

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BLM7G22S-60PB; BLM7G22S-60PBG LDMOS 2-stage power MMIC Rev. 5 — 1 September 2015

AMMPLEON

Product data sheet

Product profile

1.1 General description

The BLM7G22S-60PB(G) is a dual path, 2-stage power MMIC using Ampleon's state of the art GEN7 LDMOS technology. This device is perfectly suited as general purpose driver in the frequency range from 2100 MHz to 2400 MHz. Available in gull wing or flat lead outline.

Table 1. **Application performance**

Typical RF performance at $T_{case} = 25$ °C; $I_{Dq1} = 75$ mA; $I_{Dq2} = 233$ mA. Test signal: 3GPP test model 1; 64 DPCH; clipping at 46 %; PAR = 8.4 dB at 0.01% probability on CCDF per carrier; carrier spacing = 5 MHz; per section unless otherwise specified in a class-AB production circuit.

Test signal	f	V _{DS}	P _{L(AV)}	G _p	η_D	ACPR
	(MHz)	(V)	(W)	(dB)	(%)	(dBc)
2-carrier W-CDMA	2140	28	1.6	31.5	11.3	-43
2-carrier W-CDMA	2350	28	1.6	29.3	10.7	-42

1.2 Features and benefits


- Integrated temperature compensated bias
- Biasing of individual stages is externally accessible
- Integrated current sense
- Integrated ESD protection
- Excellent thermal stability
- High power gain
- On-chip matching for ease of use (input matched to 50 Ω ; output partially matched)
- Designed for broadband operation (frequency 2100 MHz to 2400 MHz)
- Compliant to Directive 2002/95/EC, regarding restriction of hazardous substances (RoHS)

1.3 Applications

RF power MMIC for W-CDMA base stations in the 2100 MHz to 2400 MHz frequency range.

2. Pinning information

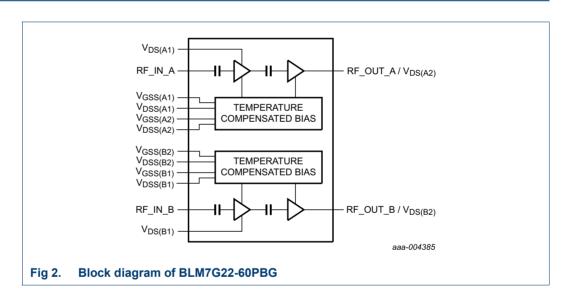
2.1 Pinning

2.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
V _{DS(A1)}	1	drain-source voltage of stage A1
V _{GSS(A2)}	2	gate sense FET and gate source voltage of stage A2
V _{DSS(A2)}	3	drain sense FET source voltage of stage A2
RF_IN_A	4	RF input path A
V _{GSS(A1)}	5	gate sense FET and gate source voltage of stage A1
V _{DSS(A1)}	6	drain sense FET source voltage of stage A1
n.c.	7	not connected
n.c.	8	not connected
V _{DSS(B1)}	9	drain sense FET source voltage of stage B1
V _{GSS(B1)}	10	gate sense FET and gate source voltage of stage B1
RF_IN_B	11	RF input path of B
V _{DSS(B2)}	12	drain sense FET source voltage of stage B2
V _{GSS(B2)}	13	gate sense FET and gate source voltage of stage B2
V _{DS(B1)}	14	drain-source voltage of stage B1

Table 2. Pin description ... continued


Symbol	Pin	Description
RF_OUT_B/V _{DS(B2)}	15	RF output path B / drain source voltage of stage B2
RF_OUT_A/V _{DS(A2)}	16	RF output path A / drain source voltage of stage A2
GND	flange	RF ground

3. Ordering information

Table 3. Ordering information

Type number	Package				
	Name	Description	Version		
BLM7G22S-60PB	HSOP16F	plastic, heatsink small outline package; 16 leads (flat)	SOT1211-2		
BLM7G22S-60PBG	HSOP16	plastic, heatsink small outline package; 16 leads	SOT1212-2		

4. Block diagram

5. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	65	V
V_{GS}	gate-source voltage		-0.5	+13	V
V _{GS(sense)}	sense gate-source voltage		-0.5	+9	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature	[1]	-	225	°C
T _{case}	case temperature		-	150	°C

Continuous use at maximum temperature will affect the reliability, for details refer to the on-line MTF calculator.

6. Thermal characteristics

Table 5. Thermal characteristics

Measured for total device.

Symbol	Parameter	Conditions	Value	Unit
R _{th(j-c)}		final stage; $T_{case} = 90 \text{ °C}$; $P_L = 3.2 \text{ W}$	1.1	K/W
	junction to case	driver stage; T _{case} = 90 °C; P _L = 3.2 W	3.2	K/W

^[1] When operated with a CW signal.

7. Characteristics

Table 6. DC characteristics

T_{case} = 25 °C; per section unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Final stag	ge			1		1
V _{(BR)DSS}	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 0.422 \text{ mA}$	65	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	V _{DS} = 10 V; I _D = 42 mA	1.4	1.9	2.4	V
V_{GSq}	gate-source quiescent voltage	V _{DS} = 28 V; I _D = 253 mA	1.7	2.1	2.5	V
I _{DSS}	drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V	-	-	1.4	μΑ
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$	-	7.8	-	A
I _{GSS}	gate leakage current	V _{GS} = 11 V; V _{DS} = 0 V	-	-	140	nA
g _{fs}	forward transconductance	V _{DS} = 10 V; I _D = 1478 mA	-	2.85	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $I_D = 1.48 \text{ A}$	-	350	-	mΩ
I_{Dq}	quiescent drain current	main transistor: V _{DS} = 28 V	208	233	257	mA
		sense transistor: I _D = 7 mA; V _{DS} = 28 V				
Driver sta	age				•	•
V _{(BR)DSS}	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 0.116 \text{ mA}$	65	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	V _{DS} = 10 V; I _D = 11.6 mA	1.4	1.9	2.4	V
V_{GSq}	gate-source quiescent voltage	V _{DS} = 28 V; I _D = 69.6 mA	1.7	2.1	2.5	V
I _{DSS}	drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V	-	-	1.4	μΑ
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$	-	2.2	-	Α
I _{GSS}	gate leakage current	V _{GS} = 11 V; V _{DS} = 0 V	-	-	140	nA
9 _{fs}	forward transconductance	V _{DS} = 10 V; I _D = 406 mA	-	8.0	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $I_D = 0.4 \text{ A}$	-	2350	-	mΩ
I _{Dq}	quiescent drain current	main transistor: V _{DS} = 28 V	67	75	83	mA
		sense transistor: $I_D = 7 \text{ mA}$; $V_{DS} = 28 \text{ V}$				

Table 7. RF Characteristics

Typical RF performance at $T_{case} = 25$ °C; $V_{DS} = 28$ V; $I_{Dq1} = 75$ mA; $I_{Dq2} = 233$ mA. Test signal: 2-carrier W-CDMA; 3GPP test model 1; 64 DPCH; clipping at 46 %; PAR = 8.4 dB at 0.01% probability on CCDF per carrier; carrier spacing = 5 MHz; f = 2140 MHz; per section unless otherwise specified, measured in a class-AB production circuit.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
G _p	power gain	$P_{L(AV)} = 1.6 W$	29.5	31.5	33.5	dB
η_{D}	drain efficiency	$P_{L(AV)} = 1.6 W$	10	11.3	-	%
RLin	input return loss	P _{L(AV)} = 1.6 W	-	-17	-10	dB
ACPR	adjacent channel power ratio	P _{L(AV)} = 1.6 W	-	-43	-40	dBc

8. Application information

8.1 Circuit information for application circuit (2.1 GHz to 2.2 GHz)

Table 8. List of components For test circuit see Figure 3.

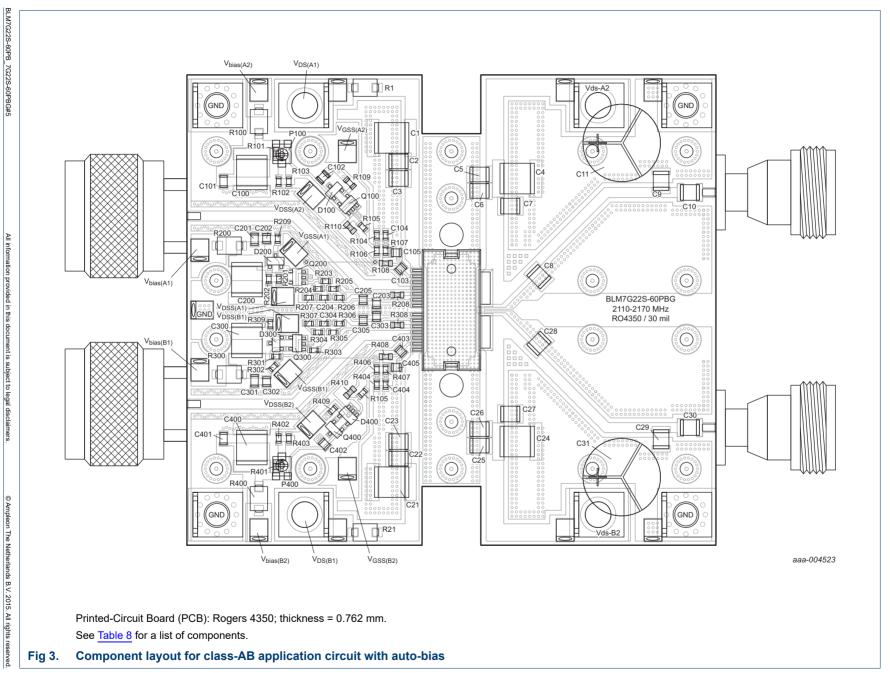
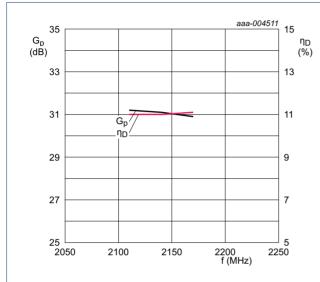

Component	Description	Value	Remarks
C1, C4, C21, C24, C100, C200, C300, C400	capacitor	10 μF	
C2, C5, C6, C22, C25, C26	capacitor	1 μF	
C3, C7, C10, C23, C27, C30	capacitor	8.2 pF [1]	
C8, C28	capacitor	1.6 pF 🗓	
C9, C29	capacitor	0.4 pF 🗓	
C11, C31	electrolytic capacitor	470 μF	
C101, C201, C301, C401	capacitor	100 nF	
C102, C103, C105, C202, C203, C205, C302, C303, C305, C402, C403, C405	capacitor	12 pF [2]	
C104, C204, C304, C404	capacitor	4.7 μF	
D100, D200, D300, D400	IC: LM4051	-	
P100, P400	potentiometer	-	do not populate
Q100, Q200, Q300, Q400	IC: LM7341	-	
R1, R21	ferrite bead	-	
R100, R200, R300, R400	resistor	4.7 Ω	
R101, R108, R208, R308, R401, R408	resistor	0 Ω	
R102, R402	resistor	360 Ω	1% tolerance
R103, R403	resistor	330 Ω	1% tolerance
R104, R203, R303, R404	resistor	68 kΩ	
R105, R405	resistor	10 kΩ	
R106, R205, R305, R406	resistor	820 Ω	
R107, R206, R306, R407	resistor	47 Ω	
R109, R209, R309, R409	resistor	300 kΩ	
R201, R301	resistor	180 Ω	1% tolerance

Table 8. List of components ...continued For test circuit see Figure 3.

Component	Description	Value	Remarks
R202, R302	resistor	$3.6~\mathrm{k}\Omega$	1% tolerance
R204, R304	resistor	9.1 kΩ	
R207, R307	resistor	1 kΩ	

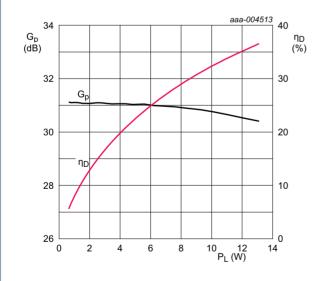
- [1] American Technical Ceramics type 100B or capacitor of same quality.
- [2] American Technical Ceramics type 100A or capacitor of same quality.

Product data sheet



of 21

8.2 Performance curves (2.1 GHz to 2.2 GHz)


Performance curves are measured in a class-AB dedicated application circuit with auto-bias from 2.1 GHz to 2.2 GHz, see <u>Table 8</u> and <u>Figure 3</u>.

8.2.1 W-CDMA

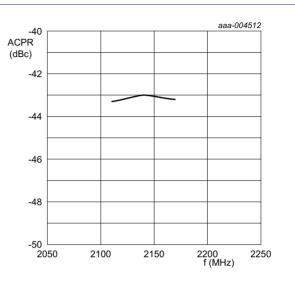

 T_{case} = 25 °C; V_{DS} = 28 V; $P_{L(AV)}$ = 1.6 W; I_{Dq1} = 75 mA; I_{Do2} = 232 mA; carrier spacing = 5 MHz.

Fig 4. Power gain and drain efficiency as function of frequency; typical values

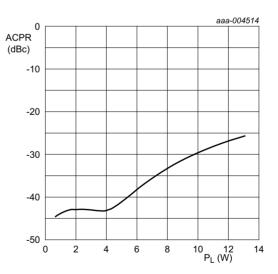

 T_{case} = 25 °C; V_{DS} = 28 V; f = 2140 MHz; I_{Dq1} = 75 mA; I_{Dq2} = 232 mA; carrier spacing = 5 MHz.

Fig 6. Power gain and drain efficiency as function of output power; typical values

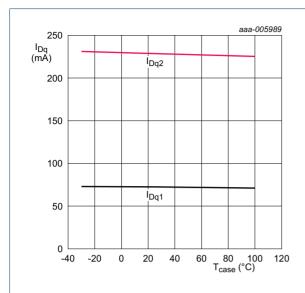
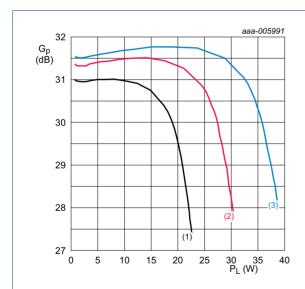

 T_{case} = 25 °C; V_{DS} = 28 V; $P_{L(AV)}$ = 1.6 W; I_{Dq1} = 75 mA; I_{Dq2} = 232 mA; carrier spacing = 5 MHz.

Fig 5. Adjacent channel power ratio as a function of frequency; typical values

 T_{case} = 25 °C; V_{DS} = 28 V; f = 2140 MHz; I_{Dq1} = 75 mA; I_{Dq2} = 232 mA; carrier spacing = 5 MHz.

Fig 7. Adjacent channel power ratio as a function of output power; typical values

aaa-<u>005990</u> 40 35 G_p (dB) η_{D} (1) 32 33 31 24 29 16 27 8 25 0 2 10 P_L (W) 12


 V_{DS} = 28 V; f = 2140 MHz; I_{Dq1} = 75 mA; I_{Dq2} = 232 mA; carrier spacing = 5 MHz.

- (1) $T_{case} = -30 \, ^{\circ}C$
- (2) T_{case} = +25 °C
- (3) $T_{case} = +100 \, ^{\circ}C$

Fig 8. Quiescent drain current as a function of case temperature; typical values

Fig 9. Power gain and drain efficiency as function of output power; typical values


8.2.2 1-Tone pulsed CW

 T_{case} = 25 °C; V_{DS} = 28 V; $P_{L(AV)}$ = 1.6 W; f = 2140 MHz; I_{Dq1} = 75 mA; I_{Dq2} = 232 mA; δ = 10 %; t_p = 100 μs.

- (1) $V_{DD} = 24 \text{ V}$
- (2) $V_{DD} = 28 \text{ V}$
- (3) $V_{DD} = 32 V$

Fig 10. Power gain as a function of output power; typical values

 V_{DS} = 28 V; $P_{L(AV)}$ = 1.6 W; f = 2140 MHz; I_{Dq1} = 75 mA; I_{Dq2} = 232 mA; δ = 10 %; t_p = 100 μs .

- (1) $T_{case} = -30 \, ^{\circ}C$
- (2) $T_{case} = +25 \, ^{\circ}C$
- (3) $T_{case} = +100 \, ^{\circ}C$

Fig 11. Power gain as a function of output power; typical values

8.2.3 2-Tone CW

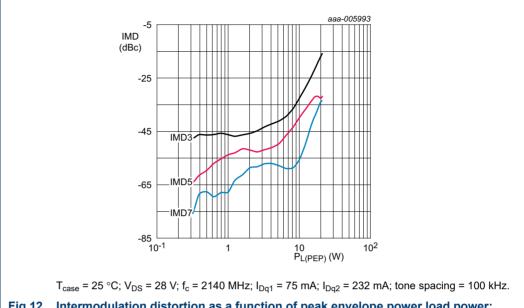
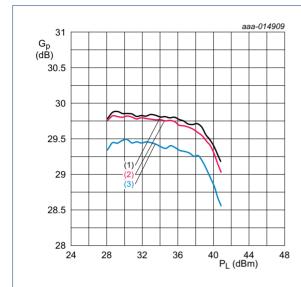
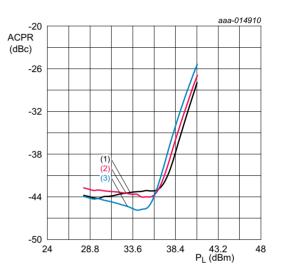



Fig 12. Intermodulation distortion as a function of peak envelope power load power; typical values

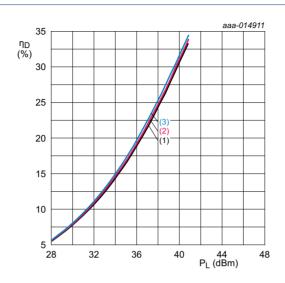
8.3 Performance curves (2.3 GHz to 2.4 GHz)

Performance curves are measured in a class-AB dedicated application circuit with auto-bias from 2.3 GHz to 2.4 GHz.


8.3.1 2-Carrier W-CDMA

 V_{DS} = 28 V; I_{Dq1} = 220 mA; I_{Dq2} = 75 mA; carrier spacing = 5MHz.

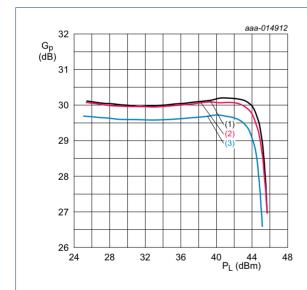
- (1) f = 2300 MHz
- (2) f = 2350 MHz
- (3) f = 2400 MHz


Fig 13. Power gain as a function of output power; typical values

 V_{DS} = 28 V; I_{Dq1} = 220 mA; I_{Dq2} = 75 mA; carrier spacing = 5MHz.

- (1) f = 2300 MHz
- (2) f = 2350 MHz
- (3) f = 2400 MHz

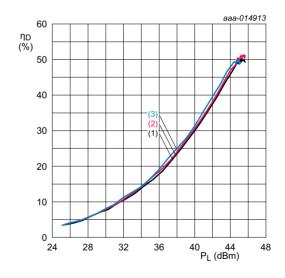
Fig 14. Adjacent channel power ratio as a function of output power; typical values



 V_{DS} = 28 V; I_{Dq1} = 220 mA; I_{Dq2} = 75 mA; carrier spacing = 5MHz.

- (1) f = 2300 MHz
- (2) f = 2350 MHz
- (3) f = 2400 MHz

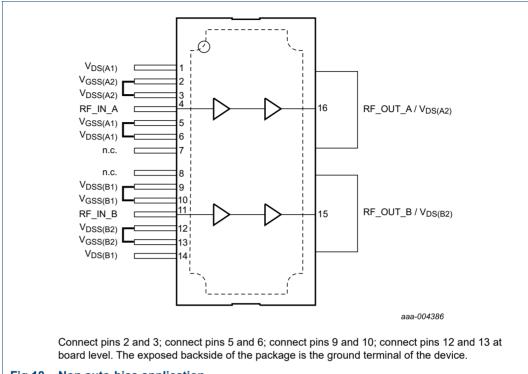
Fig 15. Drain efficiency as a function of output power; typical values


8.3.2 Pulsed CW

 V_{DS} = 28 V; I_{Dq1} = 220 mA; I_{Dq2} = 75 mA; δ = 10 %; t_p = 100 μs .

- (1) f = 2300 MHz
- (2) f = 2350 MHz
- (3) f = 2400 MHz

Fig 16. Power gain as a function of output power; typical values



 V_{DS} = 28 V; I_{Dq1} = 220 mA; I_{Dq2} = 75 mA; δ = 10 %; t_{D} = 100 μ s.

- (1) f = 2300 MHz
- (2) f = 2350 MHz
- (3) f = 2400 MHz

Fig 17. Drain efficiency as a function of output power; typical values

8.4 Application without auto-bias

Fig 18. Non auto-bias application

9. Test information

9.1 Ruggedness

The BLM7G22S-60PB and BLM7G22S-60PBG are capable of withstanding a load mismatch corresponding to VSWR = 10 : 1 through all phases under the following conditions: V_{DS} = 28 V; I_{Dq1} = 75 mA; I_{Dq2} = 233 mA; P_L = 27 W (W-CDMA); f = 2140 MHz.

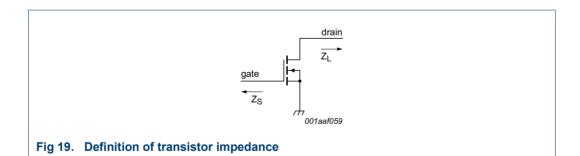

9.2 Impedance information

Table 9. Typical impedance

Measured load-pull data. Typical values per section unless otherwise specified.

f	Z _S [1]	Z _L [1]
(MHz)	(Ω)	(Ω)
BLM7G22S-60PB		
2080	58.86 + j21.82	10.54 – j3.20
2110	58.70 + j29.76	10.23 – j2.72
2140	51.80 + j41.56	9.56 – j2.90
2170	47.31 + j44.60	9.10 – j2.80
2230	38.35 + j46.53	8.41 – j2.05
2300	30.80 + j53.60	6.40 – j2.10
2350	23.80 + j48.20	5.70 – j2.20
2400	19.10 + j43.20	5.30 – j2.40
BLM7G22S-60PBG		
2080	55.62 + j18.89	15.89 – j2.28
2110	55.61 + j19.04	14.74 – j2.59
2140	55.60 + j19.12	13.56 – j2.75
2170	55.57 + j19.25	12.38 – j2.75
2200	55.53 + j19.39	11.20 – j2.61
2230	55.48 + j19.55	10.05 – j2.34
2300	34.51 + j41.45	7.06 – j6.36
2350	29.26 + j36.91	6.35 – j6.24
2400	22.86 + j32.52	5.65 – j6.15

[1] Z_S and Z_L defined in Figure 19.

9.3 Performance curves

Performance curves are measured per section.

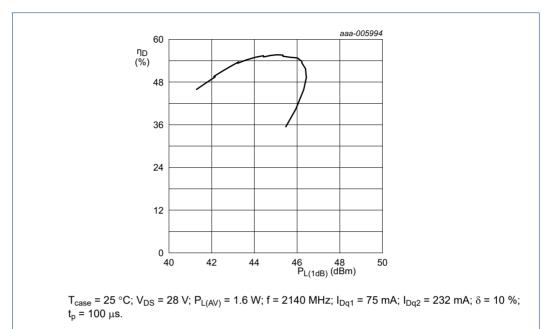


Fig 20. One-tone pulsed CW drain efficiency at 1 dB gain compression as function of output power at 1 dB gain compression; typical values

10. Package outline

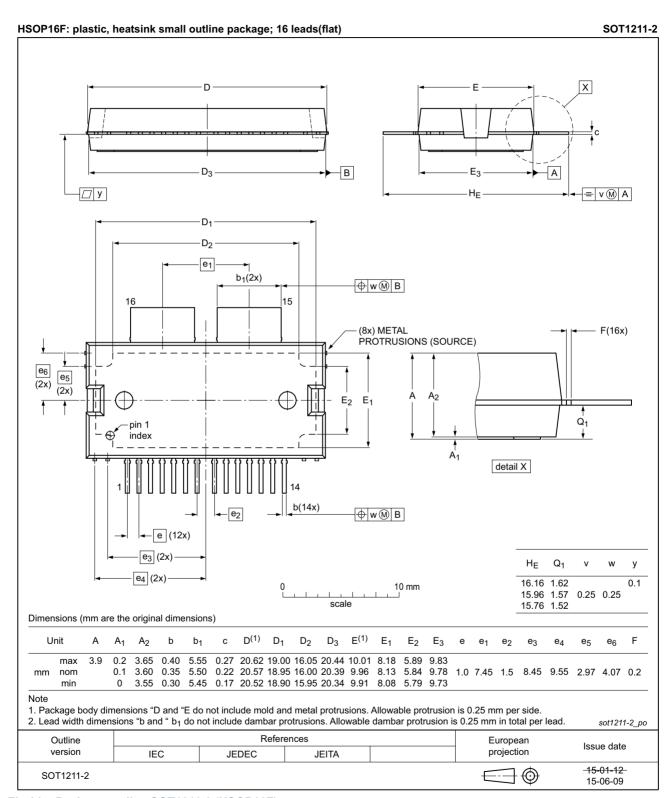


Fig 21. Package outline SOT1211-2 (HSOP16F)

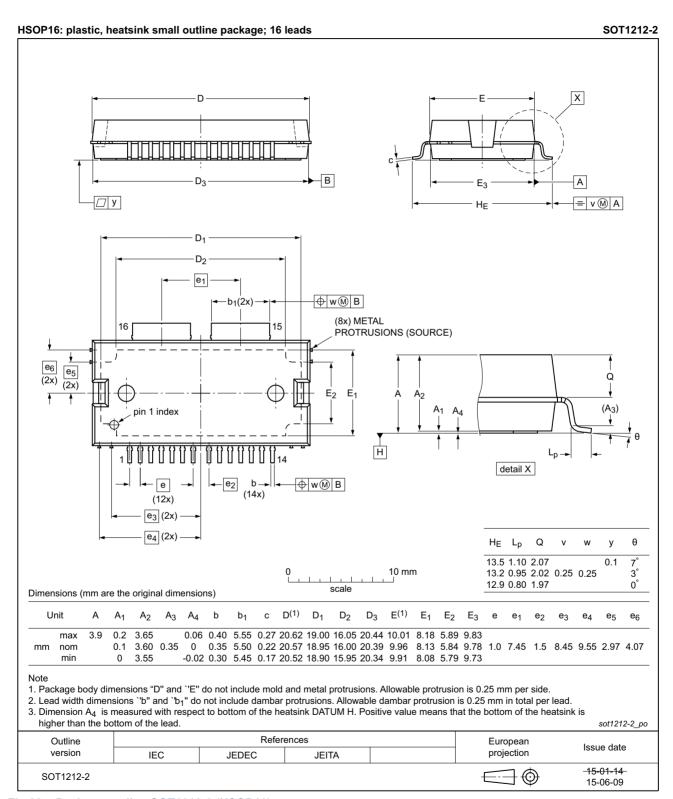


Fig 22. Package outline SOT1212-2 (HSOP16)

11. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

12. Abbreviations

Table 10. Abbreviations

Acronym	Description
3GPP	3rd Generation Partnership Project
CCDF	Complementary Cumulative Distribution Function
CW	Continuous Waveform
DPCH	Dedicated Physical CHannel
ESD	ElectroStatic Discharge
FET	Field-Effect Transistor
GEN7	Seventh Generation
LDMOS	Laterally Diffused Metal Oxide Semiconductor
MMIC	Monolithic Microwave Integrated Circuit
MTF	Median Time To Failure
PAR	Peak-to-Average Ratio
VSWR	Voltage Standing Wave Ratio
W-CDMA	Wideband Code Division Multiple Access

13. Revision history

Table 11. **Revision history**

Document ID	Release date	Data sheet status	Change notice	Supersedes		
BLM7G22S-60PB_7G22S-60PBG#5	20150901	Product data sheet		BLM7G22S-60PB_ 7G22S-60PBG v.4		
Modifications:	The format of this document has been redesigned to comply with the new identity guidelines of Ampleon.					
	 Legal texts have been adapted to the new company name where appropriate. 					
BLM7G22S-60PB_7G22S-60PBG v.4	20150701	Product data sheet	-	BLM7G22S-60PB_ 7G22S-60PBG v.3		
BLM7G22S-60PB_7G22S-60PBG v.3	20141016	Product data sheet	-	BLM7G22S-60PB_ 7G22S-60PBG v.2		
BLM7G22S-60PB_7G22S-60PBG v.2	20140930	Product data sheet	-	BLM7G22S-60PB_ 7G22S-60PBG v.1		
BLM7G22S-60PB_7G22S-60PBG v.1	20121211	Product data sheet	-	-		

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.ampleon.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Ampleon does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Ampleon sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Ampleon and its customer, unless Ampleon and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Ampleon product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Ampleon does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Ampleon takes no responsibility for the content in this document if provided by an information source outside of Ampleon.

In no event shall Ampleon be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Ampleon' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Ampleon.

Right to make changes — Ampleon reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Ampleon products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an

Ampleon product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Ampleon and its suppliers accept no liability for inclusion and/or use of Ampleon products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Ampleon makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Ampleon products, and Ampleon accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Ampleon product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Ampleon does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Ampleon products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Ampleon does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Ampleon products are sold subject to the general terms and conditions of commercial sale, as published at http://www.ampleon.com/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Ampleon hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Ampleon products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

BLM7G22S-60PB 7G22S-60PBG#5

BLM7G22S-60PB(G)

LDMOS 2-stage power MMIC

Non-automotive qualified products — Unless this data sheet expressly states that this specific Ampleon product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Ampleon accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Ampleon' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Ampleon' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Ampleon for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Ampleon' standard warranty and Ampleon' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own Any reference or use of any 'NXP' trademark in this document or in or on the surface of Ampleon products does not result in any claim, liability or entitlement vis-à-vis the owner of this trademark. Ampleon is no longer part of the NXP group of companies and any reference to or use of the 'NXP' trademarks will be replaced by reference to or use of Ampleon's own trademarks

15. Contact information

For more information, please visit: http://www.ampleon.com

For sales office addresses, please visit: http://www.ampleon.com/sales

AMPLEON

BLM7G22S-60PB(G)

LDMOS 2-stage power MMIC

16. Contents

1	Product profile	1
1.1	General description	1
1.2	Features and benefits	
1.3	Applications	1
2	Pinning information	2
2.1	Pinning	
2.2	Pin description	2
3	Ordering information	3
4	Block diagram	3
5	Limiting values	3
6	Thermal characteristics	4
7	Characteristics	4
8	Application information	5
8.1	Circuit information for application circuit	
	(2.1 GHz to 2.2 GHz)	5
8.2	Performance curves (2.1 GHz to 2.2 GHz)	
8.2.1	W-CDMA	
8.2.2	1-Tone pulsed CW	
8.2.3	2-Tone CW	. 10
8.3	Performance curves (2.3 GHz to 2.4 GHz)	
8.3.1	2-Carrier W-CDMA	
8.3.2	Pulsed CW	
8.4	Application without auto-bias	
9	Test information	
9.1	Ruggedness	
9.2	Impedance information	
9.3	Performance curves	
10	Package outline	
11	Handling information	. 18
12	Abbreviations	. 18
13	Revision history	. 18
14	Legal information	. 19
14.1	Data sheet status	. 19
14.2	Definitions	. 19
14.3	Disclaimers	
14.4	Trademarks	. 20
15	Contact information	. 20
16	Contents	21

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.