0.3Vpp, SIN Input SPOUT monitor, DIN-Audio

Block diagram

● Control pin settings

		SP MUTE PIN:2PIN			
Н	SP ACTIVE SPAMP is in active state				
L	SP MUTE	SPAMP is in suspend state			
		STEREO/MONO PIN:3PIN			
Н	STEREO	For SPAMP, LCH and RCH both are in active state			
L	MONO	For SPAMP, LCH is in active state and RCH is in suspend state			
		BASSBOOST PIN:4PIN			
Н	BASS BOOST	For SPAMP, bass is boosted			
L	NON -BOOST	For SPAMP, bass is not boosted			
	(The SPAMP m	MUTE PIN:10PIN ute function is realized by connecting HP_OUT to SP_IN)			
Н	ACTIVE	HPAMP is in active state			
L	L MUTE HPAMP is in mute state				
		SUSPEND PIN:11PIN			
Н	ACTIVE	The IC is in active state			
L	SUSPEND	The IC is in suspend state			

●Equivalent circuit

PIN1	SP_IN_LCH	PIN2	SP_MUTE	PIN3	ST/MN	PIN4	BASS BOOST
_ <u></u>		100	0k 100k	© -	100k 100k	1001	100k
PIN5	LINE_IN_LCH	PIN6	BIAS	PIN7	BEEP_IN	PIN8	LIHE_IN_RCH
50 Ø —			50k 100k 100k 35k 777	⊘ –ī	50	16k 1 60k 1	27k
PIN9	HP_VOL	PIN10	HP_MUTE	PIN11	SUSPEND	PIN12	SP_IN_RCH
10 ⊘ ⊤k	00k 100k 7777	<u></u>		1	00k 100k	11 ⊘ —[000k 100k
PIN13	HP_OUT_RCH	PIN14	VCC_RCH	PIN15	BOOST_R_RCH	PIN16	SPOUT1_RCH
1	25k 77.5k	∅ -	†	Q +	40k 16 40k 25		25k 7.5k

PIN17	SPOUT2_RCH	PIN18	GND_RCH	PIN19	GND_LCH	PIN20	SPOUT2_LCH
[[7	25k 7.5k	∅ -	7777		777		7.5k
PIN21	SPOUT1_LCH	PIN22	BOOST_R_LCH	PIN23	VCC_LCH	PIN24	HP_OUT_LCH
	25k 7.5k	~	40k 21 0 40k 21 40k 22	⊘	•	C C 7	30k 7.5k

Application circuit

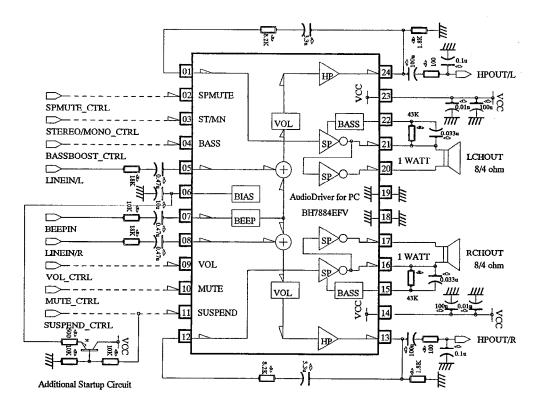


Fig.2

Description of operations

1) LINEIN (5,8PIN) ~ HPOUT (13,24PIN) voltage gain

The voltage gain at EVRMAX is generally calculated by the following equation:

$$G_{HP} = 20 \times log \frac{40k}{R_5(or R_8)} (dB)$$

The above gain attenuates according to the DC voltage of the VOL pin (9PIN).

By connecting multiple resistances (R), mixing input can be handled.

2) BEEPIN (7PIN) ~ HPOUT (13,24PIN)

When a pulse waveform is input at the BEEPIN pin, a pulse wave is output at HPOUT (24,13PIN).

The output level, determined by the resistance of 7PIN, has default values as follows:

HP OUT level	Vcc=5V	Vcc=4V	Vcc=3.3V
1Vpp<	<56k	<91k	<120k
0.5Vpp	68k	110k	160k
0.25Vpp	75k	130k	200k

^{*(}Unit: Ω)

To obtain the default setting output (approx. 1.2 Vpp output), make R7=10 k Ω .

The variation in output levels is small.

Signals below a certain level are determined to be noise, by IC internals, and are not output at HPOUT.

3) SP IN (1,12PIN) ~ SP OUT (21, 20, 16,17PIN) voltage gain

The voltage gain in BASSBOOST is generally calculated by the following equation:

$$G_{SPB} = 20 \times log \ \frac{40k + R_{21-20}(or \ R_{16-15})}{R_{1}(or \ R_{12})} (dB)$$

The cut-off frequency in BASSBOOST is generally calculated by the following equation:

$$f_{CB} = \frac{1}{2 \pi C_{21} \sim 22 (or C_{16} \sim 15) \times R_{21} \sim 20 (or R_{16} \sim 15)}$$

The voltage gain in NONBOOST is generally calculated by the following equation:

$$G_{SP}=20 \times log \frac{40k}{R_1(or R_{12})} (dB$$

4) EVR control characteristic

HP AMP gain is controlled by the ratio of voltage to resistance between VCC and GND.

Note: A resistance (RN), shown above, is the resistance that is connected to pin N.

A capacitance (CN), shown above, is the capacitance that is connected to pin N.

The numeric values above are design reference values, whose values are not guaranteed.

Operation Notes

- 1. Numbers and data in entries are representative design values and are not guaranteed values of the items.
- Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient margins when determining circuit constants.

3. Absolute maximum ratings

Use of the IC in excess of absolute maximum ratings, such as the applied voltage or operating temperature range (Topr), may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. A physical safety measure, such as a fuse, should be implemented when using the IC at times where the absolute maximum ratings may be exceeded.

4. GND potential

Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not.

5. Thermal design

Perform thermal design, in which there are adequate margins, by taking into account the permissible dissipation (Pd) in actual states of use.

6. Short circuit between terminals and erroneous mounting

Pay attention to the assembly direction of the ICs. Wrong mounting direction or shorts between terminals, GND, or other components on the circuits, can damage the IC.

7. Operation in strong electromagnetic field

Using the ICs in a strong electromagnetic field can cause operation malfunction.

8. Pop noise when switching power ON/OFF

To prevent pop noise when switching VCC ON/OFF or switching SUSPEND ON/OFF, use SUSPEND (11PIN=L), HP MUTE (10PIN=L), and SUSPEND (2PIN=L) for noise control, as shown below.

(VCC	OFF-	ON)
------	------	-----

	VCC	SPND	HPMT	SPMT
1)	OFF	L	L	L
2)	ON	L	L	L
3)	ON	Н	L	L
4)	ON	Н	Н	L
5)	ON	Н	Н	Н

(VCC ON→OFF)

•		•		
	VCC	SPND	HPMT	SPMT
1)	OFF	Н	Н	Н
2)	ON	Н	Н	L
3)	ON	Н	L	L
4)	ON	L	L	L
5)	ON	L	L	L

9. Power supply bypass capacitor

Place the bypass capacitor close to the VCC ~ GND pins.

10. Mode switching

Do not apply a voltage that exceeds VCC or a voltage that is less than GND, at a control pin.

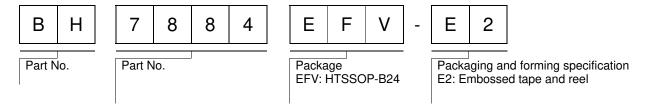
11. Power package

Ensure heat dissipation by connecting the heatsink to the back of the IC and to the GND board. Ensure that the GND area is large.

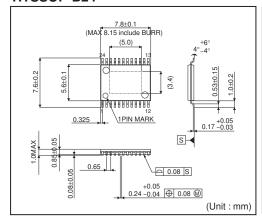
12. HPOUT

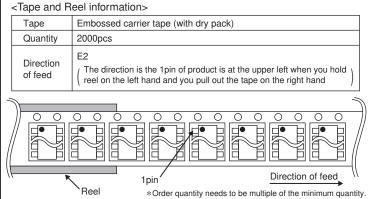
Connect resistance (100 Ω is recommended) to the output for SPAMP input level adjustment and to prevent HPAMP oscillation.

13. Capacitive load


Do not connect a capacitive load to SPAMP or HPAMP output as it may cause oscillation.

14. Startup time at low temperature and reduced power


Use the following methods to eliminate longer start up time at low temperatures (less than about - 10° C) and reduced power (less than about 3.0 V):


- Start in SPMUTE state and then cancel SPMUTE.
- 2) Add to transistor and resistance, as shown in the application circuit diagram.

Ordering part number

HTSSOP-B24

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/