imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BMA220 Digital, triaxial acceleration sensor

Data sheet

Bosch Sensortec

BMA220 data sheet

Ordering code Package type

Document revision

Document release date

Document number

Technical reference code(s)

Notes

Please contact your Bosch Sensortec representative for the ordering code 12-pin LGA 1.10 13 April 2011 BST-BMA220-DS003-07 0 273 141 102 Specifications are subject to change without notice. Product photos and pictures are for illustration purposes only and may differ from the real product's appearance.

BMA220 Triaxial $\pm 2g$ to $\pm 16g$ acceleration sensor with on-chip motion-triggered interrupt controller

Key features

Three-axis accelerometer

•	Ultra-Small package	Mold package (LGA 12ld),
		Footprint 2mm x 2mm, height 0.98mm
•	Digital interface	SPI (4-wire, 3-wire), I ² C, interrupt pin
		I/O supply voltage range: 1.6V to 3.6V
•	Programmable functionality	Acceleration ranges ±2g/±4g/±8g/±16g
		Bandwidth 1kHz 32Hz
		Self test
•	On-chip interrupt controller	Motion-triggered interrupt-signal generation for
		 orientation recognition
		- any-motion detection
		- tap/double tap sensing
		 low-g/high-g detection
		Stand-alone capability (no microcontroller needed)
•	Ultra-low power ASIC	Low current consumption, short wake-up time,
		advanced features for system power management
	DollC compliant holegon fr	

• RoHS compliant, halogen-free

Typical applications

- Display profile switching
- Tap/double tap sensing
- Menu scrolling
- Gaming
- Drop detection for warranty logging
- Advanced system power management for mobile applications

General description

The BMA220 is a triaxial, low-g acceleration sensor with digital output for consumer market applications. It allows measurements of acceleration in three perpendicular axes. An evaluation circuitry (ASIC) converts the output of a micromechanical acceleration-sensing structure (MEMS) that works according to the differential capacitance principle.

Package and interface have been defined to match a multitude of hardware requirements. Since the sensor features an ultra-small footprint and a flat package it is ingeniously suited for mobile applications. The sensor offers a variable I/O supply voltage range from 1.6V to 3.6V and can be programmed to optimize functionality, performance and power consumption in customer specific applications. In addition it features an on-chip interrupt controller enabling motion-based applications without use of a microcontroller.

The BMA220 senses tilt, motion and shock vibration in cell phones, handhelds, computer peripherals, man-machine interfaces, virtual reality features and game controllers.

Rev. 1.10

CONTENT

1 SPECIFICATION	5
2 ABSOLUTE MAXIMUM RATINGS	7
3 BLOCK DIAGRAM	8
4 GLOBAL MEMORY MAP	9
 4.1 CONTROL REGISTERS 4.2 SETTING REGISTERS 4.3 DATA REGISTERS 4.4 INTERRUPT CONTROL REGISTERS 	13 14
5 INTERRUPT CONTROLLER	
5.1 LATCHED VS. NON-LATCHED MODES 5.2 SUPPORTED TYPES OF INTERRUPTS 5.3 POWER-SAVING MODES 5.4 ANY-MOTION (SLOPE) DETECTION 5.5 TAP SENSING 5.6 ORIENTATION RECOGNITION 5.7 LOW-G DETECTION 5.8 HIGH-G DETECTION 5.9 DATA READY DETECTION	
6 OPERATION MODES	31
 6.1 DEDICATED MODES (μC-LESS / STAND ALONE) 6.2 DIGITAL INTERFACE MODES 6.3 LOW-POWER MODE AND SUSPEND MODE 6.4 MODE TRANSITION VIA INTERFACE 6.5 SELF TEST MODE 	33 34 35
7 INTERFACES	37
 7.1 GENERAL DIGITAL INTERFACE DESCRIPTION 7.2 SPI INTERFACE 7.3 I²C INTERFACE 7.4 I²C WATCHDOG TIMER 7.5 SPI AND I²C ACCESS RESTRICTIONS 	38 42 46
8 PIN-OUT AND CONNECTING DIAGRAM	47
8.1 PIN-OUT 8.2 CONNECTING DIAGRAMS	
9 PACKAGE	51
 9.1 OUTLINE DIMENSIONS 9.2 SENSING AXES ORIENTATION AND POLARITY OF THE ACCELERATION OUTPUT 9.3 LANDING PATTERN RECOMMENDATION 9.4 MARKING 9.5 MOISTURE SENSITIVITY LEVEL AND SOLDERING 9.6 TAPE AND REEL SPECIFICATION 	

9.7 ORIENTATION	56
9.8 RoHS compliancy	57
9.9 HALOGEN CONTENT	57
9.10 NOTE ON INTERNAL PACKAGE STRUCTURE	57
9.11 HANDLING INSTRUCTION	57
10 LEGAL DISCLAIMER	58
10.1 Engineering samples	58
10.2 PRODUCT USE	
10.3 APPLICATION EXAMPLES AND HINTS	58
11 DOCUMENT HISTORY AND MODIFICATION	59

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Document is not intended for publication.

1 Specification

If not stated otherwise, the given values are maximum values over lifetime and full performance temperature and voltage ranges. Min/max. data represent 3-sigma values.

 Table 1: Operating conditions, output signal and mechanical characteristics

Parameter	Symbol	Condition	Min	Тур	Max	Units
OPERATING CONDITIONS						
	g FS2g			±2.0		g
	g FS4g	switchable via		±4.0]]	g
Acceleration Range	g FS8g	serial digital interface		±8.0		g
	g FS16g			±16.0		g
Supply Voltage Analog Domain	V _{DDA}		1.62	1.8	1.98	V
Supply Voltage Digital Domain	V _{DDD}		1.62	1.8	1.98	V
Supply Voltage I/O Domain	V _{DDIO}		1.62		3.6	V
Voltage Input	V _{IL SPI}	SPI			$0.1*V_{DDIO}$	V
Low Level	V _{IL I2C}	l²C			0.3*V _{DDIO}	V
Voltage Input	V _{IH SPI}	SPI	0.9*V _{DDIO}]	V
High Level	V _{IH I2C}	l²C	$0.7*V_{DDIO}$			V
Voltage Output High Level	V _{он}	SPI & I ² C	V _{DDIO}		V	
Voltage Output	V _{OL SPI}	SPI		GND		V
Low Level	V _{OL I2C}	l²C, R _P ≥ 680 Ω			0.2*V _{DDIO}	V
Supply Current in Normal Mode	I _{DD}	Nominal V_{DD} supplies at T_A =25°C		250		μA
Supply current in Low Power Mode	I _{DDsl}	Nominal V_{DD} supplies T _A =25°C, BW = 1kHz sleep dur. > 25ms		< 10		μΑ
Supply Current in Suspend Mode	I _{DDsd}	Nominal V_{DD} supplies at T_A =25°C			< 1	μA
Wake-Up Time	t _{w_up}	from sleep/suspend mode @1kHz bw			1.2	ms
Start-Up Time	t _{s_up}	POR @1kHz bw		1.5		ms
Operating Temperature	T _A		-40		+85	°C

Rev. 1.10

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Document is not intended for publication.

BMA220 Data sheet

OUTPUT SIGNAL				
Device resolution	D _{res}	g FS2g	62.5	mg
	S _{2g}	g _{FS2g} , T _A =25°C	 16	 LSB/g
Soncitivity	S _{4g}	g _{FS4g} ,T _A =25°C	 8	 LSB/g
Sensitivity	S _{8g}	g _{FS8g} , T _A =25°C	4	LSB/g
	S _{16g}	g _{FS16g} , T _A =25°C	2	LSB/g
Sensitivity Temperature Drift	TCS	$\text{-40°C} \leq \text{T}_{\text{A}} \leq \text{+85°C}$	±0.03	%/K
Zero-g Offset	Off	T _A =25°C, V _{DDA} =1.8V, g _{FS2g}	 ±95	 mg
Zero-g Offset Temperature Drift	тсо	$\label{eq:solution} \begin{array}{l} \textbf{-40^{\circ}C} \leq T_{A} \leq \textbf{+85^{\circ}C},\\ \textbf{g}_{\text{FS2g}} \end{array}$	±2	mg/K
Bandwidth	bw	1 st order filter, switchable	32/64/ 125/250/ 500/1000	Hz
Nonlinearity	NL	best fit straight line	 ±2	 %FS
	TSTx	den en din a en	0.7g*S _x	 LSB
Self Test Response	TSTy	depending on sensitivity/	 2.0g*S _y	 LSB
	TSTz	acceleration range	 0.6g*S _z	 LSB
Output Noise	n _{rms}	rms, Nominal V _{DD} supplies T _A =25°C, BW = 1kHz	 2	 mg/√Hz
Mechanical Characteristics				
Cross Axis Sensitivity	s	relative contribution between 3 axes	2	%
Alignment Error	δ_{a}	relative to package outline	 ±0.5	 0

2 Absolute maximum ratings

All voltages below are given with respect to GND.

Parameter	Condition	Min	Max	Units
Voltage at supply pad	V_{DDD} and V_{DDA}	-0.3	2.0	V
	V _{DDIO}	-0.3	4.25	V
Voltage at any logic pad	Non-supply pad	-0.3	V _{DDIO} +0.3	V
Storage temperature range	rel. humidity <=65%	-50	+150	°C
	duration ≤ 200µs		10,000	g
Mechanical shock	duration ≤ 1.0ms		2,000	g
	free fall onto hard surfaces		1.8	m
ESD	HBM, at any pin		2	kV
	CDM		500	V

© Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany. Note: Specifications within this document are subject to change without notice. Document is not intended for publication.

3 Block diagram

The following figure describes the functionality of the two basic parts of the sensor module, namely mechanical sensor element and evaluating ASIC.

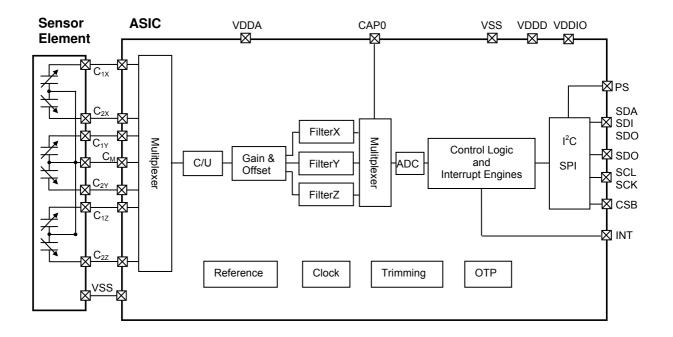


Figure 1: Block diagram BMA220

4 Global memory map

The memory map below shows all externally accessible data registers which are needed to operate BMA220.The left columns show the memory addresses. The columns in the middle depict the content of each register bit. The colors of the bits indicate whether they are read-only, write-only or read- and writable. The memory is volatile so that the writable content has to be re-written after each power-on.

The extended address space greater than 0x19 (SPI) / 0x32 (I^2C) is not shown. These registers are reserved for further Bosch factory testing and trimming.

Register Address (I ² C)	Register Address (SPI)	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	default after power-up
0x32	0x19				soft	eset				0x00
0x30	0x18				sus	pend				0x00
0x2E	0x17			unused			WDT_TO_en	WDT_TO_sel	SPI3	0x00
0x2C	0x16				rese	rved				0x00
0x2A	0x15				rese	rved				0x00
0x28	0x14				rese	rved				0x00
0x26	0x13				rese	rved				0x00
0x24	0x12				rese	rved				0x10
0x22	0x11		unused		sbist_sign	sbist (c	off,x,y,z)	rang	e[1:0]	0x00
0x20	0x10	serial_high_bw		unused			filt_cor	_config[3:0]		0x00
0x1E	0x0F	unused	sleep_en		sleep_dur[2:0]		en_x_channel	en_y_channel	en_z_channel	0x07
0x1C	0x0E	reset_int		lat_int[2:0]		en_low	en_high_x	en_high_y	en_high_z	0x00
0x1A	0x0D	en_data	en_orient	en_slope_x	en_slope_y	en_slope_z	en_tt_x	en_tt_y	en_tt_z	0x00
0x18	0x0C		unused		tt_int	low_int	high_int	data_int	slope_int	0x00
0x16	0x0B	orient_int		orient[2:0]		int_first_x	int_first_y	int_first_z	int_sign	0x00
0x14	0x0A		unused		tip_en		cking [1:0]	tt_sar	np[1:0]	0x08
0x12	0x09	orient_ex	slope_filt		slope_	th[3:0]		slope	dur[1:0]	0x45
0x10	0x08	tt_filt		tt_tr	n[3:0]			tt_dur[2:0]		0xB5
0xE	0x07	low_h	low_hy[1:0] low_dur[5:0]							0x7F
0xC	0x06	low_th[3:0] high_th[3:0]						0x4E		
0xA	0x05	high_hy[1:0]			high_c	dur[5:0]			0x7F	
0x8	0x04	acc_z<5:0> 0					-	0	0x00	
0x6	0x03				/<5:0>			0	0	0x00
0x4	0x02			acc_>	<5:0>			0	0	0x00
0x2	0x01					ion ID				0x00
0x0	0x00				Chi	p ID				0xDD

Figure 2: Memory map

Note: From SPI \rightarrow I²C use burst address increment in 0x02h steps.

4.1 Control registers

4.1.1 3-wire SPI mode selection

The BMA220 supports both 4-wire and 3-wire SPI. The protocols are exactly the same except for the fact that in 3-wire mode, the SDI pin is also used for data output.

The default mode is 4-wire SPI. If 3-wire SPI should be used, the SPI3 bit in register 0x17 (SPI) must be set to '1'.

4.1.2 Low-power mode configuration

The BMA220 supports a low-power mode. In this low-power mode, the chip wakes up periodically, enables the interrupt controller and goes back to sleep if no interrupt has occurred. The procedure is the following:

- 1. Wake-up
- 2. Enable analog front-end and convert acceleration data until the low-pass filters have settled.
- 3. Enable integrated interrupt controller and evaluate interrupt conditions. Once the interrupt conditions have been evaluated and **no** interrupt has occurred, the chip goes back to sleep. If no interrupt is enabled, the acceleration for x-, y- and z-axes are converted once and then the chip goes back to sleep.
- 4. Sleep for the programmed duration

Figure 3: sleep and awake phases

The low-power mode can be enabled by setting the $sleep_en$ bit in Reg. 0x0F (SPI) / 0x1E (I^2C) and by enabling the data ready interrupt (or any other interrupt, see chapter 5). The sleep duration can be configured via the $sleep_dur$ bits in Reg 0x0F (SPI) / 0x1E (I^2C).

sleep_dur setting	Sleep Duration
000	2ms
001	10ms
010	25ms
011	50ms
100	100ms
101	500ms
110	1s
111	2s

Table 3: Sleep durations for low-power mode

Rev. 1.10

BOSCH

4.1.3 Low-power mode dimensioning

The power saving that can be achieved depends on the programmed sleep duration and the configured bandwidth. Figure 4 explains the power consumption in relation to the different ASIC states (sleep and awake phases).

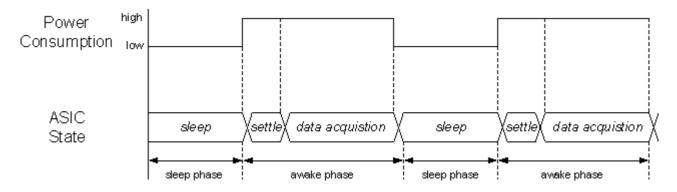


Figure 4: Sleep and awake phase

If a low bandwidth is selected, the time required for filter settling might be the dominating time. Refer to table 2 for the appropriate dimensioning of the attainable current saving.

Filter cut-off	Settling time
32 Hz	16690µs
64 Hz	8690µs
125 Hz	4690µs
250 Hz	2690µs
500 Hz	1690µs
1000 Hz	1190µs

Table 4: Approximate awake phase times for 1 data sample

4.1.4 Channel activation / de-activation

In order to optimize further power consumption of the BMA220, data evaluation of individual axes can be deactivated. Per default, all three axes are active. If the user wants to disable one or more axes, the appropriate <code>en_?_channel</code> bits at address 0x0F (SPI) / 0x1E (I²C) must be set to '0'.

4.1.5 Soft-reset

The BMA220 can be put into a soft-reset state by performing a read from the soft-reset address. To bring the chip back into operation, another read must be performed from the same memory address. The reading returns value 0xFF if the system was in soft reset mode; otherwise it returns value 0x00.

Please note that all internal configuration data programmed by the user will be lost.

4.1.6 Suspend mode

The BMA220 can be put into a suspend mode e.g. to easily achieve a power consumption below 1μ A by performing a read from the suspend address. To bring the chip back into normal mode operation, another read must be performed from the same memory address. The reading returns value 0xFF if the system was in suspend mode, otherwise it returns value 0x00.

Please note, that during suspend, all analog modules expect for power-on-reset will be disabled. Only reads through the serial interface are supported during suspend.

4.2 Setting registers

4.2.1 Acceleration range and sensitivity setting

The BMA220 has four different range settings for the full scale acceleration range. In dependence of the use case always the lowest full scale range with the maximum resolution should be selected. Please refer to literature to find out, which full scale acceleration range, which sensitivity or which resolution is the ideal one.

This can be configured via the register bits range[1:0] at address 0x11 (SPI) / 0x22 (SPI).

The following table shows the range bits with corresponding scale and resolution.

range[1:0]	Full Scale	Sensitivity	Resolution	Example use case
·00'	±2g	16 LSB / g	62.5mg / LSB	Orientation recognition
'01'	±4g	8 LSB / g	125mg / LSB	Gaming
'10'	±8g	4 LSB / g	0.25g / LSB	Ganning
'11'	±16g	2 LSB / g	0.5g / LSB	Shock vibration detection

Table 5: Acceleration resolution

4.2.2 Filter and bandwidth configuration

The BMA220 has a digital filter that can be configured by setting the corresponding register bits $filter_config[3:0]$ at address 0x10 (SPI) / 0x20 (l²C). For compatibility reasons the settings are defined based on BMA120. To always ensure an ideal cut off frequency of the filter the BMA220 is adjusting the sample rate automatically.

filter_config[3:0]	0x5	0x4	0x3	0x2	0x1	0x0
digital filter cut-off frequency	32Hz	64Hz	125Hz	250Hz	500Hz	1kHz

Table 6: Digital filter configuration

The internal SC-filter has a fix cut-off frequency at 1 KHz. In addition to the internal SC-filter a digital filter is available which is providing a filtered and an unfiltered data stream for all of the 3 axes of acceleration.

If application specific reasons require a bandwidth configuration <32Hz, please contact your Bosch Sensortec representative.

4.3 Data registers

4.3.1 Acceleration data read-out

The acceleration data can be read-out through addresses 0x02 (SPI) / 0x04 (I^2C) through 0x04 (SPI) / 0x08 (I^2C). The acceleration data is in 2's complement according to the table below.

An efficient way to read out the acceleration data in I²C or SPI mode is the burst-accesses. During such an access, the BMA220 automatically increments the read address after each byte. By using this kind of access, the data transferred over the I²C bus can be reduced by up to 50%.

Decimal value	Acceleration (in 2g range mode)
+ 31	+ 1.94g
0	0g
-32	- 2.0g

Table 7: Acceleration register content

Per default, the bandwidth of the data being read-out is limited by the internal low-pass filters according to the filter configuration. However, it is possible to read-out data only 1^{st} order filtered (1 kHz) even though the internal filters are configured differently.

The reason for this feature is that the interrupt controller may operate on low-bandwidth data while the external master still needs to operate on high-bandwidth data.

Unfiltered (1kHz high-bandwidth) data can be read-out through the serial interface when the serial_high_bw bit is set to '1'. Per default, filtered data is read-out through the serial interface.

4.3.2 Chip / revision ID

The chip ID and the revision ID can be read-out through addresses 0x00 (SPI & I^2C) and 0x01 (SPI) / 0x02 (I^2C).

Chip ID	Revision ID	
0xDD	0x00	

Table 8: Chip and revision ID

4.4 Interrupt control registers

The BMA220 features a programmable interrupt controller that directly supports common mobile applications like tap sensing detection, orientation recognition and any-motion detection.

Supported types of interrupts:

- Any-motion (slope) detection
- Tap/double-tap sensing
- Orientation recognition
- Low-g detection
- High-g detection
- Data-ready interrupt

The configuration and status register bits of all interrupt engines and the exact interrupt functionality are given in chapter 5.

5 Interrupt controller

The BMA220 integrates a programmable interrupt controller. It can be configured via SPI/ I^2C to monitor individual axes (X-, Y- and Z-axis) and check whether certain conditions apply (e.g. the acceleration on one axis exceeds a certain threshold). The interrupt controller of the BMA220 is capable of checking for certain conditions simultaneously.

If at least one of the configured conditions applies, an interrupt (logic '1') is issued through the INT pin of the sensor. More details about the triggering condition (e.g. the type of the interrupt or the axis that triggered the interrupt) are saved in internal status registers and can be read out through the digital interface.

It is recommended to reset the interrupt controller by setting reset_int to '1' when the interrupt settings has been set or changed.

5.1 Latched vs. non-latched modes

The interrupt controller can be used in two modes

- Latched mode: Once one of the configured interrupt conditions applies, the INT pin is asserted and must be reset by the external master through the digital interface.
- Non-Latched mode: The interrupt controller clears the INT signal once the interrupt condition no longer applies.

The interrupt output can be programmed by *lat_int[2:0]* to be either unlatched ('000') or latched permanently ('111') or have the latch time of 0.25s('001')/0.5s('010')/1s('011')/2s('100')/4s ('101')/8s('110'). The setting of these bits applies to all types of interrupts.

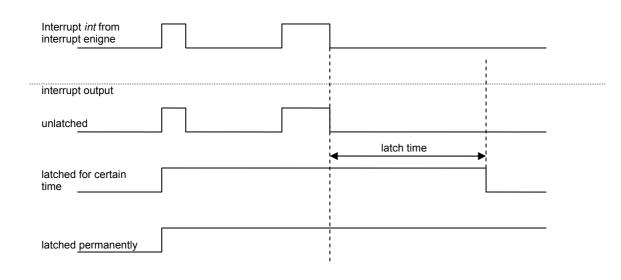


Figure 5: Interrupt output

5.2 Supported types of interrupts

The following interrupt modes are provided by the BMA220.

- Any-motion (slope) detection
- Tap/double-tap sensing
- Orientation recognition
- Low-g detection
- High-g detection
- Data-ready interrupt

5.3 Power-saving modes

In order to reduce power consumption of the sensor itself, the BMA220 supports a low-power mode in which the ASIC wakes up periodically, checks whether any of the configured interrupt conditions apply and then either goes back to sleep (no interrupt) or stays awake (interrupt).

The BMA220's PMU (power management unit) controls the transitions from the 'awake state' into the 'sleep state' and vice versa.

In normal mode, the interrupt controller is permanently turned on to continuously process the incoming data. In low-power mode, the interrupt controller will be turned on by the PMU once the chip has fully woken up. The time it takes before the sensor can go back to sleep is determined by the active interrupt engines. Once all active engines indicate that no interrupt condition applies, the PMU will switch the sensor back into sleep state (please refer to section 0 for more details).

Furthermore the applied interrupt condition can be used not only to enable the low-power mode of the sensor itself but for the whole system. This enables a dramatically reduced power consumption of the whole system. The result is an extended operation and stand-by time e.g. of mobile devices in an order of magnitude.

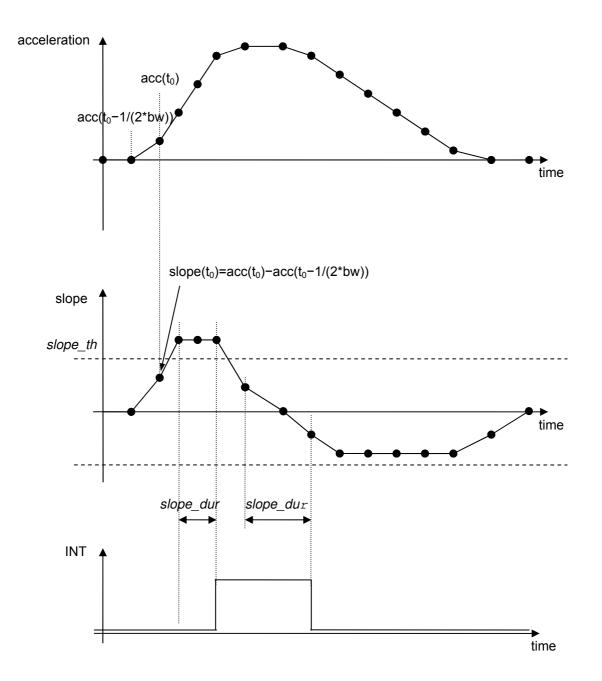
Rev. 1.10

5.4 Any-motion (slope) detection

The any-motion detection uses the slope between two successive acceleration signals to detect changes in motion. It generates an interrupt when a preset threshold *slope_th* is exceeded. The threshold can be configured between 0 and the maximum acceleration value corresponding to the selected measurement range. The time difference between the successive acceleration signals depends on the bandwidth of the configurable low pass filter and corresponds roughly to 1/(2*bandwidth) ($\Delta t=1/(2*bw)$).

In order to suppress failure signals, the interrupt is only generated if a certain number *slope_dur* of consecutive slope data points is above the slope threshold *slope_th*.

If the same number of data points falls below the threshold, the interrupt is reset.


The criteria for any-motion detection are fulfilled and the slope interrupt is generated if any of the enabled channels exceeds the threshold *slope_th* for *slope_dur* consecutive times. As soon as all the enabled channels fall or stay below this threshold for *slope_dur* consecutive times the interrupt is reset unless interrupt signal is latched.

The any-motion interrupt logic sends out the signals of the axis that has triggered the interrupt (*slope_first_x*, *slope_first_y*, *slope_first_z*) and the signal of motion direction (*slope_sign*).

When serial interface is active, any-motion detection logic is enabled if any of the any-motion enable register bits is set. To disable the any-motion interrupt, clear all the axis enable bits.

In the dedicated wake-up mode (0), all three axes are enabled for any-motion detection whether the individual axis enable bits are set or not.

The following table shows the signals used in any-motion detection. After reset, a default value will be assigned to each register.

Name	Register Address (SPI) *	Description	Number of bits	Reset-value
en_slope_x en_slope_y en_slope_z	0x0D.5 0x0D.4 0x0D.3	enable slope detection on x-axis enable slope detection on y-axis enable slope detection on z-axis	3	"000"
slope_th	0x09[5:2]	define the threshold level of the slope 1 LSB threshold is 1 LSB of acc_data	SLOPE_TH_N UM 4	SLOPE_TH_INIT ("0001")
slope_dur	0x09[1:0]	define the number of consecutive slope data points above <i>slope_th</i> which are required to set the interrupt ("00" = 1,"01" = 2,"10" = 3, "11" = 4)	SLOPE_DUR_ NUM 2	SLOPE_DUR_INI T ("01")
slope_filt	0x09.6	defines whether filtered or unfiltered acceleration data should be used (evaluated) ('0'=unfiltered, '1'=filtered)	1	'1'
slope_int	0x0C.0	whether slope interrupt has been triggered	1	'0'
slope_first_x slope_first_y slope_first_z		whether x-axis has triggered the interrupt (0=no, 1=yes) whether y-axis has triggered the interrupt (0=no, 1=yes) whether z-axis has triggered the interrupt (0=no, 1=yes)	3	"000"
slope_sign		global register bit for all interrupts define the slope sign of the triggering signal (0=positive slope, 1=negative slope)	1	,0,

* For determining the corresponding I²C register address, please refer to figure 2 in chapter 4 (memory map)

Table 9: Control and status register for any motion detection

5.5 Tap sensing

Tap sensing has the same functionality as a common laptop touch-pad. If 2 taps occur within a short time, a pre-defined action will be performed by the system. If time between 2 taps is too long or too short no action happens.

When the serial interface is activated, tap sensing is enabled if any of the tap sensing enable register bits are set $(en_tt_x, en_tt_y, en_tt_z)$. To disable the tap sensing interrupt, clear all the axis enable bits.

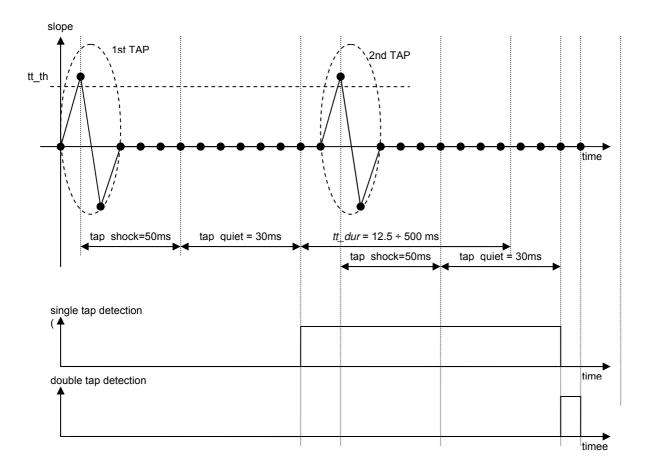
When the preset threshold *tt_th* is exceeded, a tap-shock is detected. The tap sensing interrupt is generated only when a second tap is detected within a specified period of time.

The slope between two successive acceleration data has to exceed tt_t to detect a tap-shock. The time difference between the two successive acceleration values depends on the bandwidth of the low pass filter. It roughly corresponds to 1/(2*bandwidth).

The time delay tt_dur between two taps is typically between 12,5ms and 500ms. The threshold is typically between 0.7g and 1.5g in 2g measurement range. Due to different coupling between sensor and device shell (housing) and different measurement ranges of the sensor these parameters are configurable.

The criteria for tap sensing are fulfilled and the interrupt is generated if the second tap occurs after tap_quiet and within tt_dur . The tap sensing direction is determined by the 1st tap. During tt_quiet period (30ms) no taps should occur. If a tap occurs during tap_quiet period it will be connoted as new tap.

The slope detection interrupt logic stores the direction of the (first) tap-shock in a status register. This register will be locked for *tap_shock=*50ms in order to prevent other slopes to overwrite this information.


When a tap sensing interrupt is triggered, the signals of the axis that has triggered the interrupt $(tt_first_x, tt_first_y, tt_first_z)$ and the signal of motion direction (tt_sign) are stored in the corresponding registers.

The axis on which the biggest slope occurs will trigger the first tap. The second tap will be triggered by any axis (not necessarily same as the first tap).

The register *tap_en* defines whether single tap or double tap shall be detected.

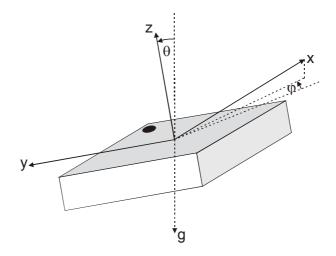
In dedicated tap sensing mode, all three axes are enabled for double tap sensing detection.

Figure 7: Tap sensing interrupt detection

When a tap-sensing interrupt is triggered, the following details can be read from the corresponding registers: the axis that has triggered the interrupt ($tt_first_x, tt_first_y, tt_first_z$) and the motion direction of the triggering acceleration signal (tt_sign).

Name	Register Address (SPI) *	Description	Number of bits	
en_tt_x en_tt_y en_tt_z	0x0D.2 0x0D.1 0x0D.0	enable tap sensing detection on x-axis enable tap sensing detection on y-axis enable tap sensing detection on z-axis	3	"000"
tt_th	0x08[6:3]	define the threshold level of the tap sensing slope 1 LSB is 2*(LSB of acc_data)	TT_TH_NUM 4	TT_TH_INIT "0110"
tt_dur	0x08[2:0]	define the maximum delay of the second tap after the shock suppression (50, 105, 150, 219, 250, 375, 500, 700)ms	TT_DUR_NUM 3	TT_DUR_INIT "101"
tt_filt	0x08.7	defines whether filtered or unfiltered acceleration data should be used (evaluated) ('0'=unfiltered, '1'=filtered)	1	'1'
tip_en	0x0A.4	whether tap or double-tap shall be detected (0= double tap, 1=tap)	1	·0'
tt_int	0x0C.4	whether tap sensing interrupt has been triggered (0=no, 1=yes)	1	·0'
tt_samp	0x0A[1:0]	number of data to be sampled after wake- up '00' => 2 data '01' => 4 data '10' => 8 data '11' => 16 data	2	,00,
tt_first_x tt_first_y tt_first_z		whether x-axis has triggered the interrupt (0=no, 1=yes) whether y-axis has triggered the interrupt (0=no, 1=yes) whether z-axis has triggered the interrupt (0=no, 1=yes)	3	"000"
tt_sign		give the slope sign of the triggering signal (0=positive, 1=negative)	1	·0'

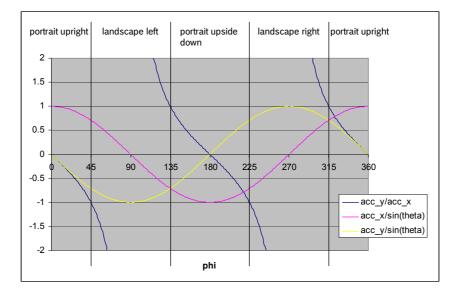
* For determining the corresponding I²C register address, please refer to figure 2 in chapter 4 (memory map)


Table 10: Control and status register for tap sensing

5.6 Orientation recognition

The orientation recognition feature informs on an orientation change of the sensor with respect to the gravitational field vector g. The measured acceleration vector components with respect to the gravitational field look as follows.

Figure 8: Definition of acceleration-vector components


[with respect to graviational field vector g (black dot = pin 1 identifier)]

acc_x = $1g \cdot \sin\theta \cdot \cos\varphi$ acc_y = $-1g \cdot \sin\theta \cdot \sin\varphi$ acc_z = $1g \cdot \cos\theta$ $\rightarrow acc_y/acc_x = -\tan\varphi$

The output register is called *orient* and defined in the following way:

'0xx' upward looking (z>0): '000' portrait upright $(315^{\circ} < \phi < 45^{\circ})$ '001' portrait upside down $(135^{\circ} < \phi < 225^{\circ})$ '010' landscape left $(45^{\circ} < \phi < 135^{\circ})$ '011' landscape right $(225^{\circ} < \phi < 315^{\circ})$ '1xx' downward looking (z<0), xx as before

- \rightarrow |acc_y/acc_x|<1 && acc_x>0
- \rightarrow |acc_y/acc_x|<1 && acc_x<0
- \rightarrow |acc_y/acc_x|>1 && acc_y<0
- \rightarrow |acc_y/acc_x|>1 && acc_y>0

Figure 9: Orientation definition and interrupt thresholds with respect to the angle phi φ

The criteria for portrait/landscape switching is fulfilled and the interrupt is generated when the threshold $|acc_y/acc_x|=1$ is crossed (i.e. 45°, 135°, 225°, 315°). As soon as the interrupt is set, no new interrupt is generated within the hysteresis level of $0.66 < |acc_y/acc_x|<1.66$ corresponding to a hysteresis interval of $\pm 13\%$ around the threshold.

It is possible to block the orientation detection depending on certain conditions (no orientation interrupt will be triggered). This orientation interrupt blocking feature is configurable via the *orient_blocking*[1:0] bits in the following manner:

- '00' \rightarrow interrupt blocking is <u>completely</u> disabled
- '01' → no interrupt is generated, when |z|>0.9g OR |x|+|y| < 0.4g OR when the slopes of the acceleration data exceeds 0.2g (sample-to-sample).
- '10' → no interrupt is generated, when |z|>0.9g OR |x|+|y| < 0.4g OR while the slopes of the acceleration data exceeds 0.3g (sample-to-sample).
- '11' → no interrupt is generated, when |z|>0.9g OR |x|+|y| < 0.4g OR while the slopes of the acceleration data exceeds 0.4g (sample-to-sample).

For all states where interrupt blocking through slope detection is used, the interrupt should be re-enabled after the slope has been below the threshold for 3 times in a row.

For all states where interrupt blocking is enabled, in order to trigger the interrupt, the orientation should remain the same (stable) until the timer runs out (for ~100ms). The timer starts to count when orientation changes between two consecutive samples. If the orientation changes while timer is still counting, the timer is restarted.

The criteria for switching from upward to downward looking fulfilled and the interrupt is generated when the threshold z=0g is crossed. As soon as the interrupt is set, no new interrupt is generated within the hysteresis level of -0.4g < z < 0.4g (i.e. $\pm 25^{\circ}$ tilt around vertical position).