

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DISCRETE SEMICONDUCTORS

DATA SHEET

BLW96HF/VHF power transistor

Product specification

August 1986

BLW96

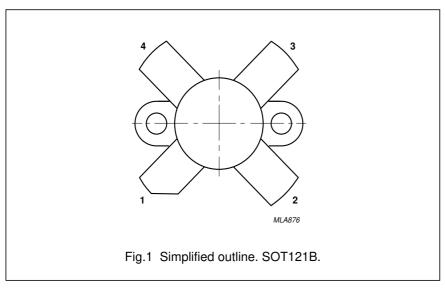
DESCRIPTION

N-P-N silicon planar epitaxial transistor intended for use in class-A, AB and B operated high power industrial and military transmitting equipment in the h.f. and v.h.f. band. The transistor presents excellent performance as a linear amplifier in s.s.b. applications. It is resistance stabilized and is guaranteed to withstand severe load mismatch

conditions. Transistors are supplied in matched h_{FE} groups.

The transistor has a $\frac{1}{2}$ " flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA


R.F. performance up to $T_h = 25$ °C

MODE OF OPERATION	V _{CE}	f MHz	P _L W	G _p dB		η %	d₃ dB	d ₅ dB	I _{C(ZS)} (I _C) A
s.s.b. (class-AB)	50	1,6 – 28	25 – 200 (P.E.P.)	>	13,5	> 40 ⁽¹⁾	< -30	< -30	0,1
c.w. (class-B)	50	108	200	typ.	6,5	typ. 67	_	_	(6)
s.s.b. (class-A)	40	28	50 (P.E.P.)	typ.	19	_	typ40	< -40	(4)

Note

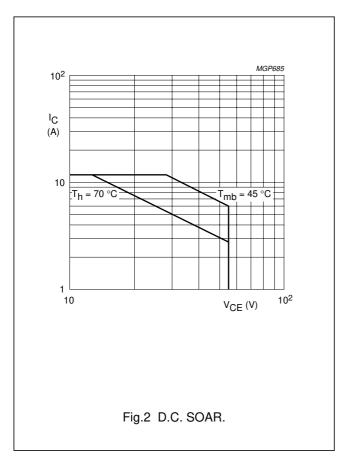
1. η_{dt} at 200 W P.E.P.

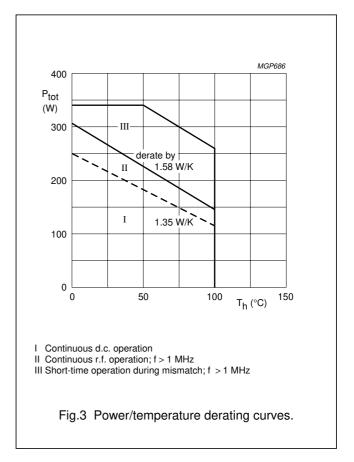
PIN CONFIGURATION

PINNING - SOT121B.

PIN	DESCRIPTION				
1	collector				
2	emitter				
3	base				
4	emitter				

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.


BLW96


RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-emitter voltage $(V_{BE} = 0)$

peak value	V_{CESM}	max.	110	٧
Collector-emitter voltage (open base)	$V_{\sf CEO}$	max.	55	٧
Emitter-base voltage (open collector)	V_{EBO}	max.	4	٧
Collector current (average)	$I_{C(AV)}$	max.	12	Α
Collector current (peak value); f > 1 MHz	I_{CM}	max.	40	Α
R.F. power dissipation (f > 1 MHz); $T_{mb} = 45 ^{\circ}C$	P_{rf}	max.	340	W
Storage temperature	T_{stg}	-65 to	+ 150	°C
Operating junction temperature	T_j	max.	200	$^{\circ}\text{C}$

THERMAL RESISTANCE

(dissipation = 150 W; T_{mb} = 100 °C, i.e. T_h = 70 °C)

From junction to mounting base (d.c. dissipation)

From junction to mounting base (r.f. dissipation)

From mounting base to heatsink

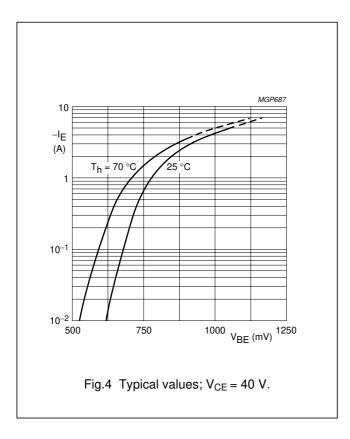
 $R_{th j-mb(dc)} = 0,63 \text{ K/W}$ $R_{th j-mb(rf)} = 0,45 \text{ K/W}$ $R_{th mb-h} = 0,2 \text{ K/W}$

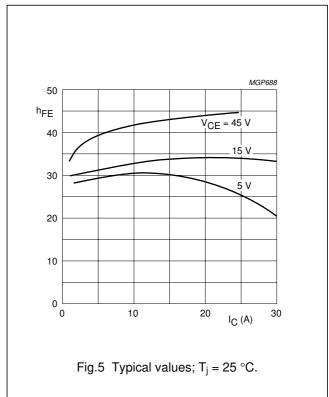
August 1986

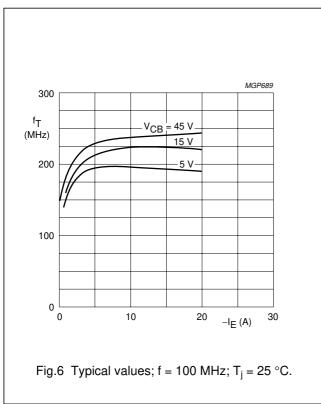
3

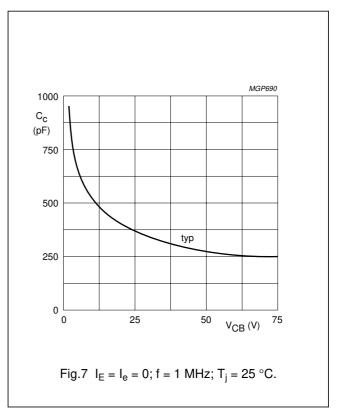
HF/VHF power transistor

BLW96


CHARACTERISTICS				
$T_j = 25 ^{\circ}C$				
Collector-emitter breakdown voltage				
$V_{BE} = 0$; $I_{C} = 50 \text{ mA}$	$V_{(BR)CES}$	>	110	V
Collector-emitter breakdown voltage				
open base; $I_C = 200 \text{ mA}$	$V_{(BR)CEO}$	>	55	V
Emitter-base breakdown voltage				
open collector; I _E = 20 mA	$V_{(BR)EBO}$	>	4	V
Collector cut-off current				
$V_{BE} = 0; V_{CE} = 55 \text{ V}$	I _{CES}	<	10	mA
Second breakdown energy; L = 25 mH; f = 50 Hz				
open base	E _{SBO}	>	20	mJ
$R_{BE} = 10 \Omega$	E _{SBR}	>	20	mJ
D.C. current gain ⁽¹⁾		tu un	20	
$I_C = 7 A; V_{CE} = 5 V$	h _{FE}	typ. 15 to	30 50	
D.C. current gain ratio of matched devices ⁽¹⁾				
$I_C = 7 A; V_{CE} = 5 V$	$h_{\text{FE1}}/h_{\text{FE2}}$	≤	1,2	
Collector-emitter saturation voltage ⁽¹⁾				
$I_C = 20 \text{ A}; I_B = 4 \text{ A}$	V_{CEsat}	typ.	1,9	V
Transition frequency at f = 100 MHz ⁽²⁾				
$-I_E = 7 \text{ A}; V_{CB} = 45 \text{ V}$	f_{T}	typ.	235	MHz
$-I_E = 20 \text{ A}; V_{CB} = 45 \text{ V}$	f_{T}	typ.	245	MHz
Collector capacitance at f = 1 MHz				
$I_{E} = I_{e} = 0$; $V_{CB} = 50 \text{ V}$				
Feedback capacitance at f = 1 MHz	C _c	typ.	280	pF
	- 0			
$I_C = 150 \text{ mA}; V_{CE} = 50 \text{ V}$	C _{re}	typ.	170	pF

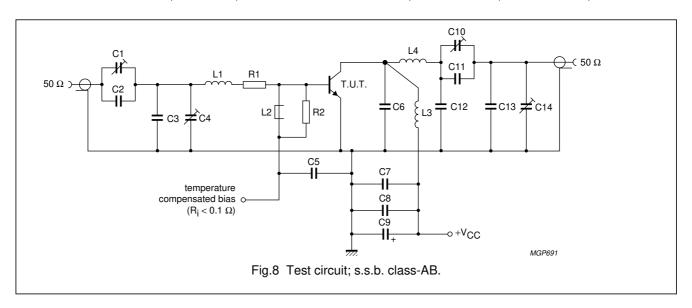

Notes


^{1.} Measured under pulse conditions: $t_p \leq 300~\mu s;~\delta \leq 0{,}02.$


^{2.} Measured under pulse conditions: $t_p \leq ~50~\mu s; \, \delta \leq 0{,}01$.

BLW96

HF/VHF power transistor


BLW96

APPLICATION INFORMATION

R.F. performance in s.s.b. class-AB operation (linear power amplifier)

 $V_{CE} = 50 \text{ V}; T_h = 25 \text{ °C}; f_1 = 28,000 \text{ MHz}; f_2 = 28,001 \text{ MHz}$

OUTPUT POWER	Gp	η _{dt} (%)	I _C (A)	d ₃ ⁽¹⁾	d ₅ ⁽¹⁾	I _{C(ZS)}
W	dB	at 200 W	/ (P.E.P.)	dB	dB	A
25 to 200 (P.E.P.)	> 13,5	> 40	< 5,0	< -30	< -30	0,1

List of components:

C1 = C4 = C10 = C14 = 100 pF film dielectric trimmer

C2 = 27 pF ceramic capacitor (500 V)

C3 = 270 pF polysterene capacitor (630 V)

C5 = C7 = C8 = 220 nF multilayer ceramic chip capacitor

C6 = 27 pF multilayer ceramic chip capacitor (500 V; ATC⁽²⁾)

 $C9 = 47 \mu F/63 V$ electrolytic capacitor

C11 = 2×36 pF multilayer ceramic chip capacitors (500 V; ATC⁽²⁾) in parallel

C12 = 2×43 pF multilayer ceramic chip capacitors (500 V; ATC⁽²⁾) in parallel

C13 = 43 pF multilayer ceramic chip capacitor (500 V; ATC⁽²⁾)

L1 = 88 nH; 3 turns Cu wire (1,0 mm); int. dia. 9,0 mm; length 6,1 mm; leads $2 \times 5 \text{ mm}$

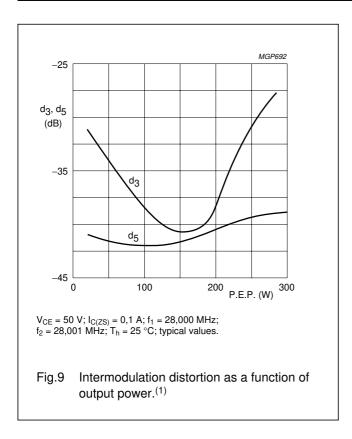
L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)

L3 = 150 nH; 5 turns Cu wire (2,0 mm); int. dia. 10,0 mm; length 18,7 mm; leads 2×5 mm

L4 = 197 nH; 5 turns Cu wire (2,0 mm); int. dia. 12,0 mm; length 18,6 mm; leads $2 \times 5 \text{ mm}$

R1 = 0,66 Ω ; parallel connection of 5 × 3,3 Ω metal film resistors (PR37; ± 5%; 1,6 W each)

R2 = 27 Ω carbon resistor (± 5%; 0,5 W)


Notes

- 1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.
- 2. ATC means American Technical Ceramics.

August 1986

HF/VHF power transistor

BLW96

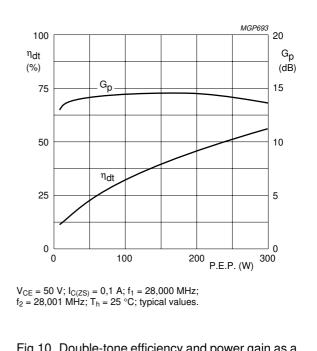
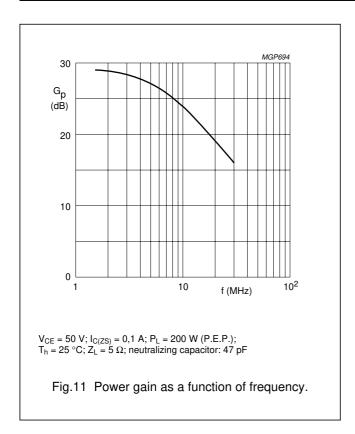
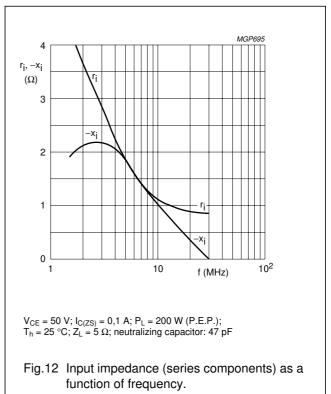


Fig.10 Double-tone efficiency and power gain as a function of output power.


Ruggedness

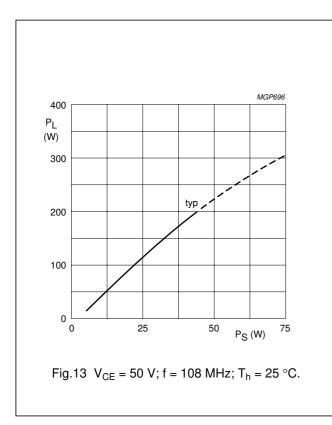

The BLW96 is capable of withstanding full load mismatch (VSWR = 50 through all phases) up to 150 W (P.E.P.) or a load mismatch (VSWR = 5 through all phases) up to 200 W (P.E.P.) under the following conditions:

 $V_{CE} = 45 \text{ V}; f = 28 \text{ MHz}; T_h = 70 \, ^{\circ}\text{C}; R_{th \, mb\text{-}h} = 0.2 \text{ K/W}.$

HF/VHF power transistor

BLW96

Figs 11 and 12 are typical curves and hold for one transistor of a push-pull amplifier with cross-neutralization in s.s.b. class-AB operation.

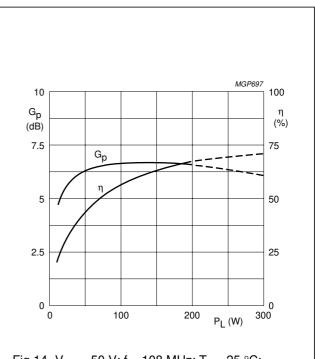
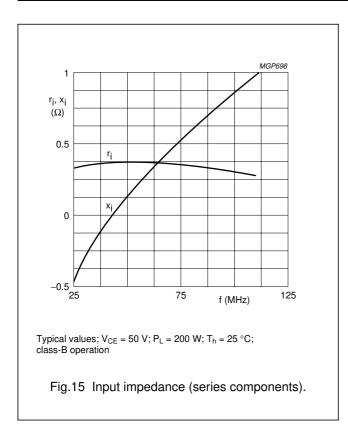

HF/VHF power transistor

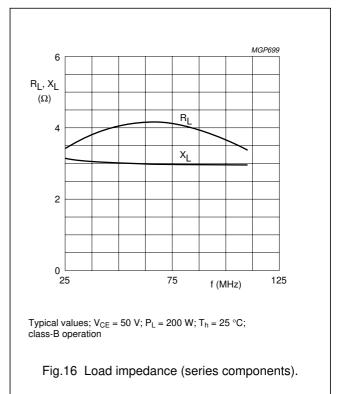
BLW96

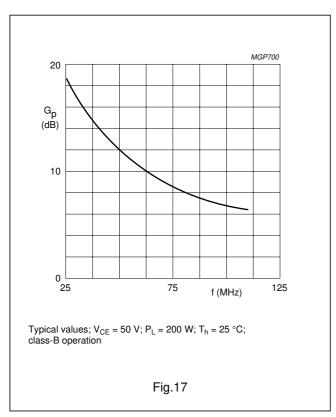
R.F. performance in c.w. operation (unneutralized common-emitter class-B circuit) T_{h} = 25 $^{\circ}\text{C}$

f (MHz)	V _{CE} (V)	P _L (W)	P _S (W)	G _p (dB)	I _C (A)	η (%)
108	50	200	typ. 45	typ. 6,5	typ. 6	typ. 67

9


Fig.14 V_{CE} = 50 V; f = 108 MHz; T_h = 25 °C; typical values.

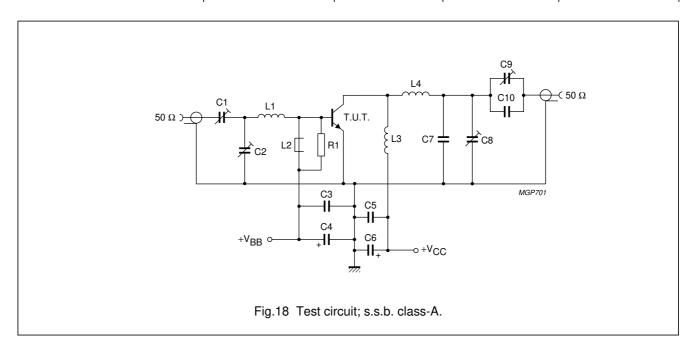

August 1986

HF/VHF power transistor

BLW96

August 1986

10


HF/VHF power transistor

BLW96

R.F. performance in s.s.b. class-A operation (linear power amplifier)

 $V_{CE} = 40 \text{ V}; T_h = 25 \text{ °C}; f_1 = 28,000 \text{ MHz}; f_2 = 28,001 \text{ MHz}$

OUTPUT POWER	G _р	I _C	d ₃ ⁽¹⁾	d ₅ ⁽¹⁾
W	dВ	A	dB	dB
typ. 50 (P.E.P.)	typ. 19	4	typ40	< -40

List of components:

C1 = C2 = 10 to 780 pF film dielectric trimmer

C3 = 220 nF polyester capacitor (100 V)

C4 = 100 μF/4 V electrolytic capacitor

 $C5 = 2 \times 330$ nF polyester capacitors (100 V) in parallel

C6 = 47 μF/63 V electrolytic capacitor

 $C7 = C10 = 2 \times 82$ pF ceramic capacitors (500 V) in parallel

C8 = C9 = 10 to 150 pF air dielectric trimmer

L1 = 45 nH; 2 turns enamelled Cu wire (1,6 mm); int. dia. 8,0 mm; length 4,0 mm; leads 2×3 mm

L2 = Ferroxcube wide-band h.f. choke, grade 3B (cat. no. 4312 020 36640)

L3 = 110 nH; 4 turns enamelled Cu wire (2,0 mm); int. dia. 10,0 mm; length 8,0 mm; leads 2×2 mm

L4 = 210 nH; 5 turns enamelled Cu wire (2,0 mm); int. dia. 12,0 mm; length 10,0 mm; leads 2×2 mm

R1 = 27 Ω carbon resistor (± 5%; 0,5 W)

Note

1. Stated intermodulation distortion figures are referred to the according level of either of the equal amplified tones. Relative to the according peak envelope powers these figures should be increased by 6 dB.

BLW96

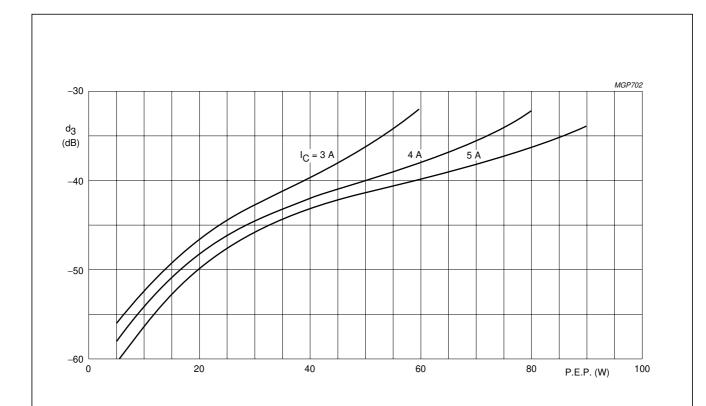


Fig.19 Third order intermodulation distortion as a function of output power. Third order intermodulation distortion as a function of output power. Third power VCE = 40 V; $T_h = 25 \, ^{\circ}\text{C}$; $f_1 = 28,000 \, \text{MHz}$; $f_2 = 28,001 \, \text{MHz}$.

BLW96

PACKAGE OUTLINE

UNIT

mm

inches

7.27

6.17

0.286

SOT121B

5.82

5.56

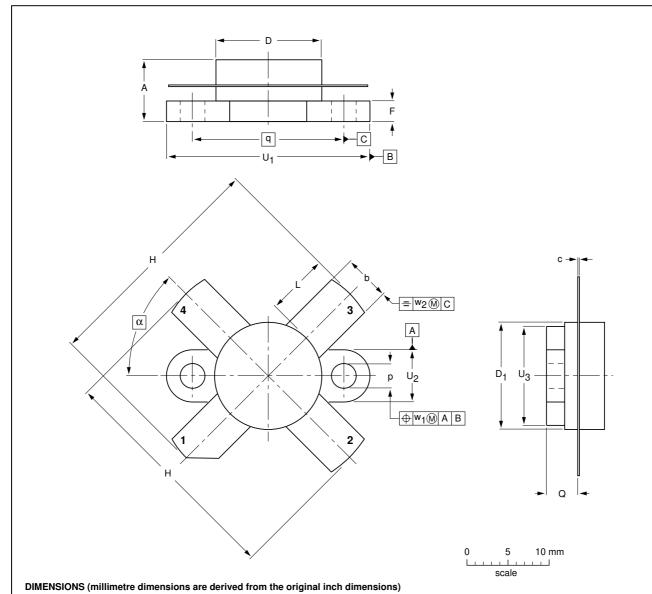
0.229

0.16

0.10

0.006

12.86


12.59

0.506

0.496

Flanged ceramic package; 2 mounting holes; 4 leads

SOT121B

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE

3.30

3.05

0.130

0.120

4.45 3.91

0.175

 U_2

6.48

0.255

0.245

 U_3

12.32

0.485

w₁

0.51

0.02

U₁

24.90 24.63

18.42

0.725

w₂

1.02

0.04

α

45°

97-06-28

August 1986 13

 D_1

12.83

0.505

0.495

2.41

0.105

0.095

28.45

25.52

1.120

1.005

7.93

0.312

0.249

HF/VHF power transistor

BLW96

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.