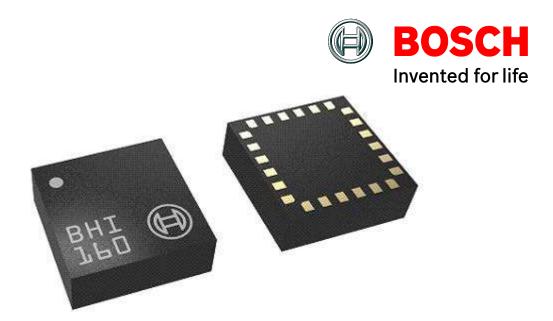
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Data Sheet

BHI160 / BHI160B Ultra low-power sensor hub incl. integrated IMU

Bosch Sensortec

Restricted Data Sheet

Document revision	1.2
Document release date	Mar 2017
Document number	BST-BHI160(B)-DS000-01
Technical reference code(s)	BHI160: 0 273 141 230 BHI160B: 0 273 141 309
Notes	Data in this document are subject to change without notice. Product photos and pictures are for illustration purposes only and may differ from the real product's appearance.

Features

- All-in-one smart-hub solution for always-on motion sensing at a fraction of current consumption which is commonly required using discrete components.
- 32-bit floating-point microcontroller (Fuser Core).
 Optimized for data fusion, motion sensing and activity recognition at ultralow power consumption. All in order to offload the power hungry data processing from the main application processor to the smart-hub.
- Powerful BSX sensor fusion library integrated in ROM for lowest design-in effort and fastest time-to-market.
- Additional software and algorithms for RAM processing, provided as ready to use FW patch files. Visit our web site to check available downloads.
- Onboard calculation power for data fusion, 3D- and absolute orientation, rotation vector, quaternions and Euler angles.
- Gesture recognition of significant motion, tilt, pickup, wake up and glance. Enabling customer specific gesture based HMI interfaces for smartphones and wearables.
- Activity recognition of standing, walking, running, biking and in vehicle. Enabling health & fitness applications or any other use case where highly accurate and reliable detection and/or monitoring of user activities is required.
- Step detection and step counting.
- Android 5 / L / Lollipop & Android 6 / M / Marshmallow (non-HiFi) support, incl. batching with dual FIFO buffer for wakeup and non-wakeup events. Implements the full Android sensor stack although an Android OS or any other Android environment is not required.
- High speed I2C interface, with data rates up to 3.4 MBit/s for power-efficient data transfer.
- Highly configurable internal RAM for either feature extension and/or FIFO data buffering.
- SW / FW based functionality. Can be updated, optimized, customized or upgraded with totally new features to support future requirements.
- Smart-hub plus microcontroller, MEMS sensors and software all highly integrated in one 3.0x3.0x0.95 mm3 LGA package with extension interface for additional sensors.

Implemented Sensor Types

With integrated IMU only:

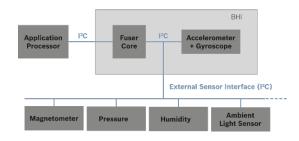
Accelerometer, Gravity, Linear acceleration, Gyroscope, Gyroscope uncalibrated, Game rotation vector, Step counter, Step detector, Significant motion, Tilt detector, Pickup gesture, Wake up gesture, Glance gesture, Activity recognition

With attached magnetometer:

Geomagnetic field, Magnetic field uncalibrated, Orientation, Rotation vector, Geomagnetic rotation vector

General Description

The BHI160(B) is a small, low-power smart-hub with an integrated three axis gyroscope plus an integrated three axis accelerometer plus a programmable microcontroller. Containing preinstalled software and specific algorithms for activity recognition it is specifically designed to enable always-on motion sensing. It perfectly matches the requirements of smartphones, wearables or any other application which demands highly accurate, real-time motion data at very low power consumption.


The device integrates our best-in-class 6-axis IMU (BMI160) with an MCU – the new Bosch Sensortec Fuser core. It is bringing you the full Android sensor stack inside your devices – even without having an Android OS or an Android environment. Combining this with the built in computing power and the highly configurable on-board memory the BHI smart-hub offers you a low power solution for motion sensing and data processing.

Target applications

- Activity recognition of standing, walking, running, biking or in vehicle
- Step-counting, indoor navigation, PDR
- HMI interfaces incl. gesture detection of motion, tilt, pickup, wake up, glance or other gestures for wearables
- Augmented reality, immersive gaming
- Tilt compensated eCompass
- Full 9DoF data fusion for highly accurate 3D orientation, quaternions, Euler angles, etc.

Target devices

- Mobile phones and tablets
- Wearables such as smart watches, wristor neck-bands
- Smart-sports and smart-fitness devices
- Hearables, smart earphones and other head worn devices
- Smart-TV- or AR/VR controllers
- Smart-pens

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

Table of Contents

1. SPECIFICATION	7
1.1 ELECTRICAL SPECIFICATION	7
1.2 Electrical and physical characteristics, measurement performance	CE7
1.3 Absolute maximum ratings	11
2. PIN CONNECTIONS AND DESCRIPTION	12
2.1 CONNECTION DIAGRAM	13
3. OVERVIEW	14
4. PHYSICAL INTERFACES	16
4.1 HOST INTERFACE	16
4.2 SENSOR INTERFACE	17
5. DATA INTERFACE	
5.1 GENERAL OVERVIEW	
5.2 Register Map	19
6. DEVICE INITIALIZATION AND STARTUP	21
6.1 RESET	21
6.2 Boot Mode	21
6.3 MAIN EXECUTION MODE	21
7. DEVICE CONFIGURATION	23
8. FIFOS AND EVENTS	24
9. FUNCTIONAL DESCRIPTION	25
9.1 DATAFLOW OF SENSOR FUSION	25
9.2 SUPPORTED DATA RATES OF BSX SENSOR FUSION ENGINE	25
9.3 GESTURE RECOGNITION	26
9.4 Power Modes and Current Consumption	26
9.5 VIRTUAL SENSORS	27
9.6 Virtual Sensor Data Types	29
9.7 Sensor Configuration	
9.8 Sensor Status Information	
9.9 FIFOs	32
9.10 Non-Batch Mode	

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

Bosch Sensortec

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

10. REGISTER MAP DESCRIPTION	34
10.1 Buffer_Out[0:49]	34
10.2 FIFO_FLUSH	34
10.3 CHIP_CONTROL	35
10.4 Host_Status	35
10.5 INT_STATUS	36
10.6 CHIP_STATUS	36
10.7 BYTES_REMAINING[0:1]	37
10.8 PARAMETER_ACKNOWLEDGE	37
10.9 PARAMETER_READ_BUFFER[0:15]	38
10.10 GP[20:24]	38
10.11 PARAMETER_PAGE_SELECT	38
10.12 Host_Interface_Control	40
10.13 GP[31:36]	42
10.14 PARAMETER_WRITE_BUFFER[0:7]	42
10.15 PARAMETER_REQUEST	42
10.16 GP[46:52]	43
10.17 ROM_VERSION[0:1]	43
10.18 RAM_VERSION[0:1]	43
10.19 Product_ID	44
10.20 REVISION_ID	44
10.21 UPLOAD_ADDRESS[0:1]	45
10.22 UPLOAD_DATA	45
10.23 UPLOAD_CRC[0:3]	45
10.24 RESET_REQUEST	46
11. PARAMETER I/O DESCRIPTION	47
11.1 PARAMETER PAGE 1: SYSTEM	
11.2 Parameter Page 3: Sensors	
11.3 Sensor Information Structure	
11.4 SENSOR CONFIGURATION STRUCTURE	
11.5 PARAMETER PAGE 15: SOFT PASS-THROUGH	
12. SENSOR DATA TYPES AND OUTPUT FORMAT 12.1 QUATERNION+	
12.2 VECTOR+	
12.3 VECTOR_UNCALIBRATED	62

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

Bosch Sensortec

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

12.4 Scalar Data	62
12.5 Sensor Event Data (Parameterless Sensors)	63
12.6 ACTIVITY RECOGNITION DATA (SENSOR_ACTIVITY_REC_DATA)	63
12.7 DEBUG	63
12.8 Sensor Data scaling	64
12.9 META EVENTS	65
12.9.1 Self-Test Results	
12.9.2 INITIALIZED	
13. READING FIFO DATA	68
13.1 Host Interrupt Behavior	
13.2 PAUSE AND RESUME MECHANISM	69
13.3 FIFO OVERFLOW HANDLING	70
13.4 Host Suspend Procedure	70
13.5 Host Wakeup Procedure	70
13.6 Non-Compliant Hosts	70
13.7 RECOVERY FROM LOSS OF SYNC	71
13.8 Padding Data	71
13.9 Aborting a Transfer	71
13.10 FIFO PARSING EXAMPLES	71
13.10.1 Accelerometer & Step Counter	
14. PACKAGE	74
14.1 Outline Dimensions	74
14.2 Sensing Axes Orientation and Axis Remapping	74
14.3 LANDING PATTERN RECOMMENDATION	76
14.4 Marking	77
14.4.1 Mass production	
14.5 Soldering guidelines	
14.6 HANDLING INSTRUCTIONS	
14.7 TAPE AND REEL SPECIFICATION	79
14.7.1 ORIENTATION WITHIN THE REEL	
14.8 Environmental Safety	80
14.9 HALOGEN CONTENT	80
14.10 MULTIPLE SOURCING	80
15. LEGAL DISCLAIMER	
15.1 Engineering samples	

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

BOSCH	BHI160(B) Data sheet	Page 6
15.2 PRODUCT	USE	81
15.3 APPLICATIO	ON EXAMPLES AND HINTS	81

16. DOCUMENT HISTORY AND MODIFICATIONS	82

Bosch Sensortec

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

1. Specification

1.1 Electrical specification

Table 1: Operating Conditions

		OPERATING CONDITI	ONS BHI			
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Supply Voltage Internal Domains	V _{DD}		1.71	3.0	3.6	V
Supply Voltage I/O Domain	V _{DDIO}		1.6	2.4	3.3	V
Voltage Input Low Level	V _{IL,a}		0		0.3VDDIO	V
Voltage Input High Level	V _{IH,a}		0.7VDDIO		V _{DDIO}	V
Voltage Output Low Level	V _{OL,a}	I _{OL} =1mA			0.3V	V
Voltage Output High Level	V _{OH,a}	I _{OH} =-1mA,	V _{DDIO} -0.3V			V
Operating Temperature	TA		-40		+85	°C

1.2 Electrical and physical characteristics, measurement performance

All parameters defined for operating conditions (unless otherwise specified).

	OPERATING CONDITIONS FUSER CORE						
Parameter	Symbol	Condition	Min	Тур	Max	Units	
REGULATOR OUTPUT VOLTAGE	V_{reg}		1.0	1.1	1.2	V	
Power on Reset Threshold	V_{POR}	VREG>VPOR		VREG- 125мV		V	
CURRENT CONSUMPTION, RUN1	I _{RUN}	0°C to +40°C, (1)		800		υA	
CURRENT CONSUMPTION, NORMAL OPERATION2	I _{oper}	0°С то +40°С, (2)		300		υA	
CURRENT CONSUMPTION, SLEEP3	I _{sleep}	0°С то +40°С, (3)		40		υA	
CURRENT CONSUMPTION, DEEP SLEEP4	Idsleep	0°С то +40°С, (4)		7		υA	
CURRENT CONSUMPTION, IDLE5	I _{IDLE}	0°С то +40°С, (5)		6		υA	

Table 2: Electrical characteristics Fuser Core

Notes:

(1) Current consumption when CPU is running and executing from ROM.

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

- (2) Current consumption in normal operation is average consumption for 9DoF Sensor Fusion with ODR of 100 Hz
- (3) Sleep mode is entered when CPU and I2C are idle and timer and system clock are enabled
- (4) In Deep Sleep mode, only timer is enabled while system clock is disabled
- (5) In Idle mode, no operations are performed, all oscillators are disabled

OPERATING CONDITIONS ACCELEROMETER							
Parameter	Symbol	Condition	Min	Тур	Max	Units	
Acceleration Range	g FS2g	Selectable		±2		g	
	g FS4g	via serial digital interface		±4		g	
	g FS8g			±8		g	
	g FS16g			±16		g	
Start-up time	t _{A,su}	Suspend/low power mode to normal mode		3.2		ms	

Table 3: Electrical characteristics accelerometer

OUTPUT SIGNAL ACCELEROMETER							
Parameter	Symbol	Condition	Min	Тур	Max	Units	
Resolution				16		bit	
Sensitivity	S _{2g}	g _{FS2g} , T _A =25°C		16384		LSB/g	
	S _{4g}	g _{FS4g} , T _A =25°C		8192		LSB/g	
	S _{8g}	g _{FS8g} , T _A =25°C		4096		LSB/g	
	S _{16g}	g _{FS16g} , T _A =25°C		2048		LSB/g	
Sensitivity Temperature Drift	TCS₄	g _{FS2g} , Nominal V _{DD} supplies best fit straight line		±0.03		%/K	
Sensitivity change over supply voltage	Sa,vdd	T _A =25°C, V _{DD,min} ≤ V _{DD} ≤ V _{DD,max} best fit straight line		0.01		%/V	
Zero-g Offset	$Off_{A, init}$	g_{FS2g} , T_A =25°C, nominal V_{DD} supplies, component level		±40		mg	
	$Off_{A,board}$	g _{FS2g} , T _A =25°C, nominal V _{DD} supplies, soldered, board level		±60		mg	
	Off _{A,MSL}	g _{FS2g} , T _A =25°C, nominal V _{DD} supplies, after MSL1-prec. ¹ / soldered		±70		mg	

¹ Values taken from qualification, according to JEDEC J-STD-020D.1

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

	$Off_{A,life}$	$\begin{array}{c} g_{FS2g}, T_A {=} 25^{\circ} C, \text{ nominal} \\ V_{\text{DD}} \text{ supplies, soldered,} \\ \text{ over life time}^2 \end{array}$		±150		mg
Zero-g Offset Temperature Drift	TCO₄	g _{FS2g} , Nominal V _{DD} supplies best fit straight line		±1.0		mg/K
Nonlinearity	NLA	Best fit straight line, g _{FS2g}		±0.5		%FS
Output Noise	NA,nd	g_{FS2g} , T_A =25°C, nominal V_{DD} , Normal mode		180		µg/√Hz
	n _{A,rms}	Filter setting 80 Hz, ODR 200 Hz		1.8		mg-rms
Cross Axis Sensitivity	Sa	Relative contribution between any two of the three axes		1		%
Alignment Error	ΕA	Relative to package outline		±0.5		o
Output Data rate (set of x,y,z rate)	ODRA		12.5		1600	Hz
Output Data rate accuracy (set of x,y,z rate)	AODRA	Normal mode, over whole operating temperature range		±1		%

Table 4: Electrical characteristics gyroscope

OPERATING CONDITIONS GYROSCOPE								
Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Range	R_{FS125}	Selectable		125		°/s		
	RFS250	via serial digital interface		250		°/s		
	R _{FS500}	500		500		°/s		
	R _{FS1000}			1,000		°/s		
	RFS2000			2,000		°/s		
Start-up time	t _{G,su}	Suspend to normal mode ODR _G =1600Hz		55		ms		
	t _{G,FS}	Fast start-up to normal mode		10		ms		

		OUTPUT SIGNAL GYROS	SCOPE	
Sensitivity	R _{FS2000}	Ta=25°C	16.4	LSB/°/s
	R _{FS1000}	Ta=25°C	32.8	LSB/°/s
	R _{FS500}	Ta=25°C	65.6	LSB/°/s

$^{\rm 2}$ Values taken from qualification, according to JEDEC J-STD-020D.1

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

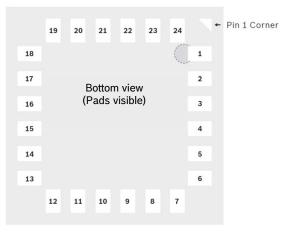
	R _{FS250}	Ta=25°C		131.2		LSB/°/s
	R _{FS125}	Ta=25°C		262.4		LSB/°/s
Sensitivity change over temperature	TCS _G	R _{FS2000} , Nominal V _{DD} supplies best fit straight line		±0.02		%/K
Sensitivity change over supply voltage	S _{G,} vdd	$\label{eq:T_A} \begin{split} & T_A \texttt{=} \texttt{25^{\circ}C}, \\ & V_DD,min \leq V_DD \leq V_DD,max \\ & \text{best fit straight line} \end{split}$		0.01		%/V
Nonlinearity	NLg	Best fit straight line RFS1000, RFS2000		0.1		%FS
g- Sensitivity		Sensitivity to acceleration stimuli in all three axis (frequency <20kHz)				°/s/g
Zero-rate offset	$\begin{array}{c} \text{Off } \Omega_{x} \\ \Omega_{y \text{ and }} \Omega_{z} \end{array}$	T _A =25°C, fast offset compensation off		±3		°/s
Zero-Rate offset Over temperature	$\begin{array}{c} \text{Off } \Omega_{\text{x, oT}} \\ \Omega_{\text{y, oT and}} \\ \Omega_{\text{z,oT}} \end{array}$	-40°C ≤ T _A ≤+85°C		±3		°/s
Zero-rate offset change over temperature	TCOG	$-40^{\circ}C \le T_A \le +85^{\circ}C$, best fit straight line		0.05		°/s/K
Output Noise	N G,nD	@10 Hz		0.007		°/s/√Hz
	N G,rms	Filter setting 74.6Hz, ODR 200 Hz		0.07		°/s rms
Bias stability	BS _G			3		°/h
Output Data Rate (set of x,y,z rate)	ODR _G		25		3200	Hz
Output Data rate accuracy (set of x,y,z rate)	AODR _G	Over whole operating temperature range		±1		%
Cross Axis Sensitivity	X _{G,S}	Sensitivity to stimuli in non-sense- direction			2	%

Table 5: Electrical characteristics temperature sensor

Оре	OPERATING CONDITIONS AND OUTPUT SIGNAL OF TEMPERATURE SENSOR							
Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Temperature Sensor Measurement Range	Ts		-40		85	°C		
Temperature Sensor Slope	dTs			0.002		K/LSB		
Temperature Sensor Offset	OTs			±2	±5	К		
Output Data Rate	ODR⊤	Accelerometer on or Gyro in fast start-up		0.8		Hz		
Gyro active 100 Hz						Hz		
Resolution	nτ	Accelerometer on or Gyro in fast start-up		8		Bit		
		Gyro active		16		Bit		

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

1.3 Absolute maximum ratings


Table 6: Absolute maximum ratings						
PARAMETER	Condition	Min	Max	Units		
Voltage at Supply Pin	V _{DD} Pin	-0.3	4.25	V		
	V _{DDIO} Pin	-0.3	3.6	V		
Voltage at any Logic Pin	Non-Supply Pin	-0.3	V _{DDIO} +0.3	V		
Passive Storage Temp. Range	≤65% rel. H.	-50	+150	°C		
None-volatile memory (NVM) Data Retention	T = 85°C, after 15 cycles	10		У		
Mechanical Shock	Duration 200 µs, half sine		10,000	g		
	Duration 1.0 ms, half sine		2,000	g		
	Free fall onto hard surfaces		1.8	m		
ESD	HBM,					
	VDD to VDDIO,		1	kV		
	any other combination		2			
	CDM		500	V		
	MM		100	V		

NOTE: Stress above these limits may cause damage to the device. Exceeding the specified electrical limits may affect the device reliability or cause malfunction.

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

2. Pin Connections and description

Figure 1: Pin Connections

Table 7: Pin description

Pin	Name	Description
1	NC	Not connected
2	DNC	Do not connect (reserved)
3	GPIO1	Application specific I/O pin
4	RESV2	Do not connect (reserved)
5	RESV3	Do not connect (reserved)
6	NC	Not connected
7	ASCK	I2C Master serial clock, for connection of external sensors
8	VDDIO	Digital I/O power supply voltage (1.6 V 3.3 V)
9	SA_GPIO7	Select I ² C address & Application specific I/O pin refer to section 4.1 page 16
10	VREG	Regulator filter capacitor connection
11	GPIO2	Application specific I/O pin
12	INT	Host interrupt
13	VDD	Analog power supply voltage (1.71 V3.6 V)
14	NC	Not connected
15	NC	Not connected
16	NC	Not connected
17	NC	Not connected
18	GND	Analog power supply ground
19	NC	Not connected
20	GNDIO	Digital I/O power supply ground
21	ASDA	I2C Master serial data, for connection of external sensors
22	RESV4	Do not connect (reserved)
23	SCK	I ² C serial clock (Host interface)
24	SDA	I ² C serial data (Host interface)

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

Bosch Sensortec

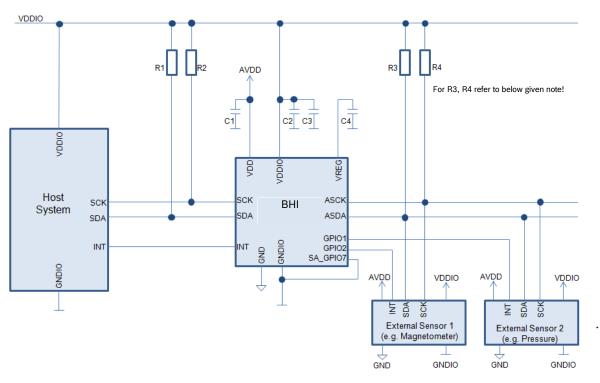

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

Figure 2: Reference Diagram

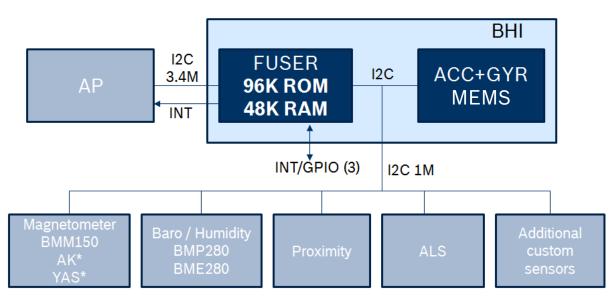
Bosch Sensortec

2.1 Connection Diagram

Table 8: Typical values for external circuit components					
Component	Value	Remarks			
R1	4.7 k Ω	Pull-up resistor for SDA, Host Interface			
R2	4.7 k Ω	Pull-up resistor for SCK, Host Interface			
R3	4.7 k Ω	Pull-up resistor for ASDA, Aux Interface			
R4	4.7 k Ω	Pull-up resistor for ASCK, Aux Interface			
C1	100 nF	Filter capacitor AVDD			
C2	1 µF	Filter capacitor VDDIO			
C3	100 nF	Filter capacitor VDDIO			
C4	470 nF	Filter capacitor VREG			

NOTE: R3 and R4 are mandatory, even if no external sensor is attached.

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017



3. Overview

The BHI Sensor hub is a small multichip system in a LGA package consisting of

- a 32-bit floating-point microcontroller (Fuser Core) optimized for sensor fusion and activity recognition
- 96 KByte of ROM including the BSX sensor fusion library
- 48 KByte of RAM for
 - feature extension
 - (e.g. for additional drivers of externally attached sensors)
 - local data buffering
 - (implementing a wake-up and a non-wake-up FIFO as defined in Android) feature updates
 - (allowing the updates of features implemented in RAM or ROM to meet future requirement)
- a high speed I²C host interface, with data rates up to 3.4 MBit/s and a host interrupt line
- a fast I²C sensor interface, with data rates up to 1 MBit/s for connection of external sensors
- up to 3 additional GPIO pins

With these integrated hardware and software features, the low power consumption and the sensor extension interface, the BHI provides an ideal all-in-one solution for always-on sensor applications.

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

Without any additionally attached sensors the BHI provides a six degrees of freedom (6-DoF) inertial motion unit (IMU) measurement system out of the box, implementing the following Android³ sensor types:

- Accelerometer
- Gravity
- Linear acceleration
- Gyroscope
- Gyroscope uncalibrated
- Game rotation vector
- Step counter
- Step detector
- Significant motion
- Tilt detector
- Pickup gesture
- Wake up gesture
- Glance gesture
- Activity recognition⁴

By attaching an external magnetometer to the sensor interface (and configuring the RAM firmware patch to include the sensor driver for the magnetometer) the BHI provides additionally the following sensor types:

- Geomagnetic field
- Magnetic field uncalibrated
- Orientation
- Rotation vector
- Geomagnetic rotation vector

offering a full 9-DoF solution to the user.

With further attachment of additional sensors to the sensor interface, as e.g.

- Barometic pressure
- Humidity
- Ambient temperature
- Proximity
- Ambient Light

the BHI can provide the full Android sensor stack to the application.

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

³ See http://source.android.com/devices/sensors/sensor-types.html for details on defined Android Sensor Types.

⁴ Activity recognition is also implemented as a Sensor Type in BHI, despite not being defined in Android's "sensors.h", but in "activity_recognition.h".

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

4. Physical Interfaces

4.1 Host interface

According to the interface concept introduced from Android 5 onwards, the BHI provides a high speed I²C interface and a single interrupt line as main interface to the application processor. The available GPIO pins can be used to implement additional interrupt lines, in case this is necessary

for specific applications.

The host interface is implemented as an I²C slave interface, as described in the I²C bus specification created from NXP⁵ and implements data transfer rates up to 3.4 Mbit/s in the high-speed mode. The I²C bus consists of 2 wires, SCK (Serial Clock) and SDA (Serial Data). Both bus lines are bidirectional. The BHI can be connected to this bus via SDA and SCL pads with open drain drivers within the device. The bus lines must be externally connected to a positive supply voltage (VDDIO) via a pull-up resistor or current-source.

A data transfer via the l^2C slave interface is always initiated by the host. The l^2C slave interface can operate as either a transmitter or receiver only, if a valid device address has been received from the host.

The BHI responds to device addresses, depending on the logic level applied on the SA_GPIO7. To select the corresponding I2C address keep the desired level for min 10 ns after reset release as described in Table 9. By default there are 2 application specific I/O pins GPIO1 and GPIO2 available and recommended. Special cases might require additional I/O pins. Therefore SA_GPIO was designed to be operated as a third application specific I/O pin, once the I2C address was successfully selected. For details and technical support please refer to corresponding application notes or contact our regional offices, distributors and sales representatives.

Table 9:	I2C add	dress selection

SA_GPI07	I2C address
HIGH	0x29
LOW	0x28

The address and data are transferred between master and slave serially through the data line (SDA) in an 8-bit oriented transfer format. The transfer is synchronized by the serial clock line (SCK). The supported transfer formats are single byte read, multiple byte read, single byte write, multiple byte write. The data line (SDA) can be driven either by the host or the BHI. The serial clock line (SCK) is driven by the host only.

Figure 3 illustrates an example of how to write data to registers in single-byte or multiple-byte mode.

Figure 4: I²C write example

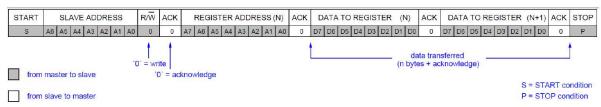


Figure 4 illustrates an example of how to read data to registers in single-byte or multiple-byte mode.

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

⁵ See <u>http://www.nxp.com/documents/user_manual/UM10204.pdf</u> for details

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

BOSCH		BHI160(B) Data sheet			
		Figure 5: I ² C read example	11' = not	t acknowledge	
START SLAVE ADDRESS		ADDRESS (N) ACK START SLAVE ADDRES			
S A6 A5 A4 A3 A2 A	A0 0 0 A7 A6 A5 A4 '0' = write ''' '''' ''''' ''''''''''''''''''''''''''''''''''''	A3 A2 A1 A0 0 SR A6 A5 A4 A3 A2		D4 D3 D2 D1 D0 1 P data transferred tes + acknowledge)	

4.2 Sensor interface

The BHI implements a fast-mode plus I²C master interface for connections of external sensors. This sensor interface is directly connected to the internal BMI160 IMU sensor and also available on the auxiliary serial clock (ASCK) and auxiliary serial data (ASDA) pins of the BHI.

The bus lines must be externally connected to a positive supply voltage (VDDIO) via a pull-up resistor or current-source, even if no additional external sensor is attached to the device, in order to enable the proper I²C communication between the Fuser core and the integrated BMI160 IMU sensor.

A common use-case of the sensor interface is the connection of an external magnetometer. The following external magnetometers are currently supported:

Vendor	Device
Bosch Sensortec	BMM150
AKM	AK09911/12
Yamaha	YAS532/537

Table 10: Supported Magnetometers

Alternative magnetometers can be supported on customer request.

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

5. Data interface

5.1 General overview

Figure 5 provides a general overview of the BHI data interface. The software running on the Fuser core obtains the raw sensor from the I²C sensor interface, performs the necessary computations and provides the results into a register map, which forms the main I/O interface to the host from a programmer's point of view.

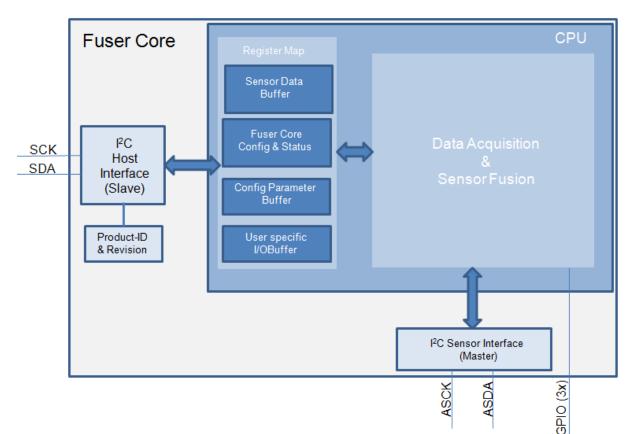


Figure 6: Data interface

The register map consists of 4 main sections:

- Sensor Data Buffer
- Fuser Core Config & Status Buffer
- Configuration Parameter I/O
- User specific I/O Buffer

The **Sensor Data Buffer** consists of 50 register (I²C addresses 0x00:0x31) providing an interface to the Fuser Core's internal Event FiFOs which contain the sensor event data.

Per default the data of both FIFOs (the wake-up and the non-wake-up FIFO) will be mapped to the Sensor Data Buffer, so that the host can read all available data in a burst and identify and separate the data afterwards.

The FIFO_FLUSH register of the Fuser Core Config & Status Buffer can be used to adjust the behavior of the sensor data buffer in a more specific way.

The **Fuser Core & Status Buffer** consist of a register set, which allows the host to control the fundamental behavior of the fuser core as well as getting information on the current status.

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

The Configuration Parameter I/O interface provides a window in the various configuration options of the sensor system. It consists of the 16 Byte deep Par_Read_Buffer (I²C addresses 0x3B:0x4A) and the 8 Byte deep Par_Write_Buffer (I²C addresses 0x5C:0x63) and some additional registers for selecting and mapping the desired parameters into these 2 buffers.

The **User Specific I/O Buffer** is reserved for application specific purposes and can be used to serve the needs of individual applications. It consist of 3 different I²C address areas (0x4B:0x4F, 0x56:0x5B and 0x65:0x6B) where the first one is read-only, while the others are read-write for the host.

5.2 Register Map

Table 11: Register Map					
I2C Adress	Register Name	Access mode	Map section		
0x00 - 0x31	Buffer Out[00:49]	Read only	Sensor Data Buffer		
0x32	FIFO Flush	Read write	Fuser Core Config & Status		
0x33	Reserved				
0x34	Chip Control	Read write	Fuser Core		
0x35	Host Status	Read only	Config & Status		
0x36	Int Status	Read only	0		
0x37	Chip Status	Read only			
0x38	Bytes Remaining LSB	Read only	Sensor Data Buffer		
0x39	Bytes Remaining MSB	Read only			
0x3A	Parameter Acknowledge	Read only	Config Parameter I/O Interface		
0x3B – 0x4A	Parameter Read Buffer[0:15]	Read only	Config Parameter I/O Interface		
0x4B – 0x4F	GP20 – GP24	Read only	User specific I/O		
0x50 – 0x53	Reserved				
0x54	Parameter Page Select	Read write	Config Parameter I/O Interface		
0x55	Host Interface Control	Read write	Fuser Core Config & Status		
0x56 – 0x5B	GP31 – GP36	Read write	User specific I/O		
0x5C – 0x63	Parameter Write Buffer[0:7]	Read write	Config Parameter I/O Interface		
0x64	Parameter Request	Read write	Config Parameter I/O Interface		
0x65 – 0x6B	GP46 – GP52	Read write	User specific I/O		
0x6C – 0x6F	Host IRQ Timestamp	Read only	Fuser Core Config & Status		
0x70 - 0x71 0x72 - 0x73	ROM Version RAM Version	Read only	Fuser Core Config & Status		
0x74 – 0x8F	Reserved				

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

0x90	Product ID	Read only	Chip specific IDs
0x91	Revision ID	Read only	
0x92 – 0x93	Reserved		
0x94 – 0x95	Upload Address	Read write	Fuser Core
0x96	Upload Data	Read write	Config & Status
0x97 – 0x9A	Upload CRC	Read only	(Firmware upload interface)
0x9B	Reset Request	Read write	Fuser Core Config & Status

Bosch Sensortec

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

6. Device Initialization and Startup

The procedure in order to initialization and startup the BHI until it reaches its normal operation mode consist mainly of the following steps:

- 1. Power on or reset the device
- 2. Wait for Interrupt
- 3. Upload the Firmware (RAM patch)
- 4. Switch into main execution mode
- 5. Wait for Interrupt
- Configure the sensors and meta events
 Configure the FIFO buffers
- 8. Configure the host interrupt setting

Once this procedure is successfully finished, the host can go into sleep mode and wait for the BHI's interrupt, according to the defined conditions (see step 6).

If the host receives an interrupt request from the BHI, it can simply read out the FIFO buffer and parse the obtained data. (See section 13 for details on how to read the FIFO buffer)

6.1 Reset

The BHI does not provide a specific hardware pin for a reset. A reset can be triggered due to

- Power On Reset
- Watchdog Reset •
- Host initiated Reset Request •

In order to trigger a reset request, the host has to write a 1 into the Reset Request register (Address 0x9B in the register map). This bit automatically clears to 0 after reset.

6.2 Boot Mode

The ROM is split into two parts, a small boot loader and the larger set of libraries and drivers which can be used by a RAM-based firmware or "patch."

It is this latter part of the ROM which provides most of the functionality required for sensor fusion, host interface interactions, data batching, and so on. However, without a RAM patch, none of these more advanced behaviors can occur. This is where boot loading comes in.

When the BHI first comes out of reset it executes the ROM boot loader. The boot loader performs the default initialization of the BHI, apply factory trim values, initialization of the host interrupt line, etc, generates an interrupt request to the host and goes into halt mode.

In halt mode, the host may directly load a RAM patch using the firmware update interface registers (Address 0x94-0x9A in the register map) in the Fuser Core Config & Status block.

After the firmware upload procedure is finished successfully, the host can switch the BHI into the main execution mode by writing a 1 to bit 0 (CPU Run Request) of the Chip Control register (Address 0x34). A successful execution of the CPU Run Request can be detected by checking the RAM Version registers (Address 0x72-0x73). Before execution of the RAM patch, the RAM Version registers will contain 0.

6.3 Main Execution Mode

Once in this mode, the full Android host interface and sensor suite is available. The BHI indicates its readiness by inserting an initialized meta event in the FIFO. The host should wait for this before attempting to query or configure sensors or other features.

If an incorrect RAM patch has been loaded (for example, is built for a different sensor suite), the FIFO will instead contain one or more Sensor Error or Error meta events.

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

In the nominal case, however, the host is now free to query which sensors are present by reading the Sensor Status bits, learn the details of each sensor by querying the Sensor Information parameters, load any Warm Start values using the Algorithm Warm Start parameters, and/or configure sensors to start generating output using the Sensor Configuration parameters.

The host may also wish to configure which meta events will appear in the FIFOs, such as FIFO Overflow, Watermark, or many others. It can specify whether certain meta events can cause an immediate host interrupt, or are batched until later.

Finally, the host may wish to configure the optional Watermark values using the FIFO Control parameter. This allows the host to be informed that either one or both of the FIFOs have reached a level at which the host shall read its contents to avoid data is loss. This is especially useful when the Application Processor is asleep.

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

7. Device Configuration

A set of registers (the Fuser Core Config & Status block) can be used to configure the fundamental behavior of the CPU core and the host interface (see section 10 for a detailed description of the specific registers). Besides this basic configuration, the full flexibility of the BHI is offered through the Configuration Parameter I/O interface.

The Configuration Parameter I/O interface, is provided through registers of the BHI and consists of

- Parameter_Read_Buffer[0:15] (0x3B 0x4A) in order to read a specific parameter set out the BHI's config parameter area
- Parameter_Write_Buffer[0:7] (0x5C 0x63) in order to write a specific parameter set into the BHI's config parameter area
- Parameter_Page_Select (0x54), Parameter_Request (0x64), Parameter_Acknowledge (0x3A) for the required handshaking.

In general, the Configuration Parameter I/O interface basically copies a specific parameter set either from the parameter area into the read buffer (read access) or from the write buffer into the specified parameter area (write access).

The procedure for a **read** access works a follow:

In order to get the a copy of the desired parameter inside the read buffer, the host requests a parameter set by writing the requested page into the Parameter_Page_Select register and the desired parameter set into the Parameter_Request register.

Afterwards the host waits for an acknowledgement, by polling the Parameter_Acknowledge register until it matches the desired parameter number (or indicates an error). The acknowledgment indicates that the Parameter_Read_Buffer has been updated with the values of the requested parameter. The host can read more parameters within the same page by writing a new Parameter Request register value, polling for a match in the Parameter Acknowledge register, then reading the new parameter's value from the Parameter Read Buffer area.

The host ends the parameter transfer procedure by writing the Parameter Page Select register with 0.

The procedure for a **write** access works a follow:

The host writes the new data for a specific parameter set into the Parameter_Write_Buffer. In order to address the specific dataset it writes the desired parameter page into the Parameter_Page_Select register and the specific parameter set into the Parameter_Request register.

Afterwards the host waits for an acknowledgement, by polling the Parameter_Acknowledge register until it matches the desired parameter number (or indicates an error). The acknowledgment indicates that the Parameter_Write_Buffer has been copied inside the addressed parameter set.

The host may write another parameter in the same page by repeating the procedure.

The host ends the parameter transfer by writing a 0 into the Parameter_Request register.

A detailed description of the various parameters and their organization into several parameter pages is given in section 11 Parameter I/O Description.

8. FIFOs and Events

Understanding the concept of FIFOs and Events is fundamental for proper operation of the BHI. Both elements are implemented into the device in order to meet the requirements of Android.

Every piece of information the BHI delivers to the host is treated as an Event and placed into a FIFO.

FIFOs

BHI provides two FIFOs: a wakeup and a non-wakeup FIFO.

The **non-wakeup FIFO** will never trigger an interrupt request to the host when the host is in sleep mode (in default configuration).

(The host should inform the BHI about using the AP_SUSPENDED bit (bit 5) in the Host_Interface_Control register (0x55))

If the non-wakeup FIFO is full, while the host is in sleep mode, the non-wakeup FIFO is allowed to overflow, discarding the oldest data to make room for new data as they arrive.

The **wakeup FIFO** may trigger an interrupt request, depending on the current configuration, for different reasons, even if the host is in sleep mode. One obvious reason is to avoid, that the wakeup FIFO overflows (configured by the wakeup FIFO watermark level setting) or the events in the FIFO become too old (configured by the max report latency setting).

There are more reasons, see section 11 and 13 for further details.

Events

In order to implement a generalized and efficient handling mechanism for sensor data the concept of sensor events is used within the BHI.

A sensor event consists of the sensor ID of the virtual sensor generating the event and, the data according to the data type of the specific sensor. It is placed into a FIFO, when it occurs. Events can be generated continuously, e.g. if a virtual sensor is setup to produce data samples on a configured data rate, or as single events, e.g. when a step or significant motion is detected.

To make use of the event concept in a generalized way, the virtual sensor IDs – which are originating from (and thus are identical to) the virtual sensor definitions in the Android CDD – are extended by additional IDs not necessary related to virtual sensors.

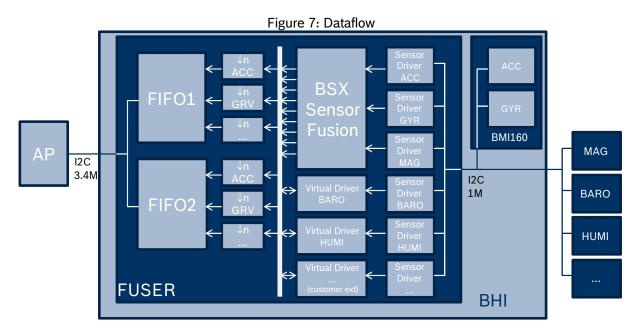
In a first step, each virtual sensor gets a second sensor ID in order to distinguish wakeup from nonwakeup events.

In a second step, additional event IDs are introduced in order to handle non sensor related information, like timestamps and meta events.

A detailed description of all available event IDs is provided in the following sections.

Using this event concept, the BHI's output data will be sent in a continuous stream, with each event (e.g. a sensor sample) uniquely identified. Because many sensors produce output at the same time, the timestamp event is only introduced once into the FIFOs at the start of a series of sensor samples that occurred at the same time. This saves space in the buffer.

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017


[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.

9. Functional description

9.1 Dataflow of Sensor Fusion

The integrated Fuser Core receives *raw sensor data* from the connected sensors and provides *calibrated (virtual) sensor data* to the application processor. The raw sensor data flows from the sensor with a maximum ODR 200 Hz to the fuser core. The BSX library runs sensor fusion (when required) using this high speed data, to avoid loss in signal quality. The results are subsampled to the ODR required by the host processor.

9.2 Supported data rates of BSX Sensor Fusion Engine

The following output data rates configuration can be selected by the host processor, these are support in both sensor only and data fusion operating modes:

	BSX output data rate
	200Hz
-	100Hz
	50Hz
	25Hz
	12.5Hz

Table 12: Supported BSX output data rates
BSX output data rate

The actual output data rate requested by Android will be provided according to the Android requirements and derived from the above mentioned internal data rates. I.e., the actual output data rate will be in the range of 90%...210% of the requested data rate. Output samples are generated by subsampling from a suitable data rate from Table 10.

If multiple virtual sensors with different output data rates are requested by Android, the internal data rate will be selected such that all output data rates can be generated according to the Android requirements.

BST-BHI160(B)-DS000-01 | Revision 1.2 | Mar 2017

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are preliminary and subject to change without notice.